
Proceedings of Machine Learning Research 222, 2023 ACML 2023

Selective Nonparametric Regression via Testing

Fedor Noskov fnoskov@hse.ru
HSE University,
Institute for Information Transmission Problems RAS,
and Moscow Institute of Science and Technology (MIPT), Moscow, Russia

Alexander Fishkov alexander.fishkov@skoltech.ru
Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia

Maxim Panov panov.maxim@gmail.com

Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, UAE

Editors: Berrin Yanıkoğlu and Wray Buntine

Abstract

Prediction with the possibility of abstention (or selective prediction) is an important prob-
lem for error-critical machine learning applications. While well-studied in the classification
setup, selective approaches to regression are much less developed. In this work, we consider
the nonparametric heteroskedastic regression problem and develop an abstention procedure
via testing the hypothesis on the value of the conditional variance at a given point. Unlike
existing methods, the proposed one allows to account not only for the value of the vari-
ance itself but also for the uncertainty of the corresponding variance predictor. We prove
non-asymptotic bounds on the risk of the resulting estimator and show the existence of
several different convergence regimes. Theoretical analysis is illustrated with a series of
experiments on simulated and real-world data.

Keywords: nonparametric regression, selective regression, prediction with abstention,
hypothesis testing

1. Introduction

In many machine learning applications, there exists a possibility to reject the prediction of
the model and entrust it to the human or other model. Abstention is usually done based
on the estimation of uncertainty in predicted value. In classification problems uncertainty
might be measured via the probability of wrong prediction while for regression it corresponds
to the expected error. In both cases, the estimation of these quantities is usually much
harder than the solution of the initial prediction problem. In this work, we target the
problem of regression with abstention (or selective regression) in nonparametric setup.

Related Works. There is a large variety of literature regarding classification with
reject option. Most likely, the problem was firstly studied by Chow in papers (Chow, 1957,
1970). Moreover, in the article (Chow, 1970) he introduced a risk function used in the
majority of forthcoming works including the present one. Herbei and Wegkamp (2006)
studied an optimal procedure for this risk and proved consistency for the proposed plugin
rule. Then the research was focused on investigation of either empirical risk minimization
among a class of hypotheses (Bartlett and Wegkamp, 2008; Cortes et al., 2016) or on other
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types of risk (Denis and Hebiri, 2020; El-Yaniv and Wiener, 2010; Lei, 2014). Benefits
of abstention for online and active learning were studied in (Neu and Zhivotovskiy, 2020)
and (Puchkin and Zhivotovskiy, 2021) correspondingly. Besides, the problem was studied
in a number of more practical works; see, for example, (Grandvalet et al., 2009; Geifman
and El-Yaniv, 2019; Nadeem et al., 2009). Finally, conformal prediction approach (Vovk
et al., 1999; Shafer and Vovk, 2008) has recently been applied to the classification with
reject option (Linusson et al., 2018; Johansson et al., 2023).

Unfortunately, methods for selective regression are much less developed. Zaoui et al.
(2020) suggested an approach to regression via a plugin rule. In papers (Shah et al., 2022)
and (Salem et al., 2022), authors proposed new approaches of neural network learning for
better uncertainty capturing. In (Jiang et al., 2020), the authors suggested an uncertainty
measure for regression based on blending and a method to select samples with the least risk
given some coverage.

Setup. In this work, we focus on the selective algorithms for regression problems
with heteroskedastic noise. We assume that the data (X,Y ) is coming from a standard
regression model Y = f(X) + ε with target function f and i.i.d. noise ε. Covariate X
is assumed to follow some distribution p(·). The noise variance depends on the input
point: σ2(x) = Var[Y | X = x]. The Chow model (Chow, 1970) assumes that the cost
for abstention is given by a fixed value λ > 0, while for prediction the mean squared risk
is paid. The abstention procedure for such a problem can be constructed based on the
estimate of the variance σ̂2(x). The abstention rule α̂(x) proposed by Zaoui et al. (2020) is
given by α̂(x) = I

{
σ̂2(x) ⩾ λ

}
. The resulting method was proved to be consistent, and the

corresponding rate of convergence was derived under standard nonparametric assumptions
on functions f and σ. However, the analysis was done only for the risk averaged over the
covariate distribution p(x), while one may expect that the convergence properties at a given
point x may significantly depend on the difference between the variance σ̂2(x) and cost of
abstention λ. Moreover, the performance of the estimator α̂(x) = I

{
σ̂2(x) ⩾ λ

}
depends

on how accurately σ̂2(x) estimates the true variance σ2(x). In particular, σ̂2(x) might give
unreliable predictions in the areas of design space where there is little to no train data.
Such situations arise when there is a covariate shift between train and test data. In this
work, we aim to conduct in-depth theoretical analysis for the pointwise estimation risk for
the considered problem and propose the abstention procedure that would be more robust
to covariate shifts than the one based on the plugin rule.

