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Abstract

Models with similar performances exhibit significant disagreement in the predictions of
individual samples, referred to as prediction churn. Our work explores this phenomenon in
graph neural networks by investigating differences between models differing only in their
initializations in their utilized features for predictions. We propose a novel metric called
Influence Difference (ID) to quantify the variation in reasons used by nodes across models
by comparing their influence distribution. Additionally, we consider the differences between
nodes with a stable and an unstable prediction, positing that both equally utilize different
reasons and thus provide a meaningful gradient signal to closely match two models even
when the predictions for nodes are similar. Based on our analysis, we propose to minimize
this ID in Knowledge Distillation, a domain where a new model should closely match an
established one. As an efficient approximation, we introduce DropDistillation (DD) that
matches the output for a graph perturbed by edge deletions. Our empirical evaluation of
six benchmark datasets for node classification validates the differences in utilized features.
DD outperforms previous methods regarding prediction stability and overall performance
in all considered Knowledge Distillation experiments.
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1. Introduction

Neural networks have achieved remarkable success across various domains (Vaswani et al.,
2017; Jumper et al., 2021; Roth and Liebig, 2022a), but their predictions often lack reliability
and satisfactory explanations, leading to low trust (Samek et al., 2021). One observed issue
contributing to this problem is prediction churn, where models with similar performance
exhibit significant variability in their predictions (Summers and Dinneen, 2021; Klabunde
and Lemmerich, 2022). This churn occurs even among models with identical hyperparam-
eters differing only in their random initializations (Bhojanapalli et al., 2021; Zhuang et al.,
2022). When large portions of correctly classified data are misclassified upon model re-
training, the models’ reliability, trustworthiness, and explainability are reduced. Churn has
been observed across various domains and data structures, but understanding its underly-
ing cause remains challenging. This work focuses on node classification with graph neural
networks (GNNs), a domain where churn is particularly prevalent (Schumacher et al., 2022;
Klabunde and Lemmerich, 2022). Our work investigates the reason behind prediction churn
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in GNNs by comparing the influence of context nodes on predictions. We propose a novel
metric, the Influence Difference (ID), which allows us to compare the exploited features for
a given prediction between a pair of models and empirically verify this prevalence. Contrary
to previous investigations, we hypothesize that stable and unstable predictions exhibit sim-
ilar differences in their utilized features. We further hypothesize that stable nodes possess
redundant features, allowing their stable prediction even when the features utilized for the
prediction change. To empirically validate our hypotheses, we introduce additional metrics
based on ID.

Knowledge Distillation (KD) is a promising technique to transfer knowledge from a
well-performing teacher model to a newly trained student (Buciluǎ et al., 2006; Li et al.,
2014; Hinton et al., 2015) This enables model compression for a computationally expensive
teacher or regular model updates using new data (Gou et al., 2021). Users expect consistent
behavior after each update, so closely matching the teacher’s predictions is crucial. Previous
work formulated the goal of KD as directly minimizing churn (Jiang et al., 2022). Based
on our findings, we propose to extend KD by also matching the influences of predictions
as a regularization. As the exact formulation is computationally prohibitive, we introduce
DropDistillation (DD), an efficient approximation that mimics the influence of adjacent
nodes by removing random edges equally from both the teacher and the student model.
Our empirical analysis validates our hypotheses for several benchmark datasets, further
motivating the need for transferring the reasons. Comparing DropDistillation with several
state-of-the-art methods, our approach improves prediction churn between teachers and
students and overall performance. We summarize our key contributions:

• We investigate the reason behind prediction churn in GNNs by comparing the influence
of context nodes on predictions using a novel metric. We also connect differences in
prediction stability with the availability of redundant features (Section 3).

• Based on our findings, we extend knowledge distillation to minimize churn directly
and match the features exploited for predictions as a regularization technique and
propose an efficient approximation, namely DropDistillation (DD) (Section 4).

• Our empirical evaluation validates our claims and confirms the effectiveness of DropDis-
tillation for Knowledge Distillation for various benchmark datasets (Section 5).

These contributions aim to enhance our understanding of prediction churn in GNNs, and
propose a novel direction to address churn in knowledge distillation, resulting in increased
reliability and overall performance.

