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This Appendix contains an FAQ (Section A), proofs of the main results (Section B), and
a full set of experimental results along with experiments on regression datasets (Section C).

Appendix A. FAQ

• What is the purpose of Ztrue set?
In the Alquier bound we need to compute the Moment

Ψℓ,π,D(λ, n) = lnEf∼πEX′,Y ′∼Dn exp
[
λn
(
Lℓ
D(f)− L̂ℓ

X′,Y ′(f)
)]

.

To estimate the Moment we do Monte Carlo sampling f ∼ π and X ′, Y ′ ∼ Dn. We
use the Ztrue set to sample X ′, Y ′ ∼ Dn.

• How is the case where you learn the prior and posterior mean using the Ztrain and
then the posterior variance using Zvalidation related to the standard Laplace approxi-
mation/Variational Inference?
Our case can be seen as a greatly simplified case of Online Variational Inference
Chérief-Abdellatif et al. (2019) for the set Zvalidation ∪ Ztrain. In fact, in a truly
Bayesian approach we would typically optimize with Zvalidation ∪ Ztrain as the poste-
rior is assumed to reflect our best guess after seeing the data, making a validation
set redundant. We include the Standard Isotropic and standard KFAC case (where
Zvalidation is not used for training but simply to provide a generalization certificate) so
as to demonstrate that the behaviour of our approach is relevant for standard practice.

• Isn’t the fact that λ ≫ 1 well known in the PAC-Bayes literature?
We are aware of results such as the one in Catoni (2007) p13 where for fixed prior and
posterior distributions the optimal λ is shown to be approximately

λ =

√
2a(KL(ρ̂||π)− log(ϵ))

nEf∼ρ̂L̂ℓ
X,Y (f)(1−Ef∼ρ̂L̂ℓ

X,Y (f))

for a > 1 (note the change in the scaling of λ to match our own text). Taking this
into account, for small KL the value of λ will be through this analysis most likely less
than 1. More importantly, the relevant setting for the cold-posterior effect is the one
where we optimize the posterior for different values of λ, and not for fixed posteriors
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which is the setting of Catoni (2007). In particular it is not obvious that the result
of Catoni (2007) is the same when changing ρ̂ based on λ.

• Can you explain the Gradients as Gaussian mixture: ∇wf(x;wρ̂) ∼
∑k

i=1 ϕiN (µi, σ
2
xiI)

assumption?
The gradients per sample ∇wf(x;wρ̂) act as a non-linear feature vector for each x.
When the linearization of a neural network is plausible (and therefore the neural net-
work is a linear classifier for high-dimensional feature vectors) it is also plausible that
the generative model of the feature vectors of the data samples is a Gaussian mixture
(see for example Bishop (2006) Section 4.2 for a discussion of Probabilistic Generative
Models). Note that for trained neural networks, previous works have also shown that
per sample gradients with respect to the weights, at wρ̂, are clusterable (Zancato
et al., 2020) further supporting that the gradients of all the samples can be seen as
a Gaussian mixture. When analyzing minima of the loss landscape (as we do here)
linearization is reasonable even without assuming infinite width Zancato et al. (2020);
Maddox et al. (2021).

• Wouldn’t the results be different if you optimized the ELBO to find MAP estimates?
The ELBO would force the MAP minima to be flat and the “noise” from the posterior
would affect less the test accuracy.
We use weight decay in our SGD implementation which should regularize somewhat
our learned network. Furthermore when explicitly penalizing for the minima curvature
Foret et al. (2020) researchers observe a consistent but overall small improvement
compared to standard SGD. This leads us to believe that optimizing the ELBO and
then computing the Laplace approximation would not significantly alter our results.

• Hasn’t the Laplace approximation been benchmarked before? What is the relationship
with your experiments?
We are aware of at least the following works that benchmark the Laplace approxi-
mation (Daxberger et al., 2021a; Ritter et al., 2018; Antorán et al., 2022; Daxberger
et al., 2021b; Immer et al., 2021). In Daxberger et al. (2021a) p23 Figure 8 (part of
the Appendix) it is evident that when trying to fit the Laplace approximation over all
the weights in the neural network there is some deterioration of the test accuracy with
a corresponding improvement in AUROC. Even if for some MAP estimates fitting the
Laplace improves both the accuracy and the AUROC, on average the Laplace accu-
racy is as good as the average MAP accuracy. In Ritter et al. (2018) p15 Tables 1 and
2 (part of the Appendix) we see that the accuracy is in both MNIST and CIFAR-100
cases slightly worse than the MAP accuracy. In Immer et al. (2021) p28 Table B4
(part of the Appendix) the difference between the best Laplace and the MAP estimate
in terms of test accuracy is on the order of 0.1% or even 0.01% and the gains in terms
of ECE and OD-AUC are not consistent. In Antorán et al. (2022) p26 Figure 13 (part
of the Appendix) the smallest prior variance is the best in terms of test NLL. Finally
in Daxberger et al. (2021b) p15 Tables 2 and 15 (part of the Appendix) for the cases
without corruptions, both in the MNIST and CIFAR-10 case the proposed Laplace
approximation (over a subsample of the weights) results in lower test accuracy, except
in the case of CIFAR-10 with gains in the ECE.
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Appendix B. Proofs of the main results