The main contributions of our paper are the following.

• We show the natural way to construct the abstention rule for nonparametric het-
eroskedastic regression based on the hypothesis testing on the variance value at a
given point. We implement the method via Nadaraya-Watson kernel estimates of
regression and variance functions.

• We prove the accurate finite sample bounds for the risk of the resulting estimator.
Our results show that the behavior of the risk significantly depends on the relative
values of the variance σ2(x) and the abstention cost λ. The proposed method shows
favorable performance over the plugin approach of Zaoui et al. (2020), see Table 1.

• We illustrate the theoretical findings by experiments with simulated and real-world
data.
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The paper is organized as follows. We introduce the setup of the study in Section 2.
We propose a new abstention procedure based on hypothesis testing on the values of the
conditional variance in Section 3. Theoretical properties of the developed method are
studied in Section 4. Finally, Section 5 illustrates our experimental findings and Section 6
concludes the study.

2. Regression with Abstention

Let us start by formalizing the problem. We assume that we observe pairs (X,Y ) with
covariate X ∈ Rd and output Y ∈ R. The regression task is to estimate EY [Y | X = x]
via some function f̂(x), where EY [· | X = x] means the expectation over the distribution
Y | X = x. For the case of regression with abstention, for each x we decide to accept or to
reject the prediction f̂(x). Thus, we introduce an indicator of abstention α̂(x) which is equal
to 1 if the prediction f̂(x) was rejected. The intuition suggests accepting the prediction if
the expected squared error EY [(f̂(X)− Y )2 | X = x] is not too large, say less than some λ.

That leads to a natural definition of risk which is a variant of the risk proposed in (Chow,
1970):

Rλ(x) = EY

[
(f̂(X)− Y )2 I {α̂(x) = 0} | X = x

]
+ λ I {α̂(x) = 1} ,

where I {·} is an indicator function. The introduced risk has a natural interpretation. If
we abstain from prediction then we should pay the fixed cost λ. Otherwise, we pay the
expected squared error. Note that the provided risk is not the only option for the problem.
For instance, people also considered coverage risk, see (Jiang et al., 2020).

Given a risk function, the following question rises up. What are the estimators that
minimize it in each point? We formulate the answer as a proposition.

Proposition 1 Define f(x) = E[Y | X = x] and σ2(x) = Var[Y | X = x]. Then, f is
the optimal estimator of Y | X = x and α(x) = I

{
σ2(x) ⩾ λ

}
is the optimal abstention

function.

The risk related to the pair {f(x), α(x)} we denote by R∗
λ(x).

3. Abstention via Testing of Variance Values

The setup considered in previous section was previously explored in (Zaoui et al., 2020)
where it was proposed to use plugin approach, i.e. use some estimators f̂ and σ̂2 of the
population counterparts f and σ2 directly in the rule given by Proposition 1. Their approach
leads to consistent estimators in large sample regime. However, for finite samples not only
f̂ can be imperfect but also the variance estimator σ2(x) can become unreliable if x lies far
away from the train set under nonparametric setting. Basically, we might start rejecting or
accepting the predictions based on the variance estimate which is far off from the actual
variance values.

In this work, we aim to work with this issue by considering the uncertainty in the
variance estimator σ2(x) itself. We propose a natural way to take this into account via
testing between the following hypotheses:

H0 : σ
2(x) ⩾ λ vs. H1 : σ

2(x) < λ.
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This problem assumes that it is safer to reject a good prediction than to accept a bad one.
It is the standard situation for many applications of selective machine learning.

Construction of the test requires some assumptions on the data which will be the same
for the train and the test set. Thus, we introduce the studied model.

