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1. Supplementary Material

1.1. Empirical Analysis on the impact of our loss on bounding the target
domain error

To the best of our knowledge, there are no works that consider domain distributions as
interpolations between distributions of domains in domain generalization (DG). However,
there are few works (Cui et al., 2014; Gopalan et al., 2011) in domain adaptation (unlabelled
target domain is available) which assume that source and target domains lie on a manifold
and create intermediate domains through interpolations between them. The intermediate
domains aid in bridging the distribution mismatch between the source and target domains.
In DG, the target domain is not available. Prior works (Albuquerque et al.; Pham et al.,
2023) have upper bounded the error on the target domain as a combination of training error
on the source domains, pairwise divergences among the source domains, and divergence
between the source and the target domain. A more formal theory for our method is an avenue
for future work; however, we do show empirically that our interpolated-based representation
learning can be used to bridge the gap between domains. Our model (DNT) has lower
Wasserstein divergence among the source domains compared to the baseline DeepAll in
Fig. 1. Due to the creation of more interpolated domains, the divergence between a target
domain and its closest source domain is reduced too. Due to the reduced source-source and
source-target divergences, our models can lower the error on the target domain.

Figure 1: Wasserstein divergence among the source domain representations (left). Wasserstein
divergence between the source and target domain representations (right). Models trained on
PACS.

1.2. Experimental Settings.

1.2.1. Implementation Details.

We adopted the following experimental setup to match the baselines: learning algorithm:
SGD, learning rate (η): 0.001, momentum: 0.9, minibatch size: 64, weight decay: 0.001
for all the experiments. We display the dimension of the latent space Z in Table 1. We
tuned the regularization weight parameter λ over various values ranging from 1 to 10−4 at
intervals of 10−1. The detailed set up of λ values is provided in Table 2. It can be noted from
Table 2 that as the size of the training data is reduced, our loss is given a higher weight-age
for better performance indicating its importance in a limited data setting. We trained every



method for 100 epochs and report the average and standard errors over 5 different seeds.
Along with training our models, we also re-trained all baselines for a fair comparison.

Table 1: Dimension of the latent space Z

Dataset Encoder Dimension of Z

RotatedMNIST MNIST CNN 64
PACS Resnet-18 256

OfficeHome Resnet-18 512
VLCS Resnet-18 512
VLCS Alexnet 512
PACS Resnet-50 2048
VLCS Resnet-50 2048

Table 2: Best λ across Datasets and Models

PACS VLCS RotatedMNIST OfficeHome

100% 20% 10% 5% 100% 20% 10% 5% 100% 20% 10% 5% 100% 20% 10%

DNT 1 1 1 1 0.0001 1 1 1 1 1 1 1 1 1 1
DRINT 1 1 1 1 0.1 1 1 1 1 1 1 1 1 1 1
DGNT 0.1 1 1 1 0.0001 0.01 0.1 1 1 1 1 1 0.001 0.1 1

1.3. Experimental Results

1.3.1. Test Accuracy on OfficeHome Dataset

• OfficeHome (Venkateswara et al., 2017) dataset consists of 15, 500 images from 65
classes. The four domains are: Art – artistic images in the form of sketches, paintings,
ornamentation, etc.; Clipart – collection of clipart images; Product – images of objects
without a background and Real-World – images of objects captured with a regular
camera.

We provide the mean accuracy and standard deviation the for OfficeHome dataset in Table 3.
For the limited data setting, we reduce the training data into 20% and 10%. We did not
reduce it to 5% as OfficeHome has 65 classes and there were not enough samples to get at
least 2 representative samples from each class through proportional sampling. Results on
OfficeHome were not reported by Nguyen et al. (2021) in the DIRT paper and by Zhao et al.
(2020) in DGER paper. We have trained the models for our analysis. It can be seen from
Table 3 that our methods DNT, DIRT, and DRINT enhance the performance of all the
baselines as the previous datasets.

We only compare Mixup with DNT for the full data setting as we were unable to
reproduce the results of the original paper Gulrajani and Lopez-Paz (2021) with the code
provided for the OfficeHome dataset. We fell short by 6% accuracy in the reproduced version.
Hence, we did not train it for a limited data setting and did not adapt it for Manifold Mixup
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too. Instead, we directly report the results of Mixup on the OfficeHome dataset from the
paper.