B.1. Proof of Proposition 4.1

Recall that we model our predictor as flin(x;w) = f(x;wρ̂) − ∇wf(x;wρ̂)
⊤(w − wρ̂).

Then for the choice of a Gaussian likelihood, given a training signal x, a training label y
and weights w, the negative log-likelihood loss takes the form ℓnll(w,x, y) = 1

2 ln(2πσ
2) +

1
2σ2 (y−f(x;wρ̂)−∇wf(x;wρ̂)

⊤(w−wρ̂))
2. We also define L̂ℓ

X,Y (f) = (1/n)
∑

i ℓ(f,xi, yi).
Our derivations closely follow the approach of Germain et al. (2016) p.11, section A.4.

Given the above definitions and modelling choices, we develop the empirical risk term

2nσ2Ew∼ρ̂L̂ℓnll
X,Y (w)− nσ2 ln(2πσ2) = Ew∼ρ̂

n∑
i=1

(yi − f(xi;wρ̂)−∇wf(xi;wρ̂)
⊤(w −wρ̂))

2

= Ew∼ρ̂∥y − f(X;wρ̂)−∇wf(X;wρ̂)
⊤(w −wρ̂)∥22

= Ew∼ρ̂[∥y − f(X;wρ̂)∥22 − 2(y − f(X;wρ̂))
⊤∇wf(X;wρ̂)

⊤(w −wρ̂)

+ (w −wρ̂)
⊤∇wf(X;wρ̂)∇wf(X;wρ̂)

⊤(w −wρ̂)]

= Ew∼ρ̂[∥y − f(X;wρ̂)∥22 − 2(y − f(X;wρ̂))
⊤∇wf(X;wρ̂)

⊤(w −wρ̂)

+ (w −wρ̂)
⊤[∑

i∇wf(xi;wρ̂)∇wf(xi;wρ̂)
⊤](w −wρ̂)]

= Ew∼ρ̂[∥y − f(X;wρ̂)∥22]− 2(y − f(X;wρ̂))
⊤∇wf(X;wρ̂)

⊤
((((((((
Ew∼ρ̂[w −wρ̂]

+Ew∼ρ̂

[
(w −wρ̂)

⊤ [∑
i∇wf(xi;wρ̂)∇wf(xi;wρ̂)

⊤] (w −wρ̂)
]

= ∥y − f(X;wρ̂)∥22 + σ2
ρ̂

[∑
i

∑
j(∇wf(xi;wρ̂)j)

2
]

= ∥y − f(X;wρ̂)∥22 + σ2
ρ̂h.

In the penultimate line, we have used the fact that a real number is the trace of itself as
well as the cyclic property of the trace. The second summation (

∑
j over the parameters

of the model) results from the fact that ρ̂ = N (wρ̂, σ
2
ρ̂I) is isotropic with a common scaling

factor σ2
ρ̂. The term in blue is exactly the Gauss–Newton approximation to the Hessian of

the full neural network, for the squared loss function (Kunstner et al., 2019; Immer et al.,

2021), and in the last line we set h =
[∑

i

∑
j(∇wf(xi;wρ̂)j)

2
]
. Since h is a sum of positive

numbers, taking into account that the blue term is the Gauss–Newton approximation to
the Hessian and if we assume that the Gauss–Newton approximation is diagonal, then h is
a measure of the curvature at minimum wρ̂ of the loss landscape. We finally get

Ew∼ρ̂L̂ℓnll
X,Y (w) =

∥y − f(X;wρ̂)∥22
2nσ2

+
σ2
ρ̂h

2nσ2
+

1

2
ln(2πσ2).