Model 1 Given a sample X ∈ Rd, the observed label Y is normally distributed with the
mean f(X) and the variance σ2(X) for some functions f : Rd → R, σ2 : Rd → R+.

The normality of the noise is not an obligatory requirement, but it allows computing some
constants precisely. In our analysis, we mostly use concentration inequalities that can be
naturally extended to sub-Gaussian setting. We will work under general nonparametric
assumptions on functions f and σ2, see the details in Section 4.

3.1. Construction of the Test

Nonparametric estimation offers a variety of tools for regression such as kNN, splines or
kernel methods (Tsybakov, 2009). In this work, we stick to kernel approaches and employ
celebrated Nadaraya-Watson (NW) method that estimates a function at a point x via
weighted mean of its neighbours. Below, we introduce the method formally.

Let µ be the Lebesgue measure in Rd. For a kernel K : Rd → R+,
∫
Rd K(t)dµ(t) = 1,

NW method computes weights of samples X1, . . . , Xn at the point x as

ωi(x) =
K
(
x−Xi

h

)
∑n

i=1K
(
x−Xi

h

) , (1)

where h is a bandwidth. Typically, h tends to 0 as n tends to infinity. Then, it computes
the estimated mean

f̂n(x) =

n∑
i=1

ωi(x)Yi

of the conditional distribution Y | X = x. This approach can be extended for computing
the estimator of variance Var[Y | X = x]:

σ̂2
n(x) =

n∑
i=1

ωi(x)Y
2
i −

(
n∑

i=1

ωi(x)Yi

)2

.

Generally, estimates for mean and variance can use different kernels and bandwidths. How-
ever, we stick to the single choice in this work to make the results simpler and more illus-
trative.

In the paper (Fan and Yao, 1998), it was shown that under some assumptions on h, n
and K(·), we have

√
nhd

(
σ̂2
n(x)− σ2(x)

)
−→

nhd→∞
N
(
0, σ2

V

)
, (2)
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Algorithm 1: Acceptance testing

Input: samples {(Xi, Yi)}ni=1, bandwidth h, parameters λ, β, a
Output: accept or reject the regression result
Calculate p̂n(x), σ̂

2
n(x)

if p̂n(x) ⩾ 4a
nhd and criterion (3) holds then

accept results of the regression
else

reject
end

where σ2
V (x) = σ4(x)

2∥K∥22
p(x) , ∥K∥22 =

∫
Rd K

2(t)dµ(t) and p(·) is a marginal density of
covariates X. Thus, we obtain

lim sup
nhd→∞

P

(
σ2(x)− σ̂2

n(x) ⩾ z1−βσ
2(x)

√
2∥K∥22
nhdp(x)

)
⩽ β.

This convergence result allows to construct confidence sets with the guaranteed asymptotic
coverage. Since σ2(x) ⩾ λ under the null hypothesis, we obtain the test

σ̂2
n(x) ⩽ λ

(
1− z1−β∥K∥2

√
2

nhdp(x)

)
. (3)

Due to the Slutsky lemma, if we replace p(x) with some consistent estimator p̂n(x), the
above still will be the test of asymptotic significance level β. For the density estimator,

p̂n(x) we suggest the nonparametric estimator p̂n(x) =
1

nhd

∑n
i=1K

(
x−Xi

h

)
.

3.2. Abstention Algorithm

The derived test allows to construct the procedure of regression with reject option. The
only remaining thing we should check before applying the test is that p̂n(x) is not zero. Let
a and b be such numbers that K(t) ⩾ a · I {∥t∥ ⩽ b} for all t ∈ Rd. For theoretical purposes
we demand p̂n(x) to be greater than 4a/(nhd) for any accepted point x, see the details
in Section C. From the construction of the test, it also follows that the prediction f̂n(x)

is rejected independent of the value σ̂2
n(x) if p̂n(x) ⩽

2z21−β

nhd

∫
Rd K

2(t)dµ(t). The resulting
procedure is summarized in Algorithm 1.

The proposed procedure was designed for abstract features in Rd. However, in machine
learning applications we often have quite complex features as images or texts, and neural
networks are usually used for their processing. The considered method might be coupled
with neural networks by applying it to some embedding space induced by a neural network.

