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Abstract

Probabilistic modelling on Generative Adversarial Networks (GANs) within the Bayesian
framework has shown success in estimating the complex distribution in literature. In this
paper, we develop a Bayesian formulation for unsupervised and semi-supervised GAN learn-
ing. Specifically, we propose Folded Hamiltonian Monte Carlo (F-HMC) methods within
this framework to learn the distributions over the parameters of the generators and dis-
criminators. We show that the F-HMC efficiently approximates multi-modal and high
dimensional data when combined with Bayesian GANs. Its composition improves run time
and test error in generating diverse samples. Experimental results with high-dimensional
synthetic multi-modal data and natural image benchmarks, including CIFAR-10, SVHN
and ImageNet, show that F-HMC outperforms the state-of-the-art methods in terms of test
error, run times per epoch, inception score and Frechet Inception Distance scores.

Keywords: Generative Adversarial Networks; Hamiltonian Monte Carlo; Data Imputa-
tion; Multi-modal;

1. Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2014) received traction in the
field of deep generative models. The development of GANs covers a wide range of neural
network architecture from multi-layer perceptrons to the BigGAN framework (Brock et al.,
2019) with residual blocks and self-attention layers (Zhang et al., 2019) to synthesise realistic
images.

Despite GAN’s effectiveness in generating realistic images, it experiences mode col-
lapse, which occurs when the generator over-optimises for a particular discriminator and
the discriminator never learns how to escape the trap. Work has previously focused on
alternative metrics such as f-diversities (Nowozin et al., 2016) or Wasserstein divergences
(Arjovsky et al., 2017) to substitute the Jensen-Shannon divergence inherent in traditional
GAN training to alleviate several practical issues.
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Moreover, GANs encounter additional challenges when dealing with complex and diverse
data sources, particularly in cases where multi-modal and highly correlated distributions
come into play. For instance, in tasks like generating natural scenes, style transfer, speech
synthesis, and molecular structure generation. They challenge GANs to capture complex
relationships within data, highlighting the need for adaptable and expressive architectures.
Addressing these challenges enables us to generate a wide range of diverse and high-quality
samples across various applications. Saatci and Wilson (2017) proposed the Bayesian GAN,
a probabilistic framework for GANs based on Bayesian inference. It demonstrates how
modelling the distribution of generators alleviates mode collapse and motivates the inter-
pretability of learned generators. GAN training measures the full posterior distribution
across network weights in a single-mode based on mini-max optimisation. Even if the gen-
erator does not recall training instances, samples from the generator are expected to be
excessively compact compared with data distribution samples. As a posterior distribution
over the generators’ parameters can have long tails and be highly multi-modal, the Bayesian
GAN aims to model the real data distribution by fully reflecting the posterior distribution
over the generators and discriminators’ parameters. A similar approach, named as the prob-
GAN He et al. (2019), iteratively learns a distribution over generators but with a carefully
crafted prior. A tailored Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) is used in
both the Bayesian GAN and the ProbGAN to approximate the posterior of the generators
and discriminators’ parameters.

In this paper, we explore regional adaptation to construct different samplers to efficiently
produce samples of generators and discriminators’ parameters, in order to mitigate GANs’
mode collapse issues. To achieve this, we propose a Folded Hamiltonian Monte Carlo (F-
HMC) to replace the SGHMC part of the Bayesian GAN framework. This proposed method
is experimentally well adjusted to train GANs due to the adoption of Hamiltonian dynamics.

1. We design the Folded Hamiltonian Monte Carlo method with the Bayesian GAN
framework to sample parameters of generators in using regional adaptation.

2. We analyse its theoretical properties such as ergodicity in converging to the target
distribution.

3. We provide empirical evidence that it can accurately and efficiently explore multi-
modal high-dimensional distribution in terms of similarity to the target distribution
and convergence speed.

4. We apply the F-HMC method on natural image datasets (ImageNet, SVHN, and
CIFAR10) and show that it outperforms probabilistic Bayesian GAN methods in
terms of inception scores (IS) and Frechet Inception Distance scores (FID).

2. Problem Formulation

Suppose we have access to observed data D = {xi} whose samples are distributed according
to an unknown probability distribution pdata(x). Our goal is to construct generators to
sample from this potentially high-dimensional multi-modal distribution pdata(x). Instead
of finding one point in mini-max optimisation on the generator and discriminator in classic
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GAN, Bayesian GAN (Saatci and Wilson, 2017) introduces a new formulation for GANs. It
creates the distribution of the generator and discriminator’s weight as an infinity space of
generators and discriminators corresponding to every possible configuration of these weight
vectors.