Table 3: Prediction accuracy % on OfficeHome. Our methods: DNT, DRINT, and DGNT
outperform DeepAll, DIRT, and DGER, respectively.

OfficeHome

100% 20% 10% Average
Model Eϕ Acc ± Std Err Acc ± Std Err Acc ± Std Err Acc

DeepAll
Resnet 18

62.48 ± 0.2 53.49 ± 0.3 48.23 ± 0.5 54.73
DNT 63.25 ± 0.4 53.72 ± 0.4 49.00 ± 0.6 55.32

DIRT
Resnet 18

62.60 ± 0.2 53.15 ± 0.3 47.78 ± 0.4 54.51
DRINT 63.81 ± 0.2 54.49 ± 0.4 49.82 ± 0.4 56.04

DGER
Resnet 18

64.17 ± 0.1 55.18 ± 0.4 48.38 ± 0.5 55.91
DGNT 64.08 ± 0.1 55.55 ± 0.4 50.91 ± 0.5 56.85

Mixup
Resnet 50

67.00 ± 0.2
DNT 69.68 ± 0.3

1.3.2. Sensitivity analysis on the hyper-parameter λ

Fig. 2 shows the sensitivity analysis on λ. This analysis shows that maintaining a non-zero
lambda is important especially when the dataset size is reduced.

Figure 2: Sensitivity analysis of the hyper-parameter λ on PACS (left) and VLCS (right)
datasets. On average, across both datasets, as the training data size was reduced, higher
values of λ resulted in better accuracy, emphasizing the importance of robust interpolation
in the limited data setting.

1.3.3. Domain wise results

As discussed in the main paper, we present the leave-one-domain-out results of each domain
for PACS, VLCS and RotatedMNIST datasets across different sizes in Tables 4, 5 and 6
respectively. One interesting aspect of domain wise results can be observed between DIRT,
DNT and DRINT. For example, consider Table 4, DIRT (79.45) performs better than DNT
(75.17) in the sketch domain, but not as well in the art painting domain. DNT (83.18)
performs better than DIRT (80.67) in art painting , domain, but does not do as well in
sketch domain. However, DRINT, the combination of both, DNT and DIRT and performs
well in both sketch (79.85) and art painting (82.82) domains.



Table 4: PACS - Domain wise results

Domain A C

Data size: 100% 20% 10% 5% 100% 20% 10% 5%

DeepAll 78.82 ± 0.76 68.95 ± 0.56 61.68 ± 1.62 54.52 ± 2.26 76.33 ± 0.45 62.98 ± 1.39 59.19 ± 0.98 51.60 ± 1.74
DNT 83.18 ± 0.41 73.92 ± 0.63 68.30 ± 1.38 59.23 ± 2.11 77.63 ± 0.52 67.04 ± 1.16 63.86 ± 1.41 56.90 ± 1.42

DIRT 80.67 ± 0.47 68.69 ± 1.16 64.49 ± 0.80 56.44 ± 2.05 76.26 ± 0.30 67.29 ± 0.45 59.87 ± 0.59 50.69 ± 2.26
DRINT 82.82 ± 0.66 73.64 ± 1.57 68.59 ± 1.11 60.66 ± 0.78 78.13 ± 0.41 69.40 ± 0.85 64.89 ± 1.87 60.39 ± 3.23

DGER 78.83 ± 0.69 71.71 ± 0.75 68.86 ± 0.97 60.31 ± 1.57 71.98 ± 1.75 68.83 ± 1.52 62.86 ± 1.61 46.02 ± 3.45
DGNT 79.34 ± 0.40 73.85 ± 1.24 72.77 ± 0.66 64.67 ± 1.59 75.53 ± 0.47 70.28 ± 1.19 68.04 ± 1.26 64.66 ± 1.17

Domain P S

Data size: 100% 20% 10% 5% 100% 20% 10% 5%

DeepAll 95.92 ± 0.22 90.79 ± 0.35 87.61 ± 0.63 80.15 ± 1.92 69.93 ± 0.65 53.94 ± 0.93 50.59 ± 2.18 47.86 ± 3.13
DNT 95.73 ± 0.15 92.19 ± 0.28 89.66 ± 0.07 84.75 ± 0.64 75.17 ± 0.70 57.31 ± 2.77 52.82 ± 2.46 44.29 ± 2.94