4. Theoretical guarantees

In this section, we provide theoretical guarantees for our algorithm. There are some natural
assumptions that should hold to obtain our results.
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Assumption 1 The Hessian of the function f exists and is bounded by Hf . Moreover, f
is Lf -Lipschitz.

Assumption 1 helps to reduce the bias in the estimation of f . Roughly speaking, if the
kernel is symmetric then Ef̂n(x)− f(x) has order at most h2 times the second derivative of
f . Otherwise, h times the Lipschitz constant may appear in the decomposition of the bias
Ef̂n(x)− f(x). We also impose the similar assumption for σ2(x).

Assumption 2 The Hessian of the function σ2 exists and is bounded by Hσ. Moreover,
σ2 is Lσ2-Lipschitz.

As was previously mentioned, the bias term of order h vanishes if the kernel K is
symmetric. Besides, to estimate f at a point x, the kernel should aggregate well the
neighborhood of x. Thus, its support should cover some ball in Rd. But the kernel should
not rely on the response provided by far points, so we require exponential tail for the kernel.
The most common assumption is that the support of the kernel is bounded, but it is not
the case of the Gaussian kernel which is widely used. Formally, the case of the Gaussian
kernel implies that p̂n(x) is non-zero over the whole space Rd but we start considering a
point x as explored only if it has estimated density at least Θ

(
(nhd)−1

)
. That allows to

derive standard bias-variance decomposition and has a natural interpretation in terms of
regression with abstention.

Assumption 3 For the kernel K : Rd → R+, there exist constants a and b such that

K(t) ⩾ a I {∥t∥ ⩽ b}

holds for all t ∈ Rd. The kernel is symmetric, i.e. K(t) = K(−t). Moreover, there are
constants RK and rK such that for all t, it holds that

K(t) ⩽ RKe−rK∥t∥.

Finally, we impose some conditions on the density p(x). In the classical nonparametric
studies, it is usually assumed that the support of p(x) has positive Lebesgue measure so we
do not consider nonparametric low-dimensional manifold estimation. We define

Sq = {x ∈ Rd | p(x) > q}.

We denote the support cl(S0) by S and the boundary of S by ∂S. Inside the support S we
require p(x) to be Lipschitz. That also helps to suppress summands of order h in the bias
of our estimator. So the density can be non-continuous at the boundary like the uniform
distribution, but it will not affect the inference inside the support.

Assumption 4 The density p of X is Lp-Lipschitz in S0 and bounded by Cp.

To bound the excess risk at a point x, we need its neighborhood to be explored a bit.
So there should be large enough probability mass in a ball of radius h around x. Thus, we
require p(x) to be larger than Ch and the Euclidean distance to the boundary d(x, ∂S) to
be at least C ′h. If ∂S = ∅, then d(x, ∂S) is assumed to be infinite.
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Finally, note that Rλ(·) depends on the training set. We bound the mean of the excess
risk over all training sets D = {(Xi, Yi)}ni=1 where Xi are i.i.d. samples from the density
p(·) and Yi generated according to Model 1.

In the theorem below, we study the upper bounds for the risk. The notation ≲ means
that the corresponding inequality holds with some multiplicative constant that is indepen-
dent of n, h, β and p(x). The formulation with all the constants presented in the explicit
way is given in Supplementary Material, see Theorem 4.

Theorem 2 Suppose that Assumptions 1-4 hold. Define ∆(x) = |σ2(x) − λ|. Let Eλ(x)
be the excess risk of the estimator f̂n(x) and the abstention rule α̂n(x) introduced in Algo-
rithm 1. Let ED be the expectation with respect to training dataset D = {(Xi, Yi)}ni=1, where
X1, . . . , Xn are i.i.d. samples from then density p(·). Then

• if σ2(x) ⩾ λ and ∆(x) ⩽ C1{nhdp(x)}−1 + C2h
2/p(x) − C3z1−β{nhdp(x)}−1/2, we

have
ED(Eλ(x)) ≲ {nhdp(x)}−1 + h4p−2(x) + ∆(x),

• if σ2(x) ⩾ λ and ∆(x) ⩾ C1{nhdp(x)}−1 + C2h
2/p(x) − C3z1−β{nhdp(x)}−1/2, we

have
ED(Eλ(x)) ≲ ∆(x) exp

(
−Ω(nhd+2p(x))

