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1. Reusing a Module with Batch Normalisation

All our competitors use approximately the same GIN architecture for their experimenta-
tion (Suresh et al., 2021; Gao et al., 2022; Miao et al., 2022). Specifically, they all use batch
normalisation layers, and so do we. However, considering the context it is used in, we argue
that the way it should be used to be mathematically correct is not as straightforward as the
way it is used in these approaches. This may have unexpected effects on their results and
conclusions. Therefore, we propose a batch-norm switch to fix the issue, and we use it for
our approach. As this is not within the scope of this paper, only a preliminary experiment
is presented to demonstrate the relevance of a switch in practice. Further investigation into
alternative methods to address the problem and the resulting effects on performances is left
for future work.

1.1. Theoretical Analysis

In more detail, all mentioned approaches have one point in common: they use the same
neural network to embed both the original graph (raw) and an augmented view of it (aug).
However, the original graph and its augmented view come from different distributions, with
significant differences. For example, the augmented view usually has lower node degrees, as
only a subset of the original graph edges is kept. Ultimately, this difference has an impact
on the input of the batch normalisation layers of this neural network.

As a reminder, the batch normalisation layer uses the batch mean and variance to
normalise its input, and stores a running mean of these values to be used at test time as
an estimate of said values. That is, the normalisation performed at train time is meant to
be roughly equivalent to the normalisation performed at inference time. In that way, given
an input, it produces roughly the same output, whether it is in train or in inference mode.
This is important as the end of the network is trained on that output.

In our case, the mean and variance of the input of the layer are different whether the
input of the network is a raw graph (µraw, σraw) or an augmented view of it (µaug, σaug).
At train time, the normalisation will therefore be different in both cases. However, at our
competitors’ inference time, the estimate to perform the normalisation is something close to
the average of the real values (12(µraw + µaug),

1
2(σraw + σaug)), for both the original graph

and its augmented view. As a result, if the means and variances are very different, the
outputs will not be similar in any way to the ones at train time. The final output of the
network will therefore be highly unpredictable.
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1.2. Batch-Norm Switch and Preliminary Experiment

A way to avoid this issue is to have two different running means: one for the original graph
distribution, and one for the augmented graph distribution. We call this solution a batch-
norm switch, as it switches between running means. With a batch-norm switch, the training
of the model remains the same as without the switch, but the inference is mathematically
correct. To assess the relevance of the switch, a quick experiment is presented hereunder,
based on the code provided by GSAT authors for the BA2Motifs dataset with a GIN
architecture, using seed 0 only.

In GSAT, the issue is mitigated by having augmented views close to the original graphs,
i.e. removing on average less than half the edges. It is further mitigated by an early stopping
criterion based on a metric on the validation set, which is unlikely to give good results if
the network produces unpredictable results. The early stopping will therefore tend to select
epochs for which the issue has no negative impact.

For our analysis, we change these two parameters. First, we run the experiments for
500 epochs instead of 100 and show the full curves observed during training rather than the
final result of the selected epoch. Second, for half the experiments, we use a final r value of
0.1 instead of 0.5. This means that starting from epoch 80, roughly 10% of edges are kept
rather than 50%. Note the first 40 epochs are not affected by this second change, as GSAT
adopt a step decay for r. The result is shown in Figure 1, measured on the test set.

As can be seen, the downstream ACC is greatly improved by the switch. On the other
hand, the interpretability AUC is improved by the switch when interpretations are sparse,
but it is not as good when interpretations are not sparse. We think it is because the
unexpected effect aligns with some dataset properties. For example, it could favour highly
connected interpretations, which is good in the case of the BA2Motifs dataset but may not
be for other datasets.

Additionally, we can see that the model with a switch and sparse interpretations (the
orange curves) has on average almost null attention weights on non-important edges (0.0016
on average at the end), but significant weights on important edges (0.12 on average at
the end). This indicates that the model misses important edges, but never includes non-
important edges. For example, it could select length-3 cycles from class 1 and nothing from
class 0, as shown in Figure 2. This could be considered a perfect interpretation, but it
obtains a not-so-good interpretability AUC, given the expected interpretations include the
length-5 cycles for each class.