DIRT 94.85 ± 0.12 90.83 ± 0.34 87.40 ± 1.27 81.06 ± 1.56 79.45 ± 0.49 65.26 ± 0.88 54.57 ± 3.70 51.73 ± 4.49
DRINT 95.31 ± 0.04 91.85 ± 0.22 90.20 ± 0.37 86.05 ± 1.28 79.85 ± 0.46 63.63 ± 1.27 58.56 ± 1.79 52.10 ± 2.68

DGER 93.74 ± 0.63 93.16 ± 0.26 91.71 ± 0.31 89.16 ± 0.95 70.59 ± 1.76 61.49 ± 1.72 55.76 ± 2.02 48.60 ± 2.05
DGNT 96.50 ± 0.12 92.56 ± 0.24 91.48 ± 0.20 89.97 ± 0.68 72.94 ± 0.75 63.33 ± 1.37 56.94 ± 1.84 53.67 ± 2.56

Table 5: VLCS - Domain wise results

Domain C L

Data size: 100% 20% 10% 5% 100% 20% 10% 5%

DeepAll 95.12 ± 0.48 92.48 ± 0.21 87.25 ± 1.30 80.42 ± 2.13 56.86 ± 0.75 53.67 ± 0.54 56.16 ± 1.84 52.75 ± 0.46
DNT 95.58 ± 0.28 91.63 ± 1.18 88.67 ± 0.94 79.88 ± 2.38 59.40 ± 0.50 57.39 ± 2.67 57.84 ± 1.60 54.89 ± 1.99

DIRT 94.96 ± 0.43 92.15 ± 0.57 87.32 ± 2.58 77.66 ± 1.81 60.09 ± 0.66 55.96 ± 1.33 57.45 ± 1.93 55.10 ± 1.13
DRINT 95.69 ± 0.24 92.84 ± 0.44 90.46 ± 2.10 81.56 ± 2.24 61.30 ± 0.72 56.14 ± 0.48 54.27 ± 1.07 57.64 ± 1.05

DGER 96.89 ± 0.40 95.74 ± 0.31 93.10 ± 0.75 92.84 ± 0.99 62.68 ± 0.08 60.43 ± 0.44 61.04 ± 0.62 59.29 ± 1.41
DGNT 96.93 ± 0.45 95.93 ± 0.51 93.89 ± 0.52 92.87 ± 1.53 63.30 ± 0.36 60.48 ± 0.63 60.82 ± 0.90 60.46 ± 0.98

Domain S V

Data size: 100% 20% 10% 5% 100% 20% 10% 5%

DeepAll 66.05 ± 0.96 63.07 ± 2.74 64.06 ± 1.21 61.03 ± 1.38 68.23 ± 0.99 65.62 ± 0.18 63.77 ± 0.92 58.32 ± 0.62
DNT 67.39 ± 0.41 64.39 ± 0.21 64.15 ± 1.15 59.69 ± 0.70 69.36 ± 0.36 66.11 ± 0.87 64.07 ± 0.93 59.93 ± 1.08

DIRT 67.79 ± 0.59 65.13 ± 1.87 64.83 ± 1.57 61.32 ± 1.79 69.62 ± 0.23 66.39 ± 0.29 63.14 ± 0.56 60.08 ± 0.61
DRINT 68.05 ± 0.41 66.33 ± 1.60 64.85 ± 1.85 62.36 ± 0.93 69.26 ± 0.55 65.52 ± 0.52 64.27 ± 0.62 62.17 ± 0.81

DGER 69.80 ± 0.65 68.16 ± 0.51 67.35 ± 0.65 65.42 ± 0.77 74.14 ± 0.48 71.01 ± 0.63 69.40 ± 0.76 67.39 ± 0.68
DGNT 70.53 ± 0.44 68.60 ± 0.43 67.18 ± 0.54 65.34 ± 0.75 75.09 ± 0.43 71.12 ± 0.42 69.17 ± 0.81 68.21 ± 0.94
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Table 6: RotatedMNIST - Domain wise results

Domain 0◦ 15◦

Data size: 100% 20% 10% 100% 20% 10%

DeepAll 82.96 ± 0.99 65.10 ± 1.64 57.80 ± 0.72 98.40 ± 0.19 86.54 ± 0.37 79.46 ± 0.84
DNT 93.60 ± 0.25 71.32 ± 0.57 64.82 ± 1.41 99.46 ± 0.14 87.00 ± 1.68 83.02 ± 0.41