)
• if σ2(x) ⩾ λ and ∆(x) ⩾ C1{nhdp(x)}−1 + C2h− C3z1−β{nhdp(x)}−1/2, we have

ED(Eλ(x)) ≲ exp{−nhdp(x)},

• if σ2(x) < λ and ∆(x) ⩽ C ′
1{nhdp(x)}−1 + C ′

2h
2/p(x) + C ′

3z1−β{nhdp(x)}−1/2, we
have

ED(Eλ(x)) ≲ {nhdp(x)}−1 + h4p−2(x) + ∆(x),

• if σ2(x) < λ and ∆(x) ≫ C ′
1{nhdp(x)}−1 + C ′

2h
2/p(x) + C ′

3z1−β{nhdp(x)}−1/2, we
have

ED(Eλ(x)) ≲ {nhdp(x)}−1 + h4p−2(x).

Let us note that Theorem 2 applies not only to Algorithm 1 but also to the plugin estimator
proposed by Zaoui et al. (2020). Indeed, by setting β = 0.5 one gets z1−β = 0 and we obtain
plugin approach as a particular instance of our algorithm. While Theorem 2 determines
only the upper bound of the risk, it satisfactorily captures the real behavior of Algorithm 1,
see experimental evaluation in Section 5. Below, we discuss different estimation regimes
implied by Theorem 2.

For beginning, we consider the case when σ2(x) > λ. In most of the applications, we
assume that nhd → ∞ as n tends to infinity. Typically, h is chosen to minimize bias-variance
trade-off so h = Θ

(
n−1/(d+4)

)
. Assume additionally that β < 0.5 and

C1{nhdp(x)}−1 + C2h
2/p(x)− C3z1−β{nhdp(x)}−1/2 < 0,

where constants C1, C2, C3 come from the first case of Theorem 2. This inequality can be
satisfied if h = Cβn

−1/(d+4)p1/2(x) for a small enough constant Cβ that depends on β. We
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refer to this condition as “undersmoothing” since it requires the bias to be significantly
less than the variance. Moreover, a similar condition is required to ensure (2). Then,
our approach provably becomes very efficient. Indeed, in that case the condition ∆(x) ⩽
C1{nhdp(x)}−1 + C2h

2/p(x) − C3z1−β{nhdp(x)}−1/2 can be simplified as ∆(x) < 0 so it
never holds. Thus, for any x such that σ2(x) > λ, the expected excess risk converges
exponentially. But if one chooses larger h, the advantages of our algorithm remain, since it
becomes to converge exponentially earlier than the plugin.

For the plugin, our upper bound can not achieve exponential convergence rates while
∆(x) ⩽ C1{nhdp(x)}−1 + C2h

2/p(x). That matches our observations for synthetic data,
see Figure 1(b) and Figure 3(c).

To explain the behaviour of estimators for σ2(x) ⩽ λ, we impose the following proposi-
tion.

Proposition 3 For any pair of estimators (f̂ , α̂) the expected excess risk can be decomposed
as follows:

EDRλ(x)−R∗(x) = ED

[(
f̂(x)− f(x)

)2
I {α̂(x) = 0}

]
+∆(x) · P

(
α̂(x) ̸= α(x)

)
.

In our case

P
(
α̂(x) ̸= α(x)

)
⩽ P

(
σ̂2
n(x) ⩽ λ

[
1−

Cz1−β√
nhdp̂n(x)

])

⩽ P

(
σ̂2
n(x)− σ2(x) ⩽ ∆(x)−

Cλz1−β√
nhdp̂n(x)

)
=: P(x)

The whole set {x | σ2(x) ⩽ λ} can be divided into two sets. Roughly speaking, one is
A = {x | ∆(x) ≲ (nhd)−1/2} and the other is B = {x | ∆(x) ≫ (nhd)−1/2}. While x ∈ A,
the leading term of the excess risk is ∆(x) ·P(x) that has order (nhd)−1/2. The factor P(x)
does not go to zero, since, informally,

√
nhd

(
σ̂2
n(x)− σ2(x)

)
≈ N

(
0, σ2

V

)
due to (2) and so

the difference between λ and σ2(x) can not be captured by σ̂2
n(x). While this argument is

not strict from the theoretical point of view, one may prove anticoncentration bounds via
the Carbery-Wright theorem. On Figure 1(b), one may observe sets A for different n as
hills on the left of the point where σ2(x) = λ.