We continue with the KL term which is known to have the following analytical expression
for Gaussian prior and posterior distributions

KL(N (wρ̂, σ
2
ρ̂I)∥N (wπ, σ

2
πI)) =

1

2

(
d
σ2
ρ̂

σ2
π

+
1

σ2
π

∥wρ̂ −wπ∥2 − d− d ln
σ2
ρ̂

σ2
π

)
.
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We finally develop the moment term. Using an intermediate variable λn = λn
2 to simplify

the calculations, we get

Ψℓ,π,D(λ, n) = lnEf∼πE(X′,Y ′)∼Dn exp
[
λn
(
Lℓnll
D (f)− L̂ℓnll

X′,Y ′(f)
)]

= lnEf∼πE(X′,Y ′)∼Dn exp
[
λn

(
E(x,y)

[
ln(2π) + (y − flin(x;w)2

]
− ln(2π)− (1/n)

∑
i(yi − flin(xi;w)2

)]
= lnEf∼πE(X′,Y ′)∼Dn exp

[
λn

(
E(x,y)

[
(y − flin(x;w)2

]
− (1/n)

∑
i(yi − flin(xi;w)2

)]
≤ lnEw∼π exp

[
λnE(x,y) (y − flin(x;w))2

]
= lnEw∼π exp[λnE(x,y)(f(x;wρ̂) +∇wf(x;wρ̂)

⊤(w∗ −wρ̂) + ϵ

− (f(x;wρ̂) +∇wf(x;wρ̂)
⊤(w −wρ̂)))

2]

= lnEw∼π exp[λnE(x,y)(∇wf(x;wρ̂)
⊤(w∗ −w) + ϵ)2]

= lnEw∼π exp[λnEx[(∇wf(x;wρ̂)
⊤(w∗ −w))2] + λnσ

2
ϵ ].

Inequality in line 4 is because the exponential function is less than 1 on the negative half
line. In the fifth line we use our modelling choice y = f(x;wρ̂)+∇wf(x;wρ̂)

⊤(w∗−wρ̂)+ϵ,
where ϵ ∼ N (0, σ2

ϵ ). To obtain the final line we note that the gradient of the neural network
output with respect to w, that is ∇wf(x;wρ̂), does not depend on the label y. We get
the last line by applying the square and taking the expectation, given that the noise ϵ is
centered.

We now take into account the Gaussian mixture modelling for the gradients per data
sample, ∇wf(x;wρ̂) ∼

∑k
j=1 ϕjN (µj , σ

2
xjI). We get

Ex[(∇wf(x;wρ̂)
⊤(w∗ −w))2] = Ex[(

∑
i∇wf(x;wρ̂)i(w∗ −w)i)

2]

= Ex

[
(
∑

i∇wf(x;wρ̂)
2
i (w∗ −w)2i + 2

∑
i,j ∇wf(x;wρ̂)i∇wf(x;wρ̂)j(w∗ −w)i(w∗ −w)j)

]
=
∑

iEx[∇wf(x;wρ̂)
2
i ](w∗ −w)2i =

∑
i

∑k
j=1(ϕjσ

2
xj)(w∗ −w)2i = σ2

x∥w∗ −w∥22.

The red term cancels out because we assumed that each weight is independent of the others.
Next, we use the Gaussian mixture modelling to get Ex[∇wf(x;wρ̂)

2
i ] =

∑k
j=1(ϕjσ

2
xj), and

we finally set σ2
x =

∑k
j=1(ϕjσ

2
xj), as each component of the mixture is isotropic, thus the

second moment of all weights is the same. By completing the square above, one obtains the
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Gaussian expectation of this squared norm and forms the moment term as follows

Ψℓ,π,D(λ, n) = lnEw∼π exp
[
λnσ

2
x∥w∗ −w∥22 + λnσ

2
ϵ

]
= ln

(
1

(1− 2λnσ2
xσ

2
π)

d
2

exp

[
λnσ

2
x∥w∗ −wπ∥22

1− 2λnσ2
xσ

2
π

+ λnσ
2
ϵ

])

= −d

2
ln(1− 2λnσ

2
xσ

2
π) +

λnσ
2
x∥w∗ −wπ∥22

1− 2λnσ2
xσ

2
π

+ λnσ
2
ϵ

≤ λnσ
2
xσ

2
πd

1− 2λnσ2
xσ

2
π

+
λnσ

2
x∥w∗ −wπ∥22

1− 2λnσ2
xσ

2
π

+ λnσ
2
ϵ

=
λnσ

2
x(σ

2
πd+ ∥w∗ −wπ∥22)
1− 2λnσ2

xσ
2
π

+ λnσ
2
ϵ ,

which assumes 1 − 2λnσ
2
xσ

2
π > 0. The second line above is obtained by using the moment

generating function of noncentral χ2 variables, while the inequality comes from ln(u) < u−1
for u > 1. Setting back λn

2 in place of λn, we get

1

λn
Ψℓ,π,D(λ, n) ≤

σ2
x(σ

2
πd+ ∥w∗ −wπ∥22)
2− 2λn2σ2

xσ
2
π

+
σ2
ϵ

2
.