We build upon the problem formulation in the Bayesian GAN (Saatci and Wilson, 2017)
and estimate pdata(x) as Gen(α̂g, z) where z represents white noise sampled from p(z), and
α̂g represents distribution over generator parameters. We denote that parameter set α con-
sisting of two sub parameter set α̂g related to the generators and α̂d associated with the
discriminators. The Bayesian GAN can model the true data distribution by fully represent-
ing the posterior distribution over parameters of both the generator and the discriminator.
Therefore, we require the generator and discriminators’ weight candidates. In this regard,
we need to estimate the posterior over α̂g, α̂d. We refer to this posterior as π in this paper.

First, generator weights α̂g are sampled from a prior p(α̂g|βg) with βg as hyperparameter,
and a generative neural network is constructed conditioning on these samples (Gen(.; α̂g)).
Then, white noise z derived from p(z) is transformed through the network Gen(z; α̂g) to
generate candidate data samples. A discriminator conditioned on its weights Disc(.; α̂d)
produces the probability that these candidate samples are generated from the true data
distribution. The discriminator in Bayesian GAN is a link function that distinguishes true
data from generated data and gets penalised by misclassifying the true data. As shown in
Equation 1, if the discriminator outputs high probabilities, then the posterior will increase
in a neighbourhood of the sampled setting of α̂g, considering L : [0, 1] → [0, 1] as the
likelihood term which is the product of the output probabilities of the discriminator.

p(α̂g|z, α̂d) ∝ exp{L(Disc(Gen(z, α̂g), α̂d))}p(α̂g|βg) . (1)

From the discriminator side, it need to form classification likelihood that classifies actual
data from the generated samples and can be formulated as:

p(α̂d|z,X, α̂g) ∝ exp{L(Disc(X, α̂d))} × exp{L(1−Disc(Gen(z, α̂g), α̂d))}p(α̂d|βd) . (2)

Here p(α̂d|βd) refers to the prior for α̂d with βd as hyperparameter and X = {xi}ni=1. As
discussed in the Bayesian GAN, instead of implicitly conditioning the parameter posterior
in traditional GAN on a set of noise samples z, we can marginalise z from the posterior
using Monte Carlo:

p(α̂g|α̂d) =

∫
p(α̂g, z|α̂d)dz =

∫
p(α̂g|z, α̂d)p(z|α̂d)dz ≈ 1

I

I∑
i=1

p(α̂g|z(i), α̂d), z(i) ∼ p(z) .

(3)
Similarly, p(α̂d|α̂g) ≈ 1

I

∑I
i=1 p(α̂d|z(i), X, α̂g), z(i) ∼ p(z). We can approximate the pos-

terior π over α̂g and α̂d by iteratively sampling from p(α̂g|α̂d) and p(α̂d|α̂g). We then use
the generators and discriminators sampled from π to generate candidate samples from the
true data distribution pdata(x). Figure 1 visualises the framework of Bayesian GAN. In
practice, the distribution of α̂g and α̂d can be high-dimensional and multi-modal and using
SGHMC falls short of covering the distribution. This motivated us to introduce our F-
HCM method as an efficient sampling approach for this setup, particularly when the target
is high-dimensional, multi-modal and highly correlated.
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Figure 1: Bayesian GAN framework; a new formulation for classic GAN that explores dis-
tribution over generator and discriminator parameter (α̂g, α̂d)

3. Background

A well-known statistics problem is inadequate mixing of typical Markov Chain Monte Carlo
(MCMC) techniques on multi-modal target distributions with isolated modes (Pompe et al.,
2020). These algorithms have difficulty traversing through the low probability barriers that
separate the modes and consequently require a long time for transition between the modes.
Algorithms for sampling from a multi-modal target distribution need to address three ma-
jor challenges: (i) determining high probability regions where the modes are located; (ii)
crossing low probability boundaries to move between modes; (iii) considering homogeneity
and local geometry of modes to sample efficiently from them.