DIRT 97.34 ± 0.12 69.32 ± 0.92 60.56 ± 0.64 99.82 ± 0.06 90.56 ± 0.38 82.84 ± 0.33
DRINT 97.46 ± 0.13 72.54 ± 0.51 63.94 ± 1.25 99.84 ± 0.05 91.08 ± 0.33 84.10 ± 0.52

DGER 88.78 ± 0.25 63.42 ± 0.67 56.56 ± 0.69 98.48 ± 0.09 85.50 ± 0.51 79.80 ± 0.64
DGNT 90.88 ± 0.35 71.14 ± 0.41 61.68 ± 0.89 98.86 ± 0.06 88.62 ± 0.49 82.66 ± 0.35

Domain 30◦ 45◦

Data size: 100% 20% 10% 100% 20% 10%

DeepAll 98.32 ± 0.15 87.64 ± 0.31 83.00 ± 0.87 98.12 ± 0.11 87.32 ± 0.18 82.38 ± 0.81
DNT 99.30 ± 0.08 90.94 ± 0.38 86.84 ± 0.41 99.20 ± 0.03 91.06 ± 0.22 86.74 ± 0.54

DIRT 99.54 ± 0.07 91.10 ± 0.42 85.18 ± 0.99 99.48 ± 0.07 90.86 ± 0.09 86.80 ± 0.72
DRINT 99.62 ± 0.05 91.96 ± 0.31 86.94 ± 0.36 99.66 ± 0.07 91.70 ± 0.18 87.72 ± 0.31

DGER 98.10 ± 0.12 87.40 ± 0.24 82.54 ± 0.18 98.12 ± 0.12 87.62 ± 0.77 83.12 ± 0.37
DGNT 98.84 ± 0.06 90.50 ± 0.45 85.78 ± 0.18 98.66 ± 0.14 90.00 ± 0.59 86.06 ± 0.31

Domain 60◦ 75◦

Data size: 100% 20% 10% 100% 20% 10%

DeepAll 98.42 ± 0.11 86.10 ± 0.39 80.02 ± 0.85 85.94 ± 0.24 72.12 ± 0.73 61.04 ± 0.56
DNT 99.64 ± 0.08 90.56 ± 0.47 84.40 ± 0.24 92.96 ± 0.39 75.98 ± 0.46 67.52 ± 0.45

DIRT 99.70 ± 0.08 90.60 ± 0.32 83.78 ± 0.79 96.64 ± 0.45 77.28 ± 0.32 64.56 ± 1.17
DRINT 99.78 ± 0.09 91.16 ± 0.38 84.72 ± 0.20 96.64 ± 0.32 78.44 ± 0.41 68.74 ± 0.60

DGER 98.08 ± 0.07 85.86 ± 0.29 80.78 ± 0.42 86.08 ± 0.28 69.54 ± 0.45 59.34 ± 0.39
DGNT 98.66 ± 0.10 88.74 ± 0.39 83.20 ± 0.29 89.60 ± 0.23 74.10 ± 0.47 64.24 ± 0.37



1.3.4. Accuracy on test domains with linear interpolation.

We perform linear interpolation for PACS, VLCS and RotatedMNIST in Tables 7, 8 and 9.
The results are better than baselines, but slightly lower than the nonlinear version. In the
case of VLCS, linear interpolation performs slightly better as the dataset is more scene
centric. Hence, we assume that the domains are the linear interpolations of each other more
than that of the object centric datasets.

Table 7: Prediction accuracy % on PACS.

PACS

100% 20% 10% 5% Average
Model Acc ± Std Err Gain % Acc ± Std Err Gain % Acc ± Std Err Gain % Acc ± Std Err Gain %

DeepAll 80.25 ± 0.52 0.00 69.17 ± 0.81 0.00 64.77 ± 1.35 0.00 58.53 ± 2.26 0.00 68.18
DNT Linear 81.99 ± 0.49 1.74 70.57 ± 0.82 1.41 66.71 ± 1.29 1.94 61.12 ± 2.25 2.59 70.10