We are now ready to minimize the following objective, where the moment term is absent
since it does not depend on σ2

ρ̂

min
σ2
ρ̂

Ew∼ρ̂L̂ℓnll
X,Y (w) +

1

λn

[
KL(N (wρ̂, σ

2
ρ̂I)∥N (wπ, σ

2
πI)) + ln

1

δ

]
The derivative of the objective function w.r.t. σ2

ρ̂ simply writes

∂

∂σ2
ρ̂

(
∥y − f(X;wρ̂)∥22

2nσ2
+

σ2
ρ̂h

2nσ2
+

1

2
ln(2πσ2)

+
1

λn

[
1

2

(
1

σ2
π

dσ2
ρ̂ +

1

σ2
π

∥wρ̂ −wπ∥22 − d− d lnσ2
ρ̂ + d lnσ2

π

)
+ ln

1

δ

])
=

h

2nσ2
+

1

2λn

(
d

σ2
π

− d

σ2
ρ̂

)
.

Now setting the above to zero we get the typical prior-to-posterior update for a Gaussian
precision term

1

σ2
ρ̂

=
λh

dσ2
+

1

σ2
π

.

The proposition is proven by replacing the terms in the bound from Theorem 3.1 with
the results derived above.
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B.2. A corollary with simplified constants

Corollary 1 For σ2 = n = d = h = σ2
π = σ2

x = ∥w∗∥22 = ∥wρ̂ − wπ∥ = σ2
ϵ = 1,

∥y − f(X;wρ̂)∥22 = 0, and ignoring additive constants, the dependence of the Proposition 1
bound Bapproximate on the temperature parameter λ ∈ (0, 1/2) is as follows, with probability
at least 1− δ

Ew∼ρ̂Lℓnll
D (w) ≤ 1

2

1

λ+ 1︸ ︷︷ ︸
Empirical Risk

+
2

1− 2λ︸ ︷︷ ︸
Moment

+
1

λ

[
1

2

(
1

λ+ 1
+ ln(λ+ 1)

)
+ ln

1

δ

]
︸ ︷︷ ︸

KL

. (1)

Proof The result is directly obtained by a simple inspection of Proposition 4.1.

From this, we see that as we increase λ the Empirical Risk term should decrease, while the
Moment term should increase. In this particular case, the KL also decreases. We see in
later experiments that this intuition is roughly correct, although on different scales for each
term.

B.3. Proof of Theorem 3.1

We include here a proof of Theorem 3.1, first presented in Germain et al. (2016), and based
on Alquier et al. (2016); Bégin et al. (2016); Germain et al. (2016) to illustrate how the
Moment term and the temperature parameter λ arise in the final bound. The Donsker–
Varadhan’s change of measure states that, for any measurable function ϕ : F → R, we
have

Ef∼ρ̂ϕ(f) ≤ KL(ρ̂∥π) + ln(Ef∼π exp[ϕ(f)]).

Thus, with ϕ(f) := λ
(
Lℓ
D(f)− L̂ℓ

X,Y (f)
)
, we obtain ∀ρ̂ on F :

λ
(
Ef∼ρ̂Lℓ

D(f)−Ef∼ρ̂L̂ℓ
X,Y (f)

)
= Ef∼ρ̂λ

(
Lℓ
D(f)− L̂ℓ

X,Y (f)
)

≤ KL(ρ̂∥π) + ln
(
Ef∼π exp[λ

(
Lℓ
D(f)− L̂ℓ

X,Y (f)
)
]
)
.

Now, we apply Markov’s inequality on the random variable ζπ(X,Y ) := Ef∼π exp
[
λ
(
Lℓ
D(f)− L̂ℓ

X,Y (f)
)]

and get

Pr(X,Y )∼Dn

(
ζπ(X,Y ) ≤ 1

δ
E(X′,Y ′)∼Dnζπ(X

′, Y ′)

)
≥ 1− δ.

This implies that with probability at least 1 − δ over the choice (X,Y ) ∼ Dn, we have ∀ρ̂
on F

Ef∼ρ̂Lℓ
D(f) ≤ Ef∼ρ̂L̂ℓ

X,Y (f)+
1

λ

KL(ρ̂∥π) + ln
E(X′,Y ′)∼DnEf∼π exp[λ

(
Lℓ
D(f)− L̂ℓ

X,Y (f)
)
]

δ

 .