If the modes have different local covariance structures, tempering-based techniques
(Geyer, 1991; Miasojedow et al., 2012; Kou et al., 2022) were shown to integrate them expo-
nentially slowly in dimension. On the other hand, the Smart Darting Monte Carlo method
relies on two moves: leaps between modes, which are only permitted in non-overlapping
pi-spheres surrounding the previously established local maxima, and local moves (Random
Walk Metropolis steps). Sminchisescu and Welling (2011) expanded on this concept by
enabling the leaping zones to overlap and have any volume and shape. Another line of re-
search is optimisation-based approaches (Andricioaei et al., 2001; Sminchisescu and Welling,
2011), which aims to find local maxima of the target distribution.

Lan et al. (2013) proposed the Wormhole Hamiltonian Monte Carlo method, the exten-
sion of the Riemannian Manifold HMC as another optimisation-based approach. The key
idea is to build a network of “wormholes” linking the modes (neighbourhoods of straight
line segments between the local maxima of pdata(x)). Adjustments to the algorithm’s pa-
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rameters, including the network system, are permitted during regeneration intervals. As we
will see later, the algorithm we suggest also fits under the category of optimisation-based
approaches. However, most of the methods described earlier only utilise a single transition
kernel, restricting their performance in complex multi-modal scenarios which often require
a diverse set of transition kernels to explore different regions.

We address this problem by proposing the Folded Hamiltonian Monte Carlo (F-HMC)
method to increase the quality of data generated in the Bayesian GAN framework by alle-
viating its mode collapse and generate diverse samples to cover the target distribution.

4. Folded Hamiltonian Monte Carlo

In the scenario where the target distribution is multi-modal and highly correlated, the
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) might not efficiently explore the
target density (Ye and Zhu, 2018). As a pragmatic approach, we propose the Folded Hamil-
tonian Monte Carlo method, an algorithm that, instead of finding a single chain that sam-
ples from the whole distribution, combines samples from several chains. Those chains each
explore a different region of the state space (e.g., a few modes only).

We consider regional adaptation in the design of the F-HMC sampler, in which the
proposal distribution differs across parts of the sample space. The regions evolve as the
simulation progresses since the intended distribution is uncertain. Suppose the target is
well approximated using a mixture of Gaussians. In that case, it is reasonable to assume
that each mixture component is a good proposal in a given region of the sample space. As
a result, F-HMC uses a Gaussian mixture to approximate the target distribution (π), and
the mixture parameters are updated in real-time using simulated samples. Suppose the
approximation of the target distribution π with J modes at time n is:

qn(x) =
J∑

j=1

ψ(j)N (x;µ(j)n , σ(j)n ) . (4)

where ψ(j) > 0 and
∑J

j=1 ψ
(j) = 1 and N (x;µ

(j)
n , σ

(j)
n ) determines Gaussian distribution

with mean µ
(j)
n and σ

(j)
n covariance matrix. Using the mixture representation in (4), we

define the sample space regions S =
⋃J

j=1 S
(j)
n for J modes. For each set S

(j)
n , π is more

similar to N (x;µ
(j)
n , σ

(j)
n ) than any other distribution entering (4). To be more precise,

we define S such that the sum of differences between Kullback-Leibler (KL) divergence of

regions ∆KL(S
(1)
n , S

(2)
n , . . . , S

(j)
n ) be the maximum. By maximising the sum of differences

in KL divergences, the aim is to guide the mixture model towards a setup that mitigates
the divergence between the approximated distribution and the desired target distribution.
Consider J = 2, for regions g, h, the ∆KL is defined on space A as follows:

∆KL(g, h|A) =

∫
A

log(
g(x)

h(x)
)g(x)dx . (5)

Here, we measure ∆KL on the partition of S for distributions of π and N (x;µ
(j)
n , σ

(j)
n ). In

other words, S
(j)
n , the j-th component of the set of mixture density components, dominates
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the others and is defined as follow:

S(j)
n = {x : argmax

j′
N (x;µ(j

′)
n , σ(j

′)
n ) = j} . (6)

Lemma 1: The sum of differences between Kullback-Leibler (KL) divergence of regions

∆KL(S
(1)
n , S

(2)
n , .., S

(j)
n ) is maximum on S. We refer the readers to Appendix A for the

proof of Lemma 1. The approximation (4) along with the regions defined in (6) enable us
to determine the proposal distribution of F-HMC. One may consider proposal distribution
at time n as:

Qn(x) =

J∑
j=1

ψ(j)N (x;µ(j)n , σ(j)n ) . (7)