A deeper analysis could be done to verify our hypotheses, challenge the batch-norm
switch against alternatives, analyse results obtained with a batch-norm switch on each of
our competitors or even challenge the BA2Motifs dataset itself, but this is out of the scope
of this paper and is therefore left for future work.
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(a) Interpretability AUC
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(b) Downstream ACC
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(c) Avg. Background Attention Weights
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(d) Avg. Signal Attention Weights

Figure 1: Comparison of GSAT with a batch-norm switch (orange and teal) and without a
batch-norm switch (red and dark blue) on BA2Motifs. The final value of r is set
to 0.1 (dark blue and orange) or 0.5 (teal and red). A smoothing effect is applied
to ease the analysis. Non-smoothed results are shown in transparent.

2. Beyond Topology-Based Interpretations

Our results indicate that there is a link between contrastive graph augmentation and in-
terpretability. In such approaches, however, augmentations only focus on edges, and thus
interpretations only highlight topology. A natural question is whether these conclusions
stand for node features too. This section presents some early work on the matter.

We enhance the framework with an additional 2-layer MLP ν, trained to learn im-
portance weights for node features. To make these weights understandable, we apply the
feature augmentations in the input space, before being processed by the encoder.

The augmented feature matrix (X̃) is obtained as X̃ = (ν(X)+ϵ)·X and with ϵ sampled
as indicated in Section 3.1 with ν(X) a weight per node per feature, i.e. ν(X) ∈ RN×d.

We add an information loss on the importance scores to regularise the optimization,
using the same r as the one for the topology information loss. As no ground truth is
available for feature importance, we artificially add 20% of noisy features. We then average
the importance score obtained by each feature on the test set and rank them. On Mutag,
with our complete loss, we obtain the following results:



Figure 2: Interpretations of GSAT with a batch-norm switch and final r at 0.1 at epoch
370 for class 0 (top) and class 1 (bottom). Red nodes are part of the motif, and
bold lines are predicted as important.

Figure 3: Ranking according to the average importance score given by the feature-
augmentation module to each feature. It shows that noisy features are given
less importance on average.

Figure 3 shows that the noisy features are given less importance on average, thus demon-
strating an intrinsic feature selection ability which can be used as a feature importance
scheme.

3. Impact of Sparsity on Human Readability

Figure 4(a) show some interpretations where important scores and unimportant ones are
close. While truly important edges are highlighted, it is harder to distinguish them than in
Figure 4(b)
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(a) Sparse importance weights (b) Bi-modal importance weights

Figure 4: Examples of importance weights. A min-max normalisation is applied for clarity.
Original weight limits are shown as the title of the figures.

4. Ablation Study of the Watchman Module

Our framework introduces a watchman module, with the purpose to stabilize the optimiza-
tion. We observe in Table 3 that the presence of this module prevents quick drops in both
interpretability AUC and downstream ACC, except for a few rare cases (as visible in Table 3
and Table 1).

This pattern is either positive or not significantly different across datasets, except for
a few: INGENIOUS - Negative on BA2Motifs and certain methods on SPMotifs.5 which
significantly decrease due to conflicting optimization objectives, however we advise to always
use the watchman for our regularised loss INGENIOUS (L) as it improves the results on all
datasets.

Interestingly, the loss which benefits the most from the watchman is the simple unreg-
ularised simclr loss (L-info-negative), probably because in this case, the problem is under-
constrained. It acts as a regularizer by enforcing the recovery of eigenvalues from the
embeddings. This result shows the importance of regularisations of any kind for contrastive
learning.

We conclude that while performance diminishes with overfitting as we just discussed,
both the watchman and early stopping help alleviate this.