Appendix C. Experiments

Includes the full set of experimental results along with experiments on regression datasets.
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C.1. Experimental setup

We run our experiments on GPUs of the type NVIDIA GeForce RTX2080ti, on our local
cluster. The total computation time was approximately 125 GPU hours. In the following
list, we include the libraries and datasets that we used together with their corresponding
licences

• Laplace-Redux Package (Daxberger et al., 2021a): MIT License

• Netcal package (Küppers et al., 2021): Apache Software License

• Pytorch package (Paszke et al., 2019): Modified BSD Licence

• Abalone, Diamonds datasets (Dua and Graff, 2017): -

• KC House datasets (harlfoxem, 2014): CC0, Public Domain

• MNIST-10 dataset (Deng, 2012): MIT Licence

• CIFAR-10 dataset (Krizhevsky and Hinton, 2009): MIT Licence

• CIFAR-100 dataset (Krizhevsky and Hinton, 2009): MIT Licence

• SVHN dataset (Netzer et al., 2011): -

• FashionMnist dataset (Xiao et al., 2017): MIT Licence

C.2. Dataset splits

In all regression experiments, we will split the dataset into 4 sets: Ztrain the training set,
Ztest the testing set, Zvalidation the validation set, Ztrue a large sample set that is used to
approximate the complete distributions. We detail the use of each split in the following
sections; refer to Table 1 for the specifics of splits for each dataset.

Ztrain Ztest Zvalidation Ztrue

Abalone 751 835 84 2000
KC House 3923 4323 400 10406
Diamonds 9788 10788 1000 25970

Table 1: In this table we detail the number of samples that we add to each set of our
split, for each dataset. We aim to have a sufficiently high number of samples for
the Ztrue. Zvalidation is chosen to be approximately 10% of the Ztrain (note that
Zvalidation contains new samples). For the regression datasets, our training set is
approximately the same size as the testing set which is not a common setup in
classification. However, our aim is not to obtain the best training and testing error
but to investigate the behaviour of our models for varying λ.

For the classification datasets CIFAR-10, CIFAR-100, SVHN, FMNIST we used the
standard test and train splits. We use 10% of the data for the validation set.
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C.3. Models

For our regression datasets, we use a fully connected network with two hidden layers with
100 neurons each and the ReLU non-linearity. We train our networks to minimize the Mean
Square Error (MSE) loss. We evaluate the NLL with a Gaussian likelihood with σ = 1.

For the classification datasets CIFAR-10, CIFAR-100, and SVHN we use the WideRes-
Net22 (Zagoruyko and Komodakis, 2016) architecture. Because the Laplace approximation
does not interact well Antorán et al. (2022) with BatchNorm (Ioffe and Szegedy, 2015) we
instead use Fixup Initialization Zhang et al. (2019). We train our networks using the soft-
max activation and the cross-entropy loss. We use the SGD optimizer with learning rate
η = 0.1, weight decay 5e-4, and momentum 0.9 and 300 epochs. We furthermore divide the
initial learning rate by 10, at the point of 50%, 75%, and 87% of the epochs. We also use
dropout with 0.4 after all the Resnet blocks. We evaluate the NLL using the cross-entropy
loss.

For the classification dataset FMNIST we use a Convolutional Network with 3 nonlinear
convolutional layers followed by 2 non-linear fully connected layers. We use the SGD opti-
mizer with learning rate η = 0.001, weight decay 5e-4, and momentum 0.9 and 10 epochs.
We evaluate the NLL using the cross-entropy loss.

We do not use data augmentation in any experiment. This partially explains the prob-
lems with the CIFAR-100 dataset. In particular, in preliminary experiments (which we
include further in the Appendix) both the CIFAR-10 and the CIFAR-100 datasets improve
significantly in accuracy with data augmentation (random flips and random crops) and the
matrix inversion in the CIFAR-100 KFAC case is better posed and results in significantly
improved accuracy 70% over the non-augmented counterpart.

Average MAP Test Error

CIFAR-10 10.4%
CIFAR-100 40.6%
SVHN 4.2%
FMNIST 8.8%

Table 2: In this table we plot the average test 0-1 Loss of the MAP estimates of the different
networks and datasets.

C.4. Evaluation of bounds

C.4.1. All approximate bound evaluation Bapproximate

We need to evaluate the following bound
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Ew∼ρ̂Lℓnll
D (w) ≤

∥y − f(X;wρ̂)∥22
2n

+

(
1

λh
d + 1

σ2
π

)
h

2n
+

1

2
ln(2π)︸ ︷︷ ︸

Empirical Risk

+
σ2
x(σ

2
πd+ ∥w∗ −wπ∥22)
2− 2λnσ2

xσ
2
π

+
σ2
ϵ

2︸ ︷︷ ︸
Moment

+
1

λn

[
1

2

(
d

σ2
π

1
λh
d + 1

σ2
π

+
1

σ2
π

∥wρ̂ −wπ∥22 − d− d ln
1

λh
d + 1

σ2
π

+ d lnσ2
π

)
+ ln

1

δ

]
︸ ︷︷ ︸

KL

.