In other words, we would use the mixture’s dominant component as a suggested distribution

in each region S
(j)
n . While such a model may have acceptable local characteristics, it may

not guarantee proper flow across different regions. Therefore, we are using a second or (fold)
HMC on top of these samplers concerning the cross-correlation of partitions to allow a flow
between different regions. Thus the F-HMC proposal distribution models are as follows:

Q′
n(x) = ϵ

J∑
j=1

N (x;µ(j)n , σ(j)n ) + (1− ϵ)N (x; µ̂(k)n , σ̂(k)n ) . (8)

where σ
(j)
n is the sample covariance matrix derived from those samples in S

(i)
n , whereas σ̂

(k)
n

is a covariance matrix with respect to cross-correlation between all components estimated
from all n samples in S. F-HMC sampling consists of two options for each step. The local-
mode option preserves mode sampling, while the cross-mode option allows for jumps across
separate posterior region. The parameter ϵ controls the selection of these two options.

4.1. Simulation parameter updates

As mentioned earlier, the simulation parameters µ
(j)
n and σ

(j)
n should be updated on the fly

each time new draws from the target distribution are added to the Monte Carlo sample. Our
method is inspired by Andrieu and Moulines (2006) and Bai et al. (2011), who developed
the technique in mixture with an adaptable independent Metropolis algorithm. At time

n − 1, suppose the parameter estimations are µ
(j)
n−1, σ

(j)
n−1, and the current samples are

{x0, x1, ..., xn−1}. We define the mixture indicator wn so that it equals j if and only if xn

is created from the j-th component of the mixture (6), in other words, ω
(j)
n = P (wn =

j|xn;µ
(j)
n , σ

(j)
n ). Now we have:

ω(j)
n =

N (x;µ
(j)
n , σ

(j)
n )∑J

j′=1N (x;µ
(j′)
n , σ

(j′)
n )

. (9)

To adhere to the guidelines suggested by Haario et al. (2001) for adaptive Metropolis al-
gorithm with Gaussian proposal changing on the fly. for all 1 ≤ j ≤ J , the estimation for
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parameter µ
(j)
n and σ

(j)
n is as follow:

µ(j)n = µ
(j)
n−1 +

ω
(j)
n∑n

i=1 ω
(j)
i

(xn − µ(j)n−1)

σ(j)n = σ
(j)
n−1 +

ω
(j)
n∑n

i=1 ω
(j)
i

((xn − µ(j)n−1)(xn − µ
(j)
n−1)

T − σ(j)n−1) .

(10)

Details of the derivations are available in Appendix B. As stated in Section 4, the

covariance matrix of samples {x1, x2, ..., xn}, σ̂(k)n is required, which is calculated as follows:

σ̂(k)n = σ̂
(k)
n−1 +

ω
(k)
n∑n

i=1 ω
(k)
i

((xn − µ̂(k)n−1)(xn − µ̂
(k)
n−1)

T − σ̂(k)n−1) . (11)

4.2. Theoretical analysis

This section describes the ergodicity of the F-HMC sampler. The proof relies on Con-
tainment and Diminishing Adaptation conditions given by Roberts and Rosenthal (2001)
to guarantee the ergodicity of adaptive MCMC. Formally, an adaptive MCMC technique

for the target distribution π employs the transition kernel’s parameters vector H
(j)
n =

[µ
(j)
n , σ

(j)
n ], which is permitted to vary throughout the simulation. It is supposed that the

Markov chain kernel has a stationary distribution π for each parameter vector Meyn and
Tweedie (1993). In other words, for a given initial point x0 ∈ S and a kernel kerH , Xn+1 is
generated from kerH(Xn, .) at iteration n+1. We state that our suggested model is ergodic
if:

Lemma 2: F-HMC satisfies Diminishing adaptation condition. This means that the
distinction between the transition kernels employed throughout iterations n and n + 1
diminish after long iterations.

Lemma 3: F-HMC satisfies Containment condition. This means that the process’s
convergence time is bounded in probability.

We refer the readers to Appendix C and Appendix D for proof of Lemma 2 and Lemma
3, respectively.

4.3. Integrating F-HMC with Bayesian GAN

Since SGHMC is not efficient in exploring complex targets with multi-modality, we proposed
F-HMC. The F-HMC design enables it to explore multi-modal targets efficiently. It remedies
the challenge of mode collapse and covers target distribution modes by enabling cross mode
jumps.