2. Preliminaries

We start by introducing basic notations and concepts we use throughout this work. Let G =
(V,E) be a graph containing a set of n nodes V = {v1, . . . , vn} and a set of edges E indicating
the connectivity between pairs of nodes. We also express the set of edges as an adjacency
matrix A ∈ Rn×n of pairwise connections that may additionally weigh nodes differently.
We consider the task of node classification where training data comes either from other
graphs (inductive case) or labels available for a subset of the nodes Vt ⊂ V (transductive
case). Our work investigates graph neural networks (GNNs) (Kipf and Welling, 2016),
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though only a superficial understanding is needed. GNNs represent a learnable function
f : Rn×d × Rn×n → Rn×c, mapping a graph signal and an adjacency structure to output
logits f(X,A) = C for c classes and each node. Y ∈ Rn×c denotes the true label matrix.

2.1. Prediction Churn

Prediction churn (Goh et al., 2016; Milani Fard et al., 2016) describes a phenomenon in
which models make different predictions on the same data points.Formally, we define churn
for any two functions f, g for node classification mapping the d-dimensional graph signal
X ∈ Rn×d and the adjacency matrix A to class probabilities for every node. We define the
set of unstable nodes by

Uf,g = {vi ∈ Vtest| arg max
c∈C

f(X,A)ic ̸= arg max
c∈C

g(X,A)ic} . (1)

We further define sf,g ∈ [0, 1]n to be the binary vector indicating with a one whether each
node was predicted stable between f and g. The pairwise churn is then defined as the ratio
of unstable nodes over the total number of test nodes, as given by

C(f, g) =
|Uf,g|
|Vtest|

=
1

n

∑
vi∈Vtest

1{vi∈Uf,g} . (2)

Here, 1 denotes the indicator function, that is 1 if the condition is satisfied and 0 otherwise.
Churn is undesirable for many reasons, including the reproducibility of scientific results,
reliability, and trust in machine learning models (Jiang et al., 2022; Liu et al., 2022). Es-
pecially when continuously delivering updated models, the experience should be stable and
consistent (Goh et al., 2016).

Churn occurs in various scenarios, such as using different model architectures or hyperpa-
rameters. But even when these are the same, churn occurs even when the initial parameters
are slightly altered (Bhojanapalli et al., 2021; Zhuang et al., 2022). Non-determinism of
GPU operations also produces churn even when all initial parameters are the same (Sum-
mers and Dinneen, 2021). For graph-structured data, several studies observed an instability
of node embeddings that holds for stochastic operations like dropout (Wang et al., 2020;
Klabunde and Lemmerich, 2022). However, the reason behind churn and the inability of
models optimized on the same data to develop similar decision rules remains unclear.

2.2. Knowledge Distillation

Knowledge Distillation (KD) (Buciluǎ et al., 2006; Li et al., 2014; Hinton et al., 2015) is one
particular domain of interest for reducing churn. Here, the goal is to distill the knowledge of
a pre-trained large model, called the teacher T , into a smaller model, called the student S.
In our case, both S and T are functions that perform node classification. This is typically
used to compress the knowledge for resource efficiency during inference (Cheng et al., 2018)
but also to optimize iteratively updated models for continuous deployment (Jiang et al.,
2022). In general, a distillation loss Ldistill(S, T ) is used to match the output or intermediate
representations of T and S (Li et al., 2014; Hinton et al., 2015) in addition to the original
classification loss. Prediction churn and Knowledge Distillation are inherently connected,
as they share a common goal. Pairs of models should produce similar predictions, so in a
perfect scenario, the churn between student and teacher would be zero.
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Figure 1: Influence Difference for the green root node between two models f (left) and g
(right). Context nodes Ci are encircled, and the different shades of blue represent
its nodes’ value in the influence distribution. Symmetric Mean Absolute Percent-
age Error (SMAPE) between the two influence vectors is calculated.

2.3. Related Work

Few investigations connected Knowledge Distillation and prediction churn. Jiang et al.
(2022) continuously optimize new models and introduce a churn constraint between con-
secutive instantiations. They showed that matching the outputs is equivalent to directly
minimizing the prediction churn between S and T , though they require strong assumptions
on the generalization bounds. Bhojanapalli et al. (2021) propose a co-distillation approach
that optimizes two models simultaneously while matching their outputs. Other methods
similarly propose to reduce churn solely based on the outputs (Milani Fard et al., 2016;
Summers and Dinneen, 2021). Our investigation also builds on ideas from quantifying the
similarity of neural networks (Lenc and Vedaldi, 2015; Klabunde et al., 2023). In particular,
Jones et al. (2022) determine the similarity between two models using vectorized saliency
maps. Allen-Zhu and Li (2023) propose a theory in which models would learn different
subsets of the available features but not all of them, as they are not required to correctly
classify a large part of the data. We extend these approaches to the specific properties of
graph-structured data and relate them to prediction churn.