(2)

To estimate the bound we need to measure the following quantities

• h =
[∑

i

∑
j(∇wf(xi;wρ̂)j)

2
]
the curvature at the minimum. Note how this cor-

responds to the sum of the squared gradients per data sample. We can compute
this term using the Laplace-Redux package (Daxberger et al., 2021a) which has as a
backend the BackPACK package (Dangel et al., 2019) or the ASDL package (Osawa,
2021).

• wπ and wρ̂ the prior and posterior means. We can also compute these terms explicitly.
We typically train a deterministic neural network with SGD on Ztrain to obtain a MAP
estimate wπ then we also set wρ̂ = wπ, such that ∥wρ̂ −wπ∥22 = 0 in the KL term.
This typically makes bounds tighter and is valid so long as we evaluate the other
terms in the bound on Ztrainsuffix.

• σ2
x the per weight variance of the per-sample gradients. We estimate these using

the data split reserved for approximating the full distribution Ztrue. We estimate

this quantity as σ2
x =

∑
i∈Ztrue

∑
j(∇wf(xi;wρ̂)j)

2

#Ztrue#weights . Note that we do the above instead
of actually fitting a Gaussian mixture on the gradients which would be tedious and
error-prone.

• ∥y − f(X;wρ̂)∥22 the MSE of the MAP classifier.

• σ2
ϵ the aleatoric uncertainty of the data. While we could estimate this using for

example a Gaussian Process, since it is just a small constant we set it to be σ2
ϵ = 1 in

all experiments

• ∥w∗ −wπ∥22 the ℓ2 norm of the difference between the weights of the oracle function
that generated the labels w∗, and our prior mean wπ. The oracle quantity w∗ is
unknown. Setting ∥w∗ − wπ∥22 ≈ ∥wρ̂ − wπ∥22 = ∥wπ − wπ∥22 = 0 might be too
optimistic so instead we set ∥w∗ −wπ∥22 ≈ ∥wρ̂∥22 = ∥wπ∥22. (Remember that we set
wρ̂ = wπ to make the bound tighter.)

The values of the following variables can be set when evaluating the bound:

• σ2
π the prior variance.
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• d the number of weights in the model.

• λ the temperature parameter.

• δ the confidence of the bound, we typically use δ = 0.05.

C.4.2. Mixed bound evaluation Bmixed

We need to evaluate the following bound

Ew∼ρ̂Lℓnll
D (w) ≤

∥y − f(X;wρ̂)∥22
2n

+

(
1

λh
d + 1

σ2
π

)
h

2n
+

1

2
ln(2π)︸ ︷︷ ︸

Empirical Risk

+
1

λn
lnEf∼πE(X′,Y ′)∼Dn exp

[
λn
(
Lℓnll
D (f)− L̂ℓnll

X′,Y ′(f)
)]

︸ ︷︷ ︸
Moment

+
1

λn

[
1

2

(
d

σ2
π

1
λh
d + 1

σ2
π

+
1

σ2
π

∥wρ̂ −wπ∥22 − d− d ln
1

λh
d + 1

σ2
π

+ d lnσ2
π

)
+ ln

1

δ

]
︸ ︷︷ ︸

KL

(3)

To estimate the bound we need to measure the same quantities as in the Bapproximate

except for σ2
x, σ

2
ϵ and ∥w∗ −wπ∥22. In their place we need to estimate

Ψℓ,π,D(λ, n) = lnEf∼πE(X′,Y ′)∼Dn exp
[
λ
(
Lℓnll
D (f)− L̂ℓnll

X′,Y ′(f)
)]

.

We can approximate this term as

Ψℓ,π,D(λ, n) ≈ ln
1

m

∑
fi∼π

∑
(X′

j ,Y
′
j )∼Dn

exp
[
λ
(
Lℓnll
D (fi)− L̂ℓnll

X′
j ,Y

′
j
(fi)
)]

by using Monte Carlo sampling. We note that this Moment term requires a sub-Gaussian or

more generally a sub-Weibull assumption on the random variable V =
(
Lℓnll
D (fi)− L̂ℓnll

X′
j ,Y

′
j
(fi)
)
,

so that we are sure that it is bounded. We use m = 100 samples to approximate this term in
all experiments. Even when assuming that the variable V is sub-Gaussian or sub-Weibull
(and therefore has light tails) the exponentiated variable might have heavy tails. More
importantly for large values of λ the variance of the corresponding naive Monte Carlo esti-
mator that we implement might have large or even infinite variance, making our empirical
estimate unreliable. We thus present the results on the bounds for the regression data with
these caveats in mind.