We substitute the SGHMC sampler with FHMC to make the proposed model operate
within the Bayesian GAN framework. Recalling from Bayesian GAN, the posterior approx-
imation is based on generating samples over π the posterior of generators α̂g and discrim-
inators weights α̂d, which is feasible by iteratively sampling from p(α̂g|α̂d) and p(α̂d|α̂g).
We deployed F-HMC for estimating π to generate candidates for generators’ and discrim-
inators’ weights. Finally, corresponding generators and discriminators are constructed to
sample the multi-modal high dimensional target distribution.
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Algorithm 1 One iteration of the generator in Bayesian GAN set up with our proposed
F-HMC
1: Input: (xn, j) is current sample at mode j out of total J finite modes and α̂n

g is generator
parameters from iteration n and number of θ is HMC friction term, η for the learning rate, and
I is the number of F-HMC iterations.

2: for n = 1 to I do
3: z ∼ p(z)
4: Generate u ∼ U [0, 1]
5: if u > ϵ then
6: Local mode move:
7: sample y around current mode j from S

(j)
n

8: if y is accepted then
9: (xn+1, j)← (y, j)

10: else
11: (xn+1, j)← (xn, j)
12: end if
13: else
14: Cross mode move:
15: propose new mode k

16: sample y around updated mode and µ̂
(k)
n and σ̂

(k)
n

17: if y is accepted then
18: (xn+1, j)← (y, k)
19: else
20: (xn+1, j)← (xn, j)
21: end if
22: end if
23: update parameters µ

(j)
n , σ

(j)
n , S

(j)
n , µ̂

(k)
n and σ̂

(k)
n

24: Bayesian GAN updates:
25: n ∼ N (0, 2θηI)
26: v ← (1− θ)v + η▽ + n
27: α̂n+1

g ← α̂n
g + v

28: end for
29: Output: {α̂n

g } as generated samples for α̂g

Considering total J finite modes, Algorithm 1 shows one iteration of the Bayesian learn-
ing for the generator parameters using our proposed model. We propose the sampling
algorithm that relies on HMC steps of two types, performed with probabilities (1−ϵ) and ϵ,
respectively. (Line 5-22). F-HMC assumes that the target is approximated using Gaussian
mixture models and has J regions. On each iteration, the model selects the next move to
either generate a sample from local mode with probability ϵ or takes the cross mode move
with probability (1 − ϵ), enabling the model to explore other regions. In the case of the
local move, the F-HMC proposes a sample within the current region j. If accepted, the
model’s next sample is updated (Line 9); Otherwise, it retains the sample on the former
step (Line 11). In the case of the cross mode move, the model proposes a new region k
and sample, and if they are accepted, the sample and mode in the next step are updated
(Line 18). Otherwise, they remain unchanged (Line 20). It is important to note that J is
a hyper-parameter, and in practice, it either relies on a satisfactory approximation of the
target or can be determined by tuning the value.
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Figure 2: Both samplers converged to the target distribution, but the F-HMC (middle)
covered the target (left) more accurately than SGHMC (right).

Figure 3: F-HMC converges faster than SGHMC in terms of lag number for exploring the
target distribution in 100 dimensions.

5. Experiments

We implemented the proposed model using PyMC3 1 and report its performance on gener-
ating samples from complex distributions described in Section 5.1. We examine the model’s
performance in marginalising the generators’ parameters on synthetic and natural image
datasets such as SVHN (Netzer et al., 2011), CIFAR 10 (Krizhevsky, 2009) and ImageNet
(Deng et al., 2009) in Section 5.2 and 5.3, respectively. We compared results with WDC-
GAN (Arjovsky et al., 2017), DCGAN, 10DCGAN (which is a fully supervised convolutional
neural network composed of ten DCGANs constructed by ten random subsets with 80% of
the size of the training set, (Radford et al., 2016)), Bayesian GAN (Saatci and Wilson,
2017) under the Apache License, Version 2.0 and ProbGAN (He et al., 2019) on supervised
and semi-supervised tasks with four different numbers of labelled examples. For a fair com-

1. https://docs.pymc.io/
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parison, each model has the same number of generators and discriminators with the same
architecture. On both the generator and discriminator weights, a N (0, 10I) prior is used.
We run the algorithm for 5000 iterations. So I, in algorithm 1 is 5000, we selected a learning
rate (η) which decayed according to γ/d where γ is the per-batch learning rate set to 0.01
and d is the number of unique real data points as suggested by Saatci and Wilson (2017)
and Chen et al. (2014). Guan and Krone (2007)’s theoretical derivation supports setting ϵ
to 0.7. The memory requirement is 15 GB. All of the experiments were run on a TitanX
GPU.