But if x ∈ B, bias and variance suppress term ∆(x) ·P(x) and we obtain usual rates of
convergence for nonparametric estimators. Since for small n the set A is large there maybe
some warm-up when we see slower rates of convergence on plots. So in each point, the
convergence may have two phases: one is when x ∈ A and the other is when x ∈ B. That
is how we explain two phases on Figure 3(b) for x ∈ {−1.6,−0.5, 0.3}.

We summarize the behaviour of our estimator and estimator proposed by Zaoui et al.
(2020) in Table 1.

4.1. Sketch of the Proof

We start by the following bound on the kernel values:

a I {Xi ∈ Bbh(x)} ⩽ K

(
Xi − x

h

)
,
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σ2(x) ⩾ λ ∆(x) < C1h
2/p(x) C2h > ∆(x) > C3h

2/p(x) ∆(x) ≫ h

testing-
based

O(h2)/p(x) · exp
{
−Ω

(
nhd+2/p(x)

)}
O(h) · exp

{
−Ω

(
nhd+2p(x)

)}
exp

{
−Ω

(
nhdp(x)

)}
plugin O

(
h2/p(x)

)
σ2(x) < λ ∆(x) ≲

(
nhdp(x)

)−1/2
∆(x) ≫

(
nhdp(x)

)−1/2

testing-based
O
(
{nhdp(x)}−1/2

)
O({nhdp(x)}−1) +O

(
h4/p2(x)

)
plugin

Table 1: The upper bounds derived in Theorem 2, the case of undersmoothing.

where Br(x) is a ball with radius r and center x. These bounds allow us to deal with values
of the kernel like they are Bernoulli random variable with certain mean. Thus, we show
that with probability 1− C exp−Ω(nhdp(x)), we have

abdωdp(x) ⩽ p̂n(x) ⩽ 2p(x) + Lph

∫
Rd

∥t∥K(t)dµ(t),

see Propositions 5 and 19 in Supplementary Material. The bounds above are rough but
they will be sufficient for our purposes.

For any L-Lipschitz function g we also can obtain the bound∣∣∣∣∣
n∑

i=1

g(Xi)ω(Xi)− g(x)

∣∣∣∣∣ ⩽
n∑

i=1

|g(Xi)− g(x)|ω(Xi) ≲
Lh

p(x)nhd
,

since ω(Xi) is, roughly speaking, RKe−rK∥(Xi−x)/h∥

p(x)nhd up to a constant, see Corollary 6 in

Supplementary Material. This approximation is based on the fact that K(t) is bounded
above by a constant and the denominator of the weight with high probability is Ω

(
nhdp(x)

)
,

see Proposition 5 in Supplementary Material. Finally, under some conditions on n, h and
p(x) we establish the concentration bounds for any function g which is Lipschitz and has
bounded Hessian, see Corollary 9 in Supplementary Material.

If σ2(x) ⩾ λ then I {α̂(x) = 0} = I {α̂(x) ̸= α(x)}. So we may bound

ED
(
f̂(x)− f(x)

)2
I {α̂(x) = 0} ⩽

√
ED
(
f̂(x)− f(x)

)4
I {α̂(x) = 0} · P1/2

(
α̂(x) ̸= α(x)

)
.

We bound the 4-th moment above by integrating concentration inequalities. That results in
standard bias-variance trade-off, see Lemma 18 in Supplementary Material. Thus, the rate
of the excess risk is determined by the factor P1/2(α̂n

(
x) ̸= α(x)

)
. It can be reformulated

as
P1/2

(
|σ̂2

n(x)− σ2(x)| ⩾ ∆(x) +O
{
(nhdp(x))−1/2

})
.

The random value σ̂2
n(x) behaves like sub-exponential random variable with the mean

σ2(x) + o(1). Thus, under certain assumptions on ∆(x), we get exponential rates of con-
vergence via the concentration argument, see Corollary 15 in Supplementary Material.