Moreover, defining the right number of training epochs is challenging in unsupervised
settings. Our training curves (Figure 5) show that these unsupervised frameworks are prone
to overfitting. This module can attenuate or delay this overfitting.



Figure 5: Example of training curves, giving interpretability AUC and downstream accu-
racy. Light blue is run with Watchman, dark blue without it. Those curves are:
(A) for GSAT on Mutag, (B) for INGENIOUS on Mutag, (C) for INGENIOUS
on BA2Motifs, (D) for the simple double augmentation simclr without regulari-
sation on Mutag. The watchman helps prevent overtraining, on both supervised
(GSAT) and unsupervised (INGENIOUS). The simple double-aug loss benefits
too, showing that any form of regularisation is good.
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5. Schematics and Other Figures

Figure 6: Principle of the Wasserstein distance metric. Our goal is to quantify the con-
tinuity of the interpretability functions. Therefore we evaluate whether similar
graph embeddings obtain similar interpretations. Graph embedding proximity
can be quantified by any vector similarity metric (we used Euclidian distance)
and interpretation similarity can be quantified with any graph similarity metric
(we use the Wasserstein distance between degree distributions).



Figure 7: Examples of faithfulness curves on one graph of the BA2Motifs dataset. Clockwise
starting from the top left: AD-GCL, GSAT, INGENIOUS, MEGA. We show
the faithfulness (blue), faithfulness by removing edges according to ground truth
(green), shuffled faithfulness (orange), random faithfulness (purple) and opposite
faithfulness (red).
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6. Full Tables

Wm. Methods Faithfulness Gap Wasserstein Gap
BA2Motifs Mutag SPMotifs.5 BA2Motifs Mutag SPMotifs.5

GSAT .34± .00 .21± .08 .06± .02 .04± .00 .02± .00 .04± .00
AD-GCL .01± .13 .03± .09 .08± .06 .10± .01 .01± .00 .03± .00
MEGA .06± .02 .39± .12 .68± .03 .04± .01 .01± .00 .01± .00
INGENIOUS .39± .05 .24± .01 .50± 0.00 .06± .00 .01± .00 .06± 0.00
INGENIOUS - Info .54± .03 .58± .04 .46± .07 .02± .00 .01± .00 .05± .01
INGENIOUS - Negative .13± .02 .19± .02 .23± .04 .02± .00 .00± .00 .02± .00
INGENIOUS - Negative - Info .58± .13 .17± .13 .27± .08 .04± .03 .00± .00 .02± .00

✓ GSAT .25± .03 .06± .10 −.03± .01 .04± .00 .02± .00 .04± .00
✓ INGENIOUS .60± .02 .41± .18 .45± .03 .06± .01 .01± .00 .05± .01
✓ INGENIOUS - Info .68± .02 .48± .03 .48± .06 .05± .02 .01± .00 .05± .01
✓ INGENIOUS - Negative .13± .02 .18± .00 .22± .06 .02± .01 .01± .00 .02± .01
✓ INGENIOUS - Negative - Info .61± .10 .15± .09 .32± .00 .03± .01 .01± .00 .03± .00

Table 1: Table of full results. A check in the Wm column means the model uses the watch-
man loss. A higher faithfulness gap means the interpretations are more faithful,
a higher wasserstein gap means the embedding space is more continuous in terms
of interpretations.

Wm. Loss Downstream ACC Intepretability AUC
Cora Tree-cycle Tree-grid Cora Tree-cycle Tree-grid

GSAT .610± .07 .985± .01 .984± .01 .000± .00 .630± .17 .844± .01
L .572± .06 .848± .06 .954± .02 .000± .00 .232± .11 .532± .28
L - Info .593± .05 .777± .11 .952± .03 .000± .00 .256± .09 .588± .34
L - Negative .575± .06 .951± .01 .868± .08 .000± .00 .293± .01 .549± .04
L - Negative - Info .606± .04 .856± .02 .887± .07 .000± .00 .319± .08 .702± .07

Table 2: Downstream ACC and interpretability AUC on node classification. Higher is bet-
ter