5.1. F-HMC performance

This section outlines the experiments we conducted to compare SGHMC with F-HMC’s
capacity to explore complex distributions. First, we use Normalising Flows (Kobyzev et al.,
2020; Rezende and Mohamed, 2016) as a rich family of distributions to examine F-HMC and
SGHMC’s abilities to explore complex distribution. Figure 2 shows the potential energy
of the rich target distribution and the generated candidates using SGHMC and F-HMC.
F-HMC successfully covers the target distribution more accurately than SGHMC.

Secondly, we use auto-correlation between samples generated by each sampler as a met-
ric to demonstrate the sampler’s capability in exploring the target distribution. Less auto-
correlation between samples provides more information about the target, with fewer sam-
ples, indicating a superior sampler. Figure 3 shows auto-correlation in F-HMC drops faster
to zero than SGHMC in terms of lag number.

5.2. High-Dimensional Multi Modal Synthetic Dataset

To test the power of F-HMC in approximating a multi-modal posterior, we employ a multi-
modal synthetic dataset. We generate D-dimensional synthetic dataset as follows:

z ∼ N (0, 10∗Id), A ∼ N (0, ID×d), x = Az+θ, θ ∼ N (0, 0.001∗ID), d << D . (12)

The experiment demonstrates F-HMC’s capability to explore a set of generator settings
to encapsulate a rich data distribution. We fit a regular GAN, Bayesian GAN, and our
proposed model to a dataset with a dimension of D = 100 and 500 and d = 2. The
generator for all models is set to be a two-layer neural network with dimensions of the
layers as 10, 1000, and 100, fully connected, with ReLU activation. The red samples
in Figure 4 depict the target data, whereas the green samples depict the corresponding
generated data. The experiments on D = 100 are shown in the first two rows, while the
results on D = 500 are shown on two lower rows. The sampler’s name appears on the left
side of each row. The more similarities between the green and red samples as iterations
proceed (from left to right in each row) show the power of the corresponding sampler in
estimating the target. Figure 4 for D = 100 and D = 500 indicates that the F-HMC has
a better match to the target density because the produced samples are more accurate in
their resemblance to red samples.

Figure 5 depicts the comparison of the performance of GAN, F-HMC GAN, and Bayesian
GAN in terms of Jensen-Shannon divergence. The experiment estimates the similarity of
the probability distribution of generated data to the original data, and it confirms that the
F-HMC exceeds other models.
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Figure 4: samples drawn from pdata(x) and visualised in 2D after applying PCA. the red
colour graph shows real data, and the green colour graph shows generated sam-
ples. The first two upper rows show experiment results with D = 100, and the
two lower rows show those corresponding to D = 500. The corresponding sampler
is shown on the right side of each row. The samples generated by F-HMC are
more accurate in resembling the target.

5.3. Natural Image Dataset

To evaluate the performance of our proposed model on natural image datasets, namely CI-
FAR10, SVHN and ImageNet, we have employed experiments in three measurement levels:
1-performance metric in supervised and semi-supervised learning using test error rate. 2-run
time per epoch in minutes by running all the models on a single GPU. 3-quality of generated
images in terms of IS (Salimans et al., 2016) and FID (Heusel et al., 2017) scores. We should
point out that the Bayesian GAN discriminator not only distinguishes real from generated
data, it also get penalised for not classifying the correct label for real data. As a result,
it demonstrated great out-of-sample performance with only a limited number of labelled
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Figure 5: The figure shows the Jensen-Shannon divergence between pdata(x) and the number
of iterations of model training for D = 100 (left) and D = 500 (right). We can
confirm that F-HMC exceeds other models in generating data more similar to the
target

Table 1: The table shows the supervised and semi-supervised learning test error rates on
classification for image benchmarks after splitting the dataset into train and test
sets. The Ns shows the number of labelled examples. The experiments were
repeated 10 times.