3. Comparing Differences in Influence of Predictions

We now delve into the underlying reason behind prediction churn in the context of node
classification with graph neural networks. Given a single node, we want to investigate
what makes its prediction stable or unstable across models. We build our investigations on
recent progress in determining the similarity between neural networks (Allen-Zhu and Li,
2023). It was found that comparing the outputs or representations of neural networks alone
overestimates their similarity due to the correlation between data points (Jones et al., 2022).
In our case, churn may be insufficient in determining the actual similarity between pairs
of models. A recent theory indicates that models may only learn a subset of the available
features from the data depending on their parameter initialization. Confirming these ideas
would provide insights into the causes of prediction churn. We incorporate these ideas and
propose the following statement that we will empirically investigate later:
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Axiom 1 (A1) Prediction churn is a consequence of models utilizing different features for
their predictions.

Thus, even when two models have low prediction churn, they may contain different
knowledge. Depending on which features a model utilizes, the predicted class may change.
Consequently, our objective is to quantify the difference between features used by nodes
to make specific predictions between a pair of models. We also aim to investigate the
distinguishing factors between stable and unstable nodes in terms of their utilized features.
Analyzing this behavior would allow us to construct better-informed methods to mitigate the
resulting churn and improve the overall reliability of node classification, e.g., in Knowledge
Distillation. Building on these insights, we now propose metrics to quantify the difference
in reasoning between pairs of models for their node predictions.

3.1. Comparing the Reasons behind Predictions

Instead of comparing the output differences for a pair of models, we propose to compare
which features each model utilized for its predictions directly. Our data’s graph structure
and the node classification task pose a challenge. Given the prediction for a root node, we
want to determine its influencing features and compare this between models. As all neigh-
boring nodes can affect the prediction to some degree, we propose to view each neighboring
node as one potential feature the root node can utilize. When a root node relies on different
neighbors for distinct models, this indicates that models learn disjoint feature subsets and
would thus be more meaningful than churn C.

Formally, we want to determine the importance of an initial node signal xj at node vj
on the extracted representation zi of node vi. As the gradient ∂zia

∂xjb
represents the sensitivity

of the a-th feature of node i’s representations zia to a variable xjb, our requirements are
met by the well-established influence scores (Xu et al., 2018)

I(i, j) =

d′∑
a=1

d∑
b=1

∣∣∣∣ ∂zia∂xjb

∣∣∣∣ . (3)

for node vj on node vi. These sum the gradient magnitudes of each logit output zia to each
input feature xjb. Following Xu et al. (2018), the influence distribution is then defined as
the normalized influences

Ii(j) =
I(i, j)∑

k∈Ci
I(i, k)

(4)

over all context-nodes Ci of a root node vi. We further denote the influence distribution of
a given model f as Ifi (j). We now propose two novel metrics that compare the differences
between models based on the influence distribution.

We propose a generic metric that compares the deviations between each value in the
influence distributions Ifi (j) of model f and Igi (j) of model g. Since the magnitude of
each normalized score Ii(j) depends on the number of context nodes |Ci|, we use a relative
metric. In general, f and g are commutable, so the metric should also be symmetric. Thus,
we use the symmetric mean absolute percentage error (SMAPE) (Chen and Yang, 2004),
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which has a direct interpretation. We define the expected Influence Difference as

ID(f, g) = Evi∼V,j∼Ci

[
|Ifi (j) − Igi (j)|

0.5 · (|Ifi (j)| + |Igi (j)|)

]
(5)

between a pair of functions f and g with shared domain and codomain. This metric should
be small when both f and g rely on the same nodes and large when they rely on different
nodes for their representations. Figure 1 provides a visualization of this metric for one
root node. A key property of ID is that even when the prediction churn is small, it can
still provide meaningful information about the differences between the knowledge acquired
between the two models:

Proposition 1 Given f , g. C(f, g) = 0 does not imply a low Influence Difference.