If σ2(x) < λ, two terms from Proposition 3 demonstrate different behaviour. The first
one can be bounded via standard bias-variance trade-off. The second one exponentially
decreases if h is smaller than some constant and ∆(x) is larger than some decreasing function
of n and h. The proof is similar to the case σ2(x) > λ.
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Figure 1: Example with synthetic data: X ∼ U(−2, 2), σ(x) = sigmoid(x). We sample
multiple datasets of each sample size n. Confidence level β = 0.05 and abstention
cost λ = 0.36.

5. Experiments

5.1. How to choose λ and β

In practice, two natural questions arise: how to choose λ and how to choose β. Obviously,
one may define λ from the formulation of the problem as an inappropriate level of noise.
The case of β is a bit more sophisticated. From Algorithm 1, we infer that any x will be

rejected if p̂n(x) ⩽
2∥K∥22z21−β

nhd . Thus, any such x is considered as outlier, and, hence, z1−β is
a tolerance level for outliers. Additionally, the choice of β determines the trade-off between
type I and type II errors.

5.2. Synthetic data

For the first part of the experiments we use one dimensional data with known simple func-
tions as true mean and variance at each point:

Y = f(X) + σ(X)ε, X ∼ p(·), ε ∼ N (0, 1). (4)

Specifically, we consider normal and uniform distributions of the independent variable p(·) ∈
{N (0, 1),U(−2, 2)}, a fixed mean function f(x) = x2

4 , and two choices of standard deviation:
sigmoid function and Heaviside function. Parameter λ was fixed at 0.36 and parameter
β = 0.05 unless otherwise noted. Optimal bandwidth was selected using leave-one-out
cross-validation optimizing mean squared error of prediction by NW estimator. In all our
experiments for each setting of hyperparameters we have generated 100 different random
datasets from our data model and then averaged the results.

5.2.1. Convergence of estimates

We sampled 100 datasets of sizes n ∈ {100, 200, 500, 1000} and for each x ∈ [−2, 2] we
estimate the fraction of predictions that are accepted by the proposed method. We present
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(b) Expected excess risk.

Figure 2: Example with synthetic data: X ∼ U(−2, 2), σ(x) = sigmoid(x). Sample size
n = 100, abstention cost λ = 0.36. We apply the proposed testing-based method
for different values of β. Plugin approach corresponds to β = 0.5.

the resulting chart in Figure 1(a) for X ∼ U(−2, 2), σ(x) = sigmoid(x), additional charts
are in Supplementary Material, Section D.1.1. The results demonstrate that for the area
with σ2(x) > λ (to the right of the dashed line) the convergence is much faster than for the
area with σ2(x) < λ.

Additionally, we also estimate expected excess risk, since we know the values of f(x)
and σ(x) for any x. For the first plot (see Figure 1(b)) we vary sample size n from 10 to 500.
We compare the proposed approach with β = 0.05 with “plugin” baseline, corresponding
to β = 0.5. For the testing-based method we see the very quick convergence for σ2(x) > λ.
For the points with σ2(x) < λ the convergence is slower especially for the smaller values of
∆(x). Thus, the observed behaviour well corresponds to the one predicted by the theory.
For the plugin approach, the convergence is slower especially for the points with σ2(x) > λ.

5.2.2. Dependence on β

In this experiment, we have studied the behavior of our method when changing its only
hyperparameter β in the range between 0.01 and 0.5. Since β = 0.5 corresponds to “plugin”
method described previously, we show it in red. For this we fixed the number of samples at
n = 100, sampled 100 datasets and calculated the expected excess risk for each x ∈ [−2, 2].
With the increase of β the method becomes less conservative (more accepts), see Figure 2(a).
It leads to the increased expected risk at points where prediction should be rejected and
decreased risk at the points where predictions should be accepted, see Figure 2(b). Thus,
in practice parameter β might be selected based on the trade-off between these two errors
depending on the particular features of the considered applied problem.