DNT 82.92 ± 0.44 2.68 72.62 ± 1.21 3.45 68.66 ± 1.33 3.89 61.29 ± 1.78 2.76 71.37

DIRT 82.81 ± 0.34 0.00 73.02 ± 0.71 0.00 66.58 ± 1.59 0.00 59.98 ± 2.59 0.00 70.60
DRINT Linear 83.52 ± 0.45 0.71 74.75 ± 0.79 1.73 69.54 ± 1.47 2.96 63.96 ± 2.28 3.98 72.94

DRINT 84.03 ± 0.39 1.22 74.63 ± 0.98 1.61 70.56 ± 1.28 3.98 64.80 ± 1.99 4.82 73.50

DGER 80.85 ± 0.43 0.00 73.80 ± 1.06 0.00 69.79 ± 1.23 0.00 65.00 ± 1.54 0.00 72.36
DGNT Linear 80.91 ± 0.44 0.06 74.42 ± 0.97 0.62 70.62 ± 1.36 0.82 66.01 ± 1.41 1.01 72.99

DGNT 81.08 ± 0.39 0.23 75.00 ± 1.01 1.21 72.31 ± 0.99 2.51 68.24 ± 1.50 3.24 74.16

Table 8: Prediction accuracy % on VLCS.

VLCS

100% 20% 10% 5% Average
Model Acc ± Std Err Gain % Acc ± Std Err Gain % Acc ± Std Err Gain % Acc ± Std Err Gain %

DeepAll 71.56 ± 0.80 0.00 68.71 ± 0.92 0.00 67.81 ± 1.32 0.00 63.13 ± 1.15 0.00 67.80
DNT Linear 72.60 ± 0.52 1.04 70.10 ± 0.69 1.38 67.98 ± 0.76 0.17 65.66 ± 1.39 2.53 69.09

DNT 72.93 ± 0.39 1.37 69.88 ± 1.23 1.17 68.68 ± 1.15 0.87 63.60 ± 1.54 0.47 68.77

DIRT 73.11 ± 0.48 0.00 69.91 ± 1.01 0.00 68.19 ± 1.66 0.00 63.54 ± 1.33 0.00 68.69
DRINT Linear 73.53 ± 0.38 0.41 70.49 ± 0.49 0.58 67.54 ± 0.52 -0.65 66.66 ± 1.20 3.12 69.55

DRINT 73.57 ± 0.48 0.46 70.21 ± 0.76 0.30 68.46 ± 1.41 0.28 65.93 ± 1.26 2.39 69.54

DGER 75.87 ± 0.40 0.00 73.84 ± 0.47 0.00 72.72 ± 0.70 0.00 71.24 ± 0.96 0.00 73.42
DGNT Linear 76.59 ± 0.49 0.72 74.20 ± 0.65 0.36 72.77 ± 0.74 0.05 71.67 ± 0.96 0.43 73.81

DGNT 76.47 ± 0.42 0.60 74.03 ± 0.50 0.19 72.77 ± 0.69 0.05 71.72 ± 1.05 0.48 73.74
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Table 9: Prediction accuracy % on RotatedMNIST.

RotatedMNIST

100% 20% 10% Average
Model Acc ± Std Err Gain % Acc ± Std Err Gain % Acc ± Std Err Gain %

DeepAll 92.69 ± 0.30 0.00 80.80 ± 0.60 0.00 73.95 ± 0.78 0.00 82.48
DNT Linear 94.52 ± 0.22 1.83 81.40 ± 0.70 0.60 75.69 ± 0.66 1.74 83.87

DNT 97.36 ± 0.16 4.67 84.48 ± 0.63 3.67 78.89 ± 0.58 4.94 86.91

DIRT 98.75 ± 0.14 0.00 84.95 ± 0.41 0.00 77.29 ± 0.77 0.00 87.00
DRINT Linear 98.88 ± 0.09 0.12 84.69 ± 0.57 -0.26 77.42 ± 0.70 0.13 86.99

DRINT 98.83 ± 0.12 0.08 86.15 ± 0.35 1.19 79.36 ± 0.54 2.07 88.11

DGER 95.61 ± 0.15 0.00 79.89 ± 0.49 0.00 73.69 ± 0.45 0.00 83.06
DGNT Linear 95.52 ± 0.16 -0.09 80.38 ± 0.62 0.49 74.77 ± 0.57 1.08 83.55

DGNT 95.92 ± 0.16 1.31 83.85 ± 0.47 3.96 77.27 ± 0.40 3.58 85.68
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