Given these properties, we think ID provides more profound insights about which fea-
tures models rely on and how stable that is between models.

3.2. Differences between Stable and Unstable Nodes

Our proposed metric, ID, allows us to determine the difference in influence globally over
all nodes between a pair of models. Previous work based on the churn metric showed
that only some nodes are predicted unstable, while others are predicted stable across many
models (Klabunde and Lemmerich, 2022). However, if models learn different feature subsets,
this would hold for all nodes, not only those with an unstable prediction. Thus, we make
the following claim:

Axiom 2 (A2) Stable and unstable nodes have a similar Influence Difference.

To verify this statement empirically, we calculate the correlation between the average
influence differences id ∈ Rn for each node and the stability s ∈ {0, 1}n of each node’s
prediction. We utilize Pearson’s correlation coefficient

corr(id, s) =
cov(id, s)

σidσs
(6)

based on the covariance cov, and the standard deviations σid and σs. A high correlation
would indicate that stable nodes also have larger differences in influence between models.
Thus, we expect them to be uncorrelated.

3.3. Feature Redundancy Stabilizes Predictions

The question remains what leads to the unstable prediction of some of the nodes. As
outlined by Allen-Zhu and Li (2023) regarding model similarity, some elements may contain
redundant features. For node classification, our interpretation is that stable nodes similarly
have access to redundant features. Thus a similar Influence Difference has a smaller effect
on the actual prediction. We propose the following statement:

Axiom 3 (A3) Stable nodes have access to more redundant features.
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For verification, we need to determine the number of redundant features each node has
available for their predictions. However, the discriminating features are not observable in
the data, so we use an indicator that should closely correlate with the number of available
features. We utilize the number of context nodes with the same label, as these should
provide redundant signals. We let Di(y) be the ratio of each label y ∈ c in the context Ci

of node vi. We calculate the entropy

H(i) = −
∑
y∈c

log(Di(y))Di(y) (7)

of these label ratios for each node i. Low entropy corresponds to redundant views as
the prediction could rely on features from different nodes. We denote the vector of label
entropies for all nodes as h = (H(1), . . . ,H(n))T . To validate A3, we again calculate the
correlation to the node stability vector s using Pearson’s correlation coefficient

corr(h, s) =
cov(h, s)

σhσs
(8)

based on their covariance cov and respective standard deviations σh and σs. A high corre-
lation indicates stable nodes would have more variance in their neighboring labels. Thus,
if A3 holds, we expect an anti-correlation.

4. Aligning the Influence in Knowledge Distillation

We now build on our claims to mitigate churn in Knowledge Distillation (KD). Here, we
assume the teacher model T is given and exhibits desirable performance and reasonings for
its predictions. Current state-of-the-art for reducing prediction churn in KD only matches
the outputs or representations, e.g., by directly minimizing prediction churn (Jiang et al.,
2022). Based on our claimed Axioms, this may not transfer the knowledge in T to S as
different features can be exploited for the same predictions, hurting generalizability (see
Proposition 1).

We propose minimizing ID to directly match the reasonings behind predictions and an
improved knowledge transfer If we could achieve the student to mimic the reasoning of a
high-capacity teacher, the performance, reliability, and generalization should be improved.
Critically, based on Axiom 2, nodes with the same prediction still provide a strong gradient
signal when optimizing for ID. Here, optimizing churn would provide a negligible gradient
signal. Consequently, optimizing ID allows for transferring more of the utilized features from
the teacher. Formally, we extend any given distillation loss Ldistill matching representations
by our ID term matching influences, resulting in the regularized optimization problem

S∗ = arg min
S∈S

Ldistill(S, T ) + ID(S, T ) . (9)

We note that matching the influence distributions is related to matching Jacobians,
which has been explored for grid-structured data (Czarnecki et al., 2017; Zagoruyko and
Komodakis, 2017; Srinivas and Fleuret, 2018). The unique properties of the node classi-
fication task make it prohibitive to calculate ID(S, T ) exactly as the number of gradients
needed is (n×d) · (n×h) when considering all pairs of node representations Hl ∈ Rn×h and
input features X ∈ Rn×d. Instead, we propose to approximate ID, which we will describe
in detail next.
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4.1. Approximating the Influence Difference using DropDistillation

Existing work on Knowledge Distillation for image classification proposed approximating
the Jacobians by applying Gaussian noise to the input features (Srinivas and Fleuret, 2018;
Nam et al., 2021). However, given the smoothing properties of graph neural networks,
known as over-smoothing (Oono and Suzuki, 2019; Roth and Liebig, 2022b, 2023), these
high-frequency signals are unfit for GNNs as they are filtered out quickly and have little
effect on the output. This was similarly argued by Nam et al. (2021) for grid-structured
data.