C.4.3. Alquier bound evaluation BAlquier

We need to evaluate the following bound
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Ew∼ρ̂Lℓnll
D (w) ≤ Ef∼ρ̂L̂ℓnll

X,Y (f)︸ ︷︷ ︸
Empirical Risk

+
1

λn
lnEf∼πE(X′,Y ′)∼Dn exp

[
λn
(
Lℓnll
D (f)− L̂ℓnll

X′,Y ′(f)
)]

︸ ︷︷ ︸
Moment

+
1

λn

[
1

2

(
d

σ2
π

1
λh
d + 1

σ2
π

+
1

σ2
π

∥wρ̂ −wπ∥22 − d− d ln
1

λh
d + 1

σ2
π

+ d lnσ2
π

)
+ ln

1

δ

]
︸ ︷︷ ︸

KL

(4)

To estimate the bound we need to measure the same quantities as in the Bmixed except
for the empirical risk. We estimate this by sampling directly from the empirical loss using
Monte Carlo sampling

Ef∼ρ̂L̂ℓ
X,Y (f) ≈

1

m

∑
fi∼ρ̂

L̂ℓ
X,Y (fi).

We use m = 100 samples to approximate this term in all experiments.

C.4.4. Additional notes on bound evaluation

For the regression datasets, we tested 20 different values for σ2
π in [0.00001, 0.1].

We try to make our bounds as tight as possible. To do this we try to control the term
∥wρ̂ − wπ∥22 which typically dominates the bound. We follow for all tasks a variation of
the approach of Dziugaite et al. (2021). Specifically we use Ztrain to learn a prior mean wπ

then we set, wρ̂ = wπ, such that ∥wρ̂ −wπ∥22 = 0. Note that we can still evaluate a valid
bound so long as we set (X,Y ) in Theorem 1 to be independent of the prior mean. This is
the reason why we separated a part of the training set in the form of Zvalidation. We thus set
(X,Y ) = Zvalidation in Theorem 1. All bounds (BAlquier, Bmixed, Bapproximate) can then be
evaluated by taking into account this substitution. Note that our final model deviates from
what would be typically used in practice, but it shouldn’t deviate significantly. Specifically
our models are a modification of the commonly used Laplace approximation (Daxberger
et al., 2021a). We only use (X,Y ) = Zvalidation to learn the posterior variance of a Laplace
approximation, and in particular to estimate the curvature parameter h.

For most datasets (such as CIFAR-10) we are not aware of extended versions, and thus
we would necessarily have to draw Ztrue from Ztrain. This is why we cannot estimate the
Alquier bound for CIFAR-10, CIFAR-100, SVHN, and FMNIST, because to estimate the
Moment term we would need a large Ztrue which would necessarily limit the size of the
training set significantly. Note that since in Moment term, we have to draw X ′, Y ′ ∼ D of
size |(X ′, Y ′)| = n = |Zvalidation| we would need |Ztrue| ≫ |Zvalidation| so the decrease in the
available training samples would be significant, and consequently also the relevance for real
applications.

In our experiments, we test multiple values of λ and σ2
π. Typically one would need to

take a union bound over a grid on these parameters so as for the generalization bound to
be valid (Dziugaite and Roy, 2017). However this typically costs only logarithmically to
the actual bound. We ignore these calculations as our bounds are in general quite loose
anyway, and these calculations would result in additional terms that would make the final
bound even more complex.
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(a) (b)
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Figure 1: BAlquier PAC-Bayes bound and test NLL mean, as well as 10 MAP
trials (we denote λ = 1 by ). For varying λ for the regression tasks
on the UCI Abalone, UCI Diamonds, and KC House datasets. BAlquier bound
closely tracks the test NLL. There is a rapid improvement as λ ↑ followed by a
slowdown in improvements. Coldest posteriors λ ≫ 1 are always best.

For the bounds to be valid, one would typically want to show concentration inequalities
such that the Monte Carlo estimates of the Empirical Risk and the Moment terms con-
centrate close to the true expected value with high probability. We do not provide such
guarantees. Note however that, at least for the Empirical Risk term, our sample size of
m = 100 from the posterior distribution over weights is a sample size that is typically
used in practice and provides good estimates. Regarding the Moment term we typically
use m = 100. Specifically we sample 10 samples wi ∼ π and for each wi we sample 10
samples from Xj , Yj ∼ D. We have tried to balance sampling sufficiently to approximate
the expectation on the one hand, and also not too much such that the computations become
prohibitive.

C.5. Additional regression results

We find ten MAP estimates for the neural network weights of the Abalone, Diamonds and
KC House datasets by training on Ztrain using Stochastic Gradient Descent (SGD) with
stepsize η = 10−3 for ten epochs. We then fit an Isotropic Laplace approximation to each
MAP estimate using Zvalidation. For different values of λ we then estimate the Alquier bound
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(equation 4) using X,Y = Zvalidation, as well as the test NLL of the posterior predictive
on Ztest. We take a grid over prior variances σ2

π, and we present results for σ2
π = 0.005

although the behaviour is similar for the other prior values.
We plot the results for all datasets in Figure 1. Somewhat surprisingly, the test NLL

always decreases with colder posteriors up to the point where the classifier is essentially
deterministic. The BAlquier bound correlates tightly with this behaviour. These results are
somewhat surprising, in that we would expect there to be a minimum in the curves, such
that some posterior variance σρ̂ ≥ 0 gives better test results than the MAP estimate. These
results could be due to the poor (Isotropic) approximation to the posterior. We furthermore
note the caveats mentioned in the B.4.2 which make the estimates of the Moment term
unreliable.