Ns Supervised DCGAN10 W-DCGAN BayesGAN probGAN F-HMC GAN

500 65.1± 2.3 30.9± 2.7 55.8± 2.9 30.5± 2.3 30.1± 2.8 29.8± 2.7
CIFAR-10 1000 54.6± 2.1 29.1± 2.4 48.8± 3.2 27.4± 2.1 27.7± 3.1 27.6± 2.8

2000 52.4± 2.4 26.8± 3.3 37.9± 2.5 24.2± 1.9 28.3± 2.5 23.3± 2.3
4000 48.1± 1.0 24.7± 2.7 28.2± 2.9 22.3± 3.2 21.7± 2.8 20.7± 2.6

1000 55.1± 3.3 30.8± 2.3 30.1± 1.9 28.7± 3.1 26.4± 2.1 26.6± 2.2
SVHN 2000 36.7± 2.63 17.9± 1.7 27.2± 2.6 14.2± 2.8 14.1± 2.6 13.4± 1.8

4000 28.2± 3.13 15.8± 1.4 25.1± 2.8 12.7± 2.9 13.5± 1.7 11.7± 1.4
8000 21.1± 2.2 15.1± 1.3 20.1± 1.9 9.2± 1.8 11.4± 1.8 8.9± 0.9

1000 57.6± 4.2 53.4± 3.1 55.7± 3.7 48.9± 4.3 47.8± 4.6 43.8± 4.4
ImageNet 2000 42.3± 3.5 38.7± 2.5 40.6± 3.1 34.6± 4.6 34.5± 3.8 33.6± 3.7

4000 40.1± 3.6 31.8± 2.1 35.5± 2.9 27.8± 3.8 26.8± 3.2 25.9± 3.5
8000 36.8± 4.1 28.3± 1.8 34.3± 2.7 24.4± 3.1 24.1± 2.8 22.7± 2.7

inputs, highlighting the need for effective generative models for semi-supervised learning.
Here, we follow their experimental setup. We evaluate the out-of-sampling performance for
semi-supervised learning using a portion of labelled training examples.

We use a 5-layer network architecture for GAN’s generator in all experiments on the
natural images’ datasets. The corresponding discriminator for supervised GAN is a 5-layer
2-class DCGAN, and we have used a 5-layer, K + 1 class DCGAN for a semi-supervised
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Table 2: Inception scores (IS, higher is better), Frechet Inception Distance (FID, lower is
better) both trained with WGAN objective and run time (epochs in minutes)
results on natural images datasets.

Score 10DCGAN BayesGAN probGAN F-HMC GAN

IS 7.78± 0.101 7.69± 0.96 7.72± 0.100 8.86± 0.095
CIFAR10 FID 23.81 24.75 24.63 18.73

Run time 143 91 94 92

IS 8.34± 0.107 8.27± 0.102 8.19± 0.087 8.41± 0.094
SVHN FID 49.61 51.78 52.32 11.21

Run time 151 98 94 85

IS 8.41± 0.113 8.51± 0.108 8.56± 0.075 8.61± 0.073
ImageNet FID 30.2 29.78 28.12 12.83

Runt ime 671 358 349 336

GAN performing classification over K classes. We divided datasets into train/test sets and
measured tests error on classification tasks.

Table 1 demonstrates supervised and semi-supervised learning results for all image
benchmarks. Our proposed model mainly outperforms BayesGAN, probGAN, W-DCGAN,
and 10-DCGAN in terms of test error rate. F-HMC shows its substantial impact when run-
ning on higher-dimensional data (ImageNet) due to its composition; it can efficiently explore
higher dimension data. Table 2 shows the generated images’ quality and the run time of the
models. The quality of images improves by using F-HMC across all three datasets, while
exhibiting similar or smaller run time compared to all the other compared state-of-the-art
algorithms. This demonstrates the advantage of the composition of F-HMC, which leads to
smaller run time per epoch than directly exploring the whole dimensions as in the Bayesian
GAN and probGAN. It should be noted that method performance can be increased by using
multiple GPUs to get a shorter runtime.

6. Conclusion

We present Folded Hamiltonian Monte Carlo (F-HMC) as a scalable strategy for sampling
multi-modal, high-dimensional, highly correlated data to improve Bayesian GAN in pro-
ducing synthetic images/generating data by estimating the weights of the generators and
discriminators. We present its theoretical properties and demonstrate that it is capable of
exploring the whole posterior rather than just one mode. Results show that it outperforms
the state-of-the-art in terms of test error rates, run times per epoch, IS, and FID scores.
Future directions include exploring the mixture of Student-t distributions to improve the
method’s robustness against misspecification of the number of modes. Our proposed model
is a framework, and using a more efficient GAN structure can potentially enhance the
results.
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