Instead, we argue that a broader class of perturbations can be used to approximate the
gradients: When the influence distributions of the teacher and the student are close, any
perturbations of the input should lead to a similar output. Input perturbations were shown
to be beneficial for learning across multiple domains (Rong et al., 2020; Roth et al., 2021).
Our approach uses a perturbation that exploits some of the properties specific to graphs by
removing edges of the underlying graph, which we call DropDistillation (DD). Our intuition
matches our goal: When removing an edge, the influence of the adjacent node is reduced,
while the influence of all other edges should increase correspondingly. When repeatedly
removing different edges and matching the outputs, the student can learn to mimic the
influence of particular neighbors for the teachers’ prediction of a node.

4.2. DropDistillation

For each training step, we remove edges uniformly at random with probability p∗. We
define the set of edges to drop Edrop = {euv ∈ E|puv < p∗} using uniformly random val-
ues puv ∼ U(0, 1) for each edge (u, v) ∈ E . We note that dropping edges were already
successfully employed in DropEdge (Rong et al., 2020), though its reason is fundamentally
different, as they are trying to mitigate over-smoothing and over-fitting. While their ap-
proach aims to map all perturbed graphs to the same output, we explicitly want different
outputs to match the influence distribution. We express the perturbation using a matrix
Adrop that offsets the edges to drop, i.e. Adrop

uv = −Auv for all (u, v) ∈ Edrop. All other edges
are scaled up accordingly, e.g., by recalculating the remaining edges’ mean or attentional
coefficients. In this case, the expected edge strength remains the same, as was demonstrated
in DropEdge (Rong et al., 2020).

Our DropDistillation (DD) matches the logit outputs of T and S for the perturbed
inputs using the mean squared error

LDD(S, T ) =
1

N · C

N,C∑
v,i=1

(
S(X,A + Adrop)vi − T (X,A + Adrop)vi

)2
(10)

across all n nodes and c classes. We use LDD in combination with a given method for
Knowledge Distillation as described in Eq. 9. Since we use an approximation of the influence
distributions, the resulting inputs may not be representative of the distribution of the actual
gradients, and minimizing LDD(S, T ) may not lead to optimal results. To mitigate this, we
start by solely optimizing LDD until the loss plateaus and most of the teacher’s reasoning
is transferred to the student. As the student is typically unable to match the reasoning
completely, we fine-tune the student using the regular distillation loss Ldistill.This also has
a positive effect on runtime, as only a single forward pass is needed in each step.
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Table 1: Statistics of our considered benchmark datasets for node classification.

Dataset Graphs Nodes (avg.) Edges (avg.) Features Classes Parameters T→S

Citeseer 1 3, 327 9, 104 3, 703 6 9.7M→ 60k
Photo 1 7, 650 238, 162 745 8 3.7M→ 12k

Computers 1 13, 752 491, 722 767 10 1.3M→ 13k
WikiCS 1 11, 701 216, 123 300 10 872k→ 5.3k
Physics 1 34, 493 495, 924 8, 415 5 4.5M→ 135k

PPI 20 2, 245.3 61, 318.4 50 121 3.1M→ 39k

4.3. The Theoretical Motivation for DropDistillation

We provided some intuition for dropping edges to approximate the influence distribution,
for which we now also want to give a theoretical reason. This also motivates our usage of
the squared error function. Srinivas and Fleuret (2018) show that adding random noise can
approximately match the Jacobians using the first-order Taylor approximation. This was
also adapted by Nam et al. (2021). We formally show that dropping edges similarly match
the gradients and thus the influence difference. The critical similarity is that for many
aggregation functions, e.g., mean or using attention, we can still assume zero expectation
for edge perturbations E(Adrop) = 0, as the remaining edges are scaled up equally. Our
proof closely follows the proof for random noise (Srinivas and Fleuret, 2018):