Wm. Loss Downstream ACC Intepretability AUC
BA2Motifs Mutag SPMotifs.5 BA2Motifs Mutag SPMotifs.5

GSAT 1± .00 .921± .02 .393± .02 .998± .00 .843± .15 .895± .01
AD-GCL 1± .00 .902± .02 .337± .00 .378± .06 .416± .19 .472± .03
MEGA 1± .00 .886± .01 .335± .00 .459± .28 .566± .46 .506± .03
L 1± .00 .900± .01 .366± .01 .910± .04 .745± .11 .467± .01
L - Info .990± .00 .889± .03 .361± .02 .860± .07 .606± .23 .491± .10
L - Negative 1± .00 .887± .01 .340± .02 .745± .24 .546± .04 .494± .02
L - Negative - Info 1± .00 .895± .01 .337± .01 .462± .38 .478± .23 .494± .04

✓ GSAT 1± .00 .912± .00 .389± .01 .999± .00 .904± .04 .882± .03
✓ L .993± .01 .900± .03 .363± .00 .959± .01 .771± .16 .510± .06
✓ L - Info 1± .00 .863± .04 .360± .02 .900± .02 .563± .20 .499± .07
✓ L - Negative .995± .01 .895± .01 .338± .00 .148± .00 .620± .03 .581± .03
✓ L - Negative - Info .997± .01 .903± .01 .337± .00 .583± .30 .650± .18 .498± .04

Table 3: Downstream ACC and interpretability AUC on graph classification Higher is bet-
ter.

Wm. Loss Random faithfulness Sparsity
BA2Motifs Mutag SPMotifs.5 BA2Motifs Mutag SPMotifs.5

GSAT .840± .04 .731± .03 .708± .07 .883± .01 .812± .14 .874± .00
AD-GCL .606± .02 .774± .03 .679± .01 .608± .08 .955± .05 1± .00
MEGA .486± .01 .638± .02 .614± .01 .566± .13 .549± .07 .275± .05
L .875± .02 .804± .03 .649± .01 .523± .03 .897± .11 .180± .01
L - Info .714± .09 .666± .08 .651± .03 .266± .12 .191± .20 .166± .01
L - Negative 1.020± .04 .859± .01 .647± .06 .991± .00 .980± .00 .714± .24
L - Negative - Info .897± .13 .879± .02 .641± .06 .417± .13 .958± .07 .657± .29

✓ GSAT .817± .02 .822± .01 .538± .05 .855± .04 .893± .00 .848± .00
✓ L .719± .01 .783± .02 .636± .01 .402± .04 .591± .31 .205± .06
✓ L - Info .743± .03 .670± .09 .606± .02 .288± .04 .269± .23 .168± .01
✓ L - Negative .877± .03 .808± .02 .663± .07 .840± .02 .969± .00 .808± .31
✓ L - Negative - Info .767± .10 .789± .05 .594± .02 .402± .09 .971± .04 .466± .10

Table 4: Random faithfulness and sparsity on graph classification. For random faithfulness,
higher is better and for sparsity lower is better.

Wm. Loss faithfulness Opposite faithfulness
Cora Tree-cycle Tree-grid Cora Tree-cycle Tree-grid

GSAT .756± .01 .728± .21 .960± .03 .550± .07 .761± .05 .691± .01
L .747± .03 .839± .07 .965± .07 .628± .13 .699± .08 .707± .05
L - Info .752± .03 .767± .03 .868± .06 .611± .10 .680± .17 .584± .11
L - Negative .732± .01 .853± .08 .902± .03 .531± .06 .846± .05 .610± .15
L - Negative - Info .783± .04 .780± .04 .847± .01 .477± .03 .608± .05 .598± .11

Table 5: Faithfulness and opposite faithfulness on node classification. For faithfulness,
higher is better and for opposite faithfulness lower is better.
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Wm. Loss Random faithfulness Sparsity
Cora Tree-cycle Tree-grid Cora Tree-cycle Tree-grid