In Figure ?? we see more detailed experiments on the regression datasets Abalone,
Diamonds and KC House. We see that for all the neural networks that we trained across
all datasets the Bapproximate bound is very loose. Specifically for the cases we consider λ
is always restricted to be λ < 1 which is very limiting since we want to investigate cold
posteriors and λ > 1. When comparing the Bmixed and BAlquier bounds we see that there
is little change in the bound values. Specifically estimating the Empirical Risk with Monte
Carlo sampling, instead of using a Taylor expansion of second order (as in Bapproximate)
doesn’t yield significant benefits. The big improvements are the result of estimating the
Moment term using Monte Carlo sampling.

C.6. Complete classification results

We plot in Figure 4 the standard Isotropic and standard KFAC cases for the ECE. Even
without data augmentation and even when we optimize the prior variance using the marginal
likelihood, we find that all three cases of temperatures (cold posterior, warm posterior, as
well as posterior with λ = 1) can be optimal, for varying datasets. Unfortunately we are
not aware of approaches to directly bound the ECE. The ECE is notable for having a
significantly different behaviour from the NLL and the 0-1 Loss. At the same time, better
calibration in terms of ECE than a simple MAP estimate is one of the purported main
benefits of the Bayesian paradigm.

In Figure 5 we plot the Pareto front of the test 0-1 Loss with respect to the test ECE.
The top row is the standard Isotropic case and the bottom row is the standard KFAC case.
We see that in most cases there is a clear tradeoff between the test 0-1 Loss and the test
ECE. These results might be relevant for the applicability of the Laplace approximation for
improving the ECE.

In Figure 6 we see that data augmentation (random flips and crops) results in better
test accuracy and makes the matrix inversion in the Laplace approximation better posed
such that the accuracy on CIFAR-100 is within a normal range.



Pitas Arbel

400
(a)

Figure 2: Test 0-1 Loss mean, as well as 10 MAP trials , along with the
generalization certificate (we denote λ = 1 by ): BCatoni PAC-Bayes
bound (top), standard Isotropic Laplace posterior (middle) and standard KFAC
(bottom). The BCatoni PAC-Bayes bound closely tracks the test 0-1 Loss. For the
standard Isotropic and KFAC posteriors the test and validation 0-1 Loss behave
similar to the Catoni case, with a rapid improvement as λ ↑ followed by a plateau.
Coldest posteriors λ ≫ 1 are always best.
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Figure 3: Test NLL mean, as well as 10 MAP trials , along with the validation
NLL (we denote λ = 1 by ) for the Standard Isotropic Laplace
posterior (top) and standard KFAC (bottom). The test and validation NLL show
warm posteriors (FMNIST and SVHN KFAC), cold posteriors (CIFAR-10) and
posteriors with λ = 1 (SVHN Isotropic). The general trend remains a rapid
improvement as λ ↑ followed by a plateau, however the coldest posteriors λ ≫ 1
are not always optimal contrary to the 0-1 Loss case.
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Figure 4: Test ECE mean, as well as 10 MAP trials , along with the valida-
tion ECE (we denote λ = 1 by ) for the Standard Isotropic Laplace
posterior (top) and standard KFAC (bottom). The test and validation ECE show
warm posteriors (FMNIST and SVHN KFAC), cold posteriors (CIFAR-10) and
posteriors with λ = 1 (SVHN Isotropic). The general trend remains a rapid im-
provement as λ ↑ followed by a plateau, however the coldest posteriors λ ≫ 1 are
not always optimal contrary to the 0-1 Loss case.
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400
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Figure 5: We plot the Pareto front of the test 0-1 Loss with respect to the test ECE. The
top row is the standard Isotropic case and the bottom row is the standard KFAC
case. We see that in most cases there seems to be a tradeoff between the test 0-1
Loss and the test ECE.
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Figure 6: Test 0-1 Loss mean, as well as 10 MAP trials , along with the
validation 0-1 Loss (we denote λ = 1 by ) for the Standard Isotropic
Laplace posterior (top) and standard KFAC (bottom) for CIFAR-10 and CIFAR-
100 with data augmentation (random flips and crops). The performance on both
improves significantly and the Laplace approximation becomes better posed.
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