Proposition 2 Let T, S : Rn×d × Rn×n → Rn×c be functions, and let X ∈ Rn×d,A ∈
Rn×n,Adrop ∈ Rn×n be matrices. We further assume E(Adrop

vu ) = 0 for all v, u ∈ [1, . . . N ].
Then,

E

 n,c∑
v,i=1

(T (X,A + Adrop)vi − S(X,A + Adrop)vi)
2

 =

n,c∑
v,i=1

(T (X)vi − S(X)vi)
2

+ EAdrop

(vec(∇AT (X,A)vi −∇AS(X,A)vi)
T vec(Adrop)

)2
+

n,n∑
v,u=1

O((Adrop)2vu)


We provide the detailed proof as supplementary material. We note that we are matching
the gradient of the edges instead of the signal, though these are closely connected. While
there is potential for a closer approximation, our method is sufficient for most use cases.

5. Experiments

We now empirically evaluate our claims using our proposed metrics and the effect of
DropDistillation on Knowledge Distillation. We evaluate our method on the six standard
benchmark datasets for node classification. Details about these datasets are given in Ta-
ble 1. Citeseer (Giles et al., 1998), Photo (Shchur et al., 2018), WikiCS (Mernyei and
Cangea, 2020), Computers (Shchur et al., 2018), Physics (Shchur et al., 2018) are trans-
ductive node classification tasks, so we randomly split the nodes into train, validation,
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Table 2: Mean and standard deviation of our proposed metrics over five runs with random
parameter initializations.

Dataset Acc./F1-score (%) C (%) ID (%) corr(id, s) corr(h, s)

Citeseer 57.8 ± 2.5 32.2 ± 3.9 48.8 ± 2.8 0.01 ± 0.02 −0.06 ± 0.05
Photo 79.0 ± 3.6 26.3 ± 3.3 98.8 ± 3.2 0.03 ± 0.02 −0.26 ± 0.05

WikiCS 77.2 ± 0.8 19.3 ± 0.7 75.7 ± 4.9 −0.02 ± 0.01 −0.22 ± 0.02
Computers 65.2 ± 5.5 46.3 ± 3.7 104.9 ± 4.3 0.05 ± 0.03 −0.17 ± 0.03

Physics 86.9 ± 1.8 13.3 ± 1.4 75.5 ± 7.3 −0.03 ± 0.02 −0.28 ± 0.01
PPI 84.3 ± 0.2 10.5 ± 0.1 76.6 ± 2.1 - -

and test sets. The same train nodes are used to optimize the target and distillation loss.
The best-performing model based on the validation accuracy is chosen, and metrics are
reported based on the corresponding test nodes. PPI (Zitnik and Leskovec, 2017) is an
inductive multi-class classification task, so we use the public split based on entire graphs,
replace the cross-entropy with the binary-cross-entropy loss and report the F1-score based
on the test graphs. Each experiment runs for five random parameter initialization, and
each metric’s average and standard deviation is reported. We optimize our models using
Adam (Kingma and Ba, 2014) using a learning rate of 0.005 and perform early stopping
when the validation score does not improve for at least 400 steps. Our implementation
reuses the general training framework and the existing methods from (Joshi et al., 2022)
based on Pytorch-Geometric (Fey and Lenssen, 2019)1. We use a 3-layer Graph Attention
Network (GAT) (Veličković et al., 2017) with residual connections as our base model for
all presented experiments. We also provide results for all experiments using the Graph
Convolutional Network (GCN) (Kipf and Welling, 2016) as supplementary material.

5.1. Empirical Validation of our Axioms

We now use our proposed metrics to empirically validate the presented axioms without
considering the application of knowledge distillation. All one-hop neighbors are used as
context nodes Ci = Ni for our metrics. We provide the results for accuracy or F1-score,
churn C, influence difference ID, the correlation corr(id, s), and the correlation corr(h, s)
based on pairwise models with the same hyperparameters in Table 2. While the accuracy is
rather stable between runs, ID demonstrates substantial differences in the influence between
model instantiations of at least 48.8% in relative change for an average node pair. This
already shows that each model bases their predictions on different features in the data,
confirming Axiom 1. Notably, the influence difference is still significant even when the
prediction churn is relatively low. Further, these influence differences show no correlation
to the stability of node predictions. This indicates that all nodes are similarly unstable,
not just those predicted differently by two models, supporting Axiom 2. The correlation to
the entropy of neighboring labels is much higher and always negative, indicating that less

1. Our implementation is available at https://github.com/roth-andreas/distilling-influences.

https://github.com/roth-andreas/distilling-influences
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Table 3: A comparison of the performance on the node classification tasks. For PPI, the
F1-score is reported, and in all other cases, accuracy is reported. The best results
are indicated in bold, the second-best are underlined.