5.2.3. Pointwise convergence

Finally, we sampled multiple datasets of increasing sizes n from 10 to 20000 and selected
5 diagnostic points: x ∈ {−1.6,−0.5, 0.3, 0.8, 1.6}, see Figure 3(a). When sample size is
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Figure 3: We sample multiple datasets of each size and for selected points x ∈
{−1.6,−0.5, 0.3, 0.8, 1.6} calculate the expected excess risk. In this experiment
X ∼ U(−2, 2), σ(x) = sigmoid(x), abstention cost λ = 0.36, β = 0.05.

less than 100, we generate 20000 datasets of each size, while for larger sample size we
only use 100. In order to perform a more straightforward averaging of the across datasets
of the same size, we have used the same bandwidth h ∼ 1

n5 that was selected to show
the expected polynomial dependence in nh of the risk at points x with σ2(x) < λ. The
resulting dependencies of the risk on nh are depicted on Figure 3(b). We observe all the
main outcomes predicted by the theory:

• rapid convergence of the risk for the points with σ2(x) > λ (points x = 0.8 and
x = 1.6);

• polynomial convergence of the risk as function of nh for σ2(x) < λ with moderately
large values of ∆(x), i.e., points x = −1.6 and x = −0.5;

• very slow convergence for the point with σ2(x) < λ and small value of ∆(x).

Additionally, on Figure 3(c) we experimentally confirm that plugin method has slower
convergence than testing-based method for σ2(x) > λ.

5.3. Airfoil Self-Noise Data Set

We have tested our method on the Airfoil dataset from the UCI collection (Dua and Graff,
2017). We do not perform any special preprocessing of the data or feature engineering, only
standard scaling of features. We prepare train and test sets in two steps. First, we select
a pivot feature and put 70% of the data with the lowest values of this feature to part A
and the rest of the data becomes part B. For the second step we select 20% of each part
(sampled uniformly) and put it in the other part. First part becomes the train set and the
second part the test set. In this way we guarantee that test set will have data with low
values of p̂(x) as well as data distributed similar to train data.

In our experiments we select different features as pivots for the split and then vary
λ ∈ [0, 50], calculating acceptance (retention) fraction and mean squared error. We present
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Figure 4: Airfoil data, split 70/30 by the second feature. For λ ∈ [0, 50] we calculate accep-
tance (retention) probability and MSE at accepted points. x-values of acceptance
probabilities are inferred as fraction of accepted points for each λ.

results for splitting by the second feature: “Angle of attack”. Other configurations can be
found in the Supplementary Material, Section D.2. On Figure 4(a) we show how acceptance
probability varies as a function of λ. Figure 4(b) illustrates the dependence of the mean
squared error of estimation as a function of the fraction of points accepted for prediction.
The curves show the expected trend to increase when accepting more points. Using more
conservative estimates one obtains higher accuracy for the given acceptance rate. However,
by construction, high acceptance rates are not achievable for the proposed method due to
the limitations on the values of the estimated density p̂n(x).

5.4. CPU-small Data Set

Another dataset from UCI collection that we used is CPU-small. This dataset has 8192
instances and 12 features. Data splitting is done in the same manner as the Airfoil dataset.
During the preprocessing we standardize the training data to have zero mean and unit
variance and then apply the same scaling to the test set. Splitting was done based on the
first feature “lread”.

In this experiment we have tried two scenarios: first is to use the data as it is and the
second is to use higher dimensional version (embeddings) of the data, obtained with a neural
network. First we trained a two layer neural network with 50 neurons in each layer and
ReLU activations and then used the values from the last layer as input for our method. On
Figures 5(a) and 5(b) we present the partial MSE scores obtained with rejection in these
two setups.

Using embeddings provides much lower MSE without rejection as one would expect.
It also shows that using our method we can significantly outperform the baseline plug-in
method. For this dataset our algorithm is less sensitive to the choice of β than for the
previous one. We opted to vary z1−β directly in the embedding case since for a higher
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Figure 5: CPU-small data, split 70/30 by the first feature. For λ ∈ [0, 2] we calculate accep-
tance (retention) probability and MSE at accepted points. For the raw data we
vary β, in case of embeddings we vary z1−β directly due to higher dimensionality
of the data.

dimension of the data the values of p̂ span a larger strip in the logarithmic scale. In order
to show dependence on β we would need to choose values very close to 0.5. Choosing the
same set of β values as for raw data case yields curves similar to z1−β = 10−10.

6. Conclusion

In this work, propose a new method for selective prediction in heteroskedastic regression
tasks under the Chow risk model. The method is based on the natural idea of testing the
values of conditional variance at a given point. Our theoretical analysis show the existence
of exponential and polynomial convergence regimes that depend on the relative values of
the variance and abstention cost. The proposed method compares favorably to the plugin
baseline both in theory and in the conducted experimental valuation.
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