GSAT .693± .06 .814± .12 .911± .02 .708± .01 .827± .04 .801± .00
L .727± .02 .823± .13 .877± .04 .754± .06 .629± .08 .639± .06
L - Info .727± .03 .757± .07 .816± .10 .711± .04 .481± .03 .565± .11
L - Negative .718± .03 .818± .08 .849± .01 .669± .04 .827± .01 .609± .12
L - Negative - Info .714± .04 .735± .06 .816± .03 .740± .01 .564± .10 .592± .05

Table 6: Random Faithfulness and Sparsity on node classification. For random faithfulness,
higher is better and for sparsity lower is better.

Wm. Method W1 global W1 local
BA2Motifs Mutag SPMotifs.5 BA2Motifs Mutag SPMotifs.5

GSAT .065± .02 .097± .00 .080± .00 .019± .01 .071± .01 .036± .00
AD-GCL .240± .04 .099± .00 .117± .03 .134± .02 .085± .00 .082± .02
MEGA .139± .04 .128± .01 .115± .00 .095± .03 .113± .01 .099± .01
INGENIOUS .154± .01 .099± .00 .113± .01 .093± .02 .087± .01 .044± .01
INGENIOUS - Info .144± .01 .096± .01 .105± .02 .122± .01 .084± .00 .047± .01
INGENIOUS - Negative .123± .01 .100± .00 .132± .01 .101± .01 .095± .00 .103± .01
INGENIOUS - Negative - Info .144± .02 .100± .00 .117± .01 .098± .02 .092± .00 .092± .02

✓ GSAT .055± .01 .097± .00 .080± .00 .012± .00 .077± .00 .035± .00
✓ INGENIOUS .143± .01 .099± .00 .095± .01 .080± .01 .084± .00 .044± .00
✓ INGENIOUS - Info .151± .01 .100± .00 .094± .02 .098± .01 .087± .00 .042± .00
✓ INGENIOUS - Negative .136± .00 .101± .00 .116± .01 .107± .02 .089± .00 .088± .02
✓ INGENIOUS - Negative - Info .140± .00 .101± .00 .110± .01 .105± .01 .087± .00 .074± .01

Table 7: Global and local Wasserstein distances on graph embeddings.

Wm. Method Faithfulness Opposite Faithfulness
BA2Motifs Mutag SPMotifs.5 BA2Motifs Mutag SPMotifs.5

GSAT .843± .02 .778± .05 .702± .06 .497± .02 .565± .04 .643± .03
AD-GCL .622± .07 .779± .00 .707± .02 .609± .06 .747± .09 .626± .05
MEGA .531± .01 .827± .04 .898± .01 .467± .02 .436± .09 .214± .02
INGENIOUS .831± .03 .830± .03 .832± 0.01 .432± .05 .588± .04 .325± 0.01
INGENIOUS - Info .823± .01 .864± .03 .817± .06 .274± .04 .279± .03 .356± .03
INGENIOUS - Negative .978± .05 .834± .02 .744± .03 .844± .03 .637± .00 .506± .07
INGENIOUS - Negative - Info .912± .04 .838± .04 .746± .01 .323± .12 .664± .10 .474± .10

✓ GSAT .782± .02 .747± .07 .511± .04 .523± .02 .684± .04 .548± .05
✓ INGENIOUS .856± .01 .862± .07 .797± .02 .257± .01 .443± .12 .345± .01
✓ INGENIOUS - Info .884± .02 .819± .07 .796± .02 .200± .01 .336± .03 .316± .04
✓ INGENIOUS - Negative .801± .00 .803± .01 .738± .02 .663± .02 .617± .02 .518± .08
✓ INGENIOUS - Negative - Info .893± .05 .782± .03 .730± .01 .279± .08 .629± .08 .409± .02

Table 8: Faithfulness depending on experiments. For faithfulness, higher is better, for op-
posite faithfulness, lower is better.
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