Accuracy/F1-score Computers Physics WikiCS Photo Citeseer PPI

Teacher 80.8 91.2 79.7 85.4 68.8 98.8

Student 65.2± 5.5 86.9± 1.8 77.2± 0.8 79.0± 3.6 57.8± 2.5 84.5± 0.3
Student+DropEdge 72.2± 2.5 88.7± 1.3 77.9± 0.5 82.4± 3.3 60.9± 2.7 82.4± 0.2

KD 67.5± 5.6 87.1± 1.9 78.8± 0.7 78.6± 3.6 59.8± 2.1 84.7± 0.3
KD+DropEdge 77.5± 3.4 89.4± 0.7 79.2± 0.6 82.4± 2.9 62.9± 3.3 79.0± 0.2

G-CRD 70.6± 3.6 87.3± 1.2 77.5± 0.3 80.8± 1.6 58.0± 2.9 84.7± 0.2
G-CRD+DropEdge 73.7± 2.7 88.5± 1.1 78.9± 0.2 84.7± 3.5 59.4± 3.9 80.9± 0.2

DropDistillation 80.0± 0.9 90.8± 0.9 79.6± 0.4 84.9± 2.7 66.3± 0.9 85.0± 0.1

variance in the labels of neighboring nodes helps the stability of a prediction. This supports
Axiom 3. We note that this correlation is small in some cases, showing that the entropy of
neighboring labels is insufficient to capture the reason for the stability fully.

These findings show that GNNs use different reasonings to make their predictions. This
aligns well with theoretical ideas on model similarity that hypothesize that each model
learns different subsets of features from the data (Allen-Zhu and Li, 2023). It also validates
our presented method, as matching the influence difference provides a meaningful metric
for aligning a student to its teacher and finds signals even in the correctly classified nodes.

5.2. Evaluating of DropDistillation for Knowledge Distillation

We now evaluate our proposed DropDistillation (DD) on several benchmark tasks for Knowl-
edge Distillation in node classification. We train one teacher model and five student models
for each constellation based on the same teacher. We report the average prediction churn of
a student compared to the teacher and the task performance. In our experiments, both the
teachers and the students are GATs. To demonstrate the versatility of DropDistillation, we
additionally present results for all experiments using a GCN as the student model in the
supplementary material.

The GATs for teacher and student models only differ in the multiplier q on the number
of hidden channels per layer and the number of attention heads. For the teacher model, we
select the best-performing q and the number of heads fitting into our GPU memory of 8 GB.
For the student model, we choose a much smaller q and number of heads with a noticeable
difference in performance, allowing us to evaluate the impact of different methods. To
only evaluate the effect of the distillation methods, we keep these fixed across all methods.
Table 1 reports the number of parameters for all models. Compression factors are at least
40× between teachers and students.
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Table 4: Average model churn C(S, T ) between the teacher and each student. The models
are the same as in Table 3. Lower scores are better.

Churn C Computers Physics WikiCS Photo Citeseer PPI

Student 38.3± 5.5 10.3± 1.3 16.9± 0.5 22.3± 2.8 29.3± 3.1 9.0± 0.2
Student+DropEdge 29.7± 2.7 8.5± 0.8 16.3± 0.6 18.9± 2.7 27.6± 2.9 10.3± 0.1

KD 32.1± 4.8 9.0± 2.1 9.3± 0.4 22.9± 3.3 30.9± 5.3 9.0± 0.1
KD+DropEdge 21.6± 2.5 6.4± 1.0 9.2± 0.4 19.2± 2.9 24.6± 2.7 12.0± 0.1

G-CRD 30.0± 2.5 11.6± 1.9 15.5± 0.9 19.8± 2.5 34.4± 2.9 9.1± 0.1
G-CRD+DropEdge 27.6± 3.8 10.0± 1.7 13.6± 0.6 16.7± 3.5 33.9± 2.5 11.3± 0.2

DropDistillation 19.1± 1.7 4.3± 1.0 9.0± 0.3 15.1± 1.7 20.5± 1.7 8.8± 0.1

5.2.1. Comparable Methods and Hyperparameters

We evaluate several state-of-the-art student models as proposed originally as baselines and
directly compare each model with its regularized version. We use grid search with the
parameters described for each method below. The following methods are considered:

• As a baseline, we optimize a plain Student (Student) only having access to the true
labels and no signal from the teacher model.

• The current state-of-the-art in terms of minimizing prediction churn directly per-
forms Knowledge Distillation (KD) (Hinton et al., 2015), as this provably optimizes
churn Jiang et al. (2022). We tune the parameter α ∈ {0.25, 0.5}.

• We also compare our method to Graph Contrastive Representation Distillation (G-
CRD) (Joshi et al., 2022), which we consider to be the current state-of-the-art in
terms of distillation regarding downstream performance. G-CRD matches each node’s
student representation to its representation in the teacher model while separating
representations of different nodes. We tune its parameter β ∈ {0.03, 0.1, 0.3}.

To quantify the advantage of DropDistillation, we additionally present results when combin-
ing each of these three methods with DropEdge. We consider the dropout rates in {0.2, 0.4}
and apply DropEdge before each convolution of the student during training.

For DropDistillation, we combine it with KD and additionally only tune the number
of iterations to use LDD in {50, 800, 1500} and use the same dropout rate p∗ = 0.2 across
all experiments, as we find DD to be sufficiently stable. As the goals of DropEdge are
complementary to ours, we also include it in our grid search.

5.2.2. Results

We present the test accuracies and F1-scores of the best-performing models based on the
validation scores in Table 3. Our method improves the performance in all considered cases
by values between 0.2% and 3.4%. Results for the prediction churn of the same students
and their teachers are presented in Table 4. Our method achieves even more significant
improvements of up to 4.1%. We observed the least significant difference for PPI, for which



Distilling Influences to Mitigate Prediction Churn

we found the student incapable of fitting the training data. The best results for the other
methods and DD are frequently achieved when combined with DropEdge, showing that
DD does not interfere with existing advancements. We also find DD to be less prone to
overfitting, which we trace back to ID being similar for stable and unstable nodes (Axiom 2).
The results for students based on the GCN are provided as supplementary material, as they
exhibit similar insights.

Our experiments confirm that using our proposed DD to match the influence of the
predictions between a teacher and its student is a valuable addition to KD. The predictions
are matched more closely in all considered cases, increasing overall performance across all
experiments. This indicates that more of the actual knowledge from the teacher can be
transferred to the student. Instead of having to come up with reasons for the predictions
of the teacher, transferring these influences aids the learning process of the student.

6. Conclusion

This work investigated the reasons behind prediction churn in graph neural networks by
quantifying differences in the influence on a prediction between models based on our pro-
posed Influence Difference (ID) metric. These instabilities are not limited to nodes with
unstable predictions but are similarly observed for stable predictions across models. Based
on these valuable signals, we propose DropDistillation (DD), a fast approximation to mini-
mize ID between a student and its teacher in Knowledge Distillation (KD). Our experiments
confirm the importance of aligning influences, as it improves both the stability of the stu-
dent’s predictions and the overall performance.

Our work suggests that future methods on KD can greatly benefit from incorporating
similar influence-matching strategies. Beyond the scope of KD, we see great potential in
enhancing our understanding of how models can effectively leverage the diverse features
inherent in the data.
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Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589,
2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.



Distilling Influences to Mitigate Prediction Churn

Max Klabunde and Florian Lemmerich. On the Prediction Instability of Graph Neural
Networks. arXiv preprint arXiv:2205:10070, 2022.

Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lemmerich. Similarity
of neural network models: A survey of functional and representational measures. arXiv
preprint arXiv:2305.06329, 2023.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their
equivariance and equivalence. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 991–999, 2015.

Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong. Learning small-size dnn with output-
distribution-based criteria. In Fifteenth annual conference of the international speech
communication association, 2014.

Huiting Liu, Siddharth Patwardhan, Peter Grasch, Sachin Agarwal, et al. Model stability
with continuous data updates. arXiv preprint arXiv:2201.05692, 2022.
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