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Appendix A.

In the Appendix, we firstly provide the empirical summaries on the rank degeneracy phe-
nomenon via GCN, GAT and HRGCN. Then we show the formal proofs of the previous
statements and then show the details of the three experiments mentioned in the paper.

A.1. Rank degeneracy phenomenon

In this section, we first provide evidence for the rank degeneracy phenomenon for citation
networks. Table 6 summarizes the rank of (re-weighted) adjacency matrices from GCN,
GAT and HRGCN

Table 6: The rank of (re-weight) adjacency matrices of GCN, GAT and HRGCN

Datasets Cora Citeseer Pubmed Computers CS Physics Photo

Number of Nodes 2708 3327 19717 13752 18333 34493 7650

Number of Repeated Rows 83 252 2902 35 115 81 15

Rank of Â 2401 2780 7596 13241 17146 33799 7501

Rank of θ ⊙ Â 2638 3090 19604 13440 17817 33994 7473

Rank of η ⊙ Â 2708 3326 19699 13752 18330 34388 7641

From Table 6 one can check that rank degeneracy phenomenon widely exists in all
commonly analyzed benchmarks. In particular, even the repeated rows are removed, the
adjacency matrix (Â) utilized in GCN is still with large number of rank degeneracy whereas
the re-weighted adjacency matrices in GAT (θ ⊙ Â) and HRGCN (η ⊙ Â) are with much
larger number of ranks. Furthermore, the rank of adjacency matrix (η⊙ Â) in HRGCN has
little difference to the number of nodes (which is the maximum possible rank of adjacency
matrix) of the dataset, this indicates that our HRGCN not only can utilize the adjacency
information from the matrix with repeat rows deleted, but also capable of distinguishing
the nodes with the same connectivities. This shows the effectiveness of applying refined
Ricci curvature in our model.

A.2. Formal proofs

Here we show the proof of Lemma 2, That is, in real practice, the probability of randomly
simulating a rank degenerated attention matrix within the space that contains all possible
attention matrix is 0.

Lemma 2 Let S1 := {M ∈ Rn×n|mi,j ≥ 0,mi,j = mj,i,
∑

j mi,j = 1∀i} be the space that
contains all normalized matrices of size n × n, with symmetric and positive entries. And
S2 ⊂ S1, s.t.∀M ∈ S2, det(M) = 0 be the subset of all matrices with rank degeneracy from
S1. Let µ be a measure defined on S1, then we have µ(S2) = 0.

Proof It is easy to verify that S1 defines a manifold M1 (multinomial symmetric and
stochastic manifold), since all matrices contained in S1 are symmetric and the summation

of each row equals to 1, thus there are maximally n(n−1)
2 free elements in the matrices in
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S1. Hence we have the intrinsic dimension of M1 equal to n(n−1)
2 .Similarly, S2 defines a

submanifold M2 ⊆ M1 with its dimension less than M1 , this is because with one extra
requirement (det(M) = 0) introduced to all matrices in S2, the degree of freedom of the
matrices in S1 will be at least decreased by 1. Let µ be a measure defined on S1, due to
the dimensionality difference, we have all matrices that belong to S2 as measure 0 and that
completes the proof.

Based on the claim on Lemma 2, we now verify our statement in Theorem 1. To show the
HRGCN can balance the advantage within graph attention models in terms of expressive
power.

Theorem 2 Let D∗
ATT and D∗

HRGCN be the rank of θ ⊙ Â and η ⊙ Â, respectively, where
θ is the matrix contains all learnable attention coefficients and η is the matrix with entries
of the refined graph Ollivier Ricci curvature similarities that is:

ηij = Exp(−κ̃ij)

Then we have RHRGCN = RATT .

Proof Based on Lemma 2, let S2 be the set that contains all possible matrices of θ⊙Â, and
we have S2 is of full rank. Now, define S3 := {M ∈ Rn×n|mi,j ≥ 0,mi,j = mj,i,Diag(M) =
1∀i} be the set that contain all possible matrices of η ⊙ Â. The diagonal entries of the
matrices contained in S3 are fixed as 1 since based on the definition of the refined Ricci
curvature defined in equation (2) when xi = xj , we have their distance d(xi, xj) = 0 and
this yields mi,i = Exp(0) = 1. Furthermore, compared to the matrices in S1 defined
in Lemma 2, matrices in S3 do not have the row summation property (

∑
j mi,j = 1∀i).

Therefore, each row of the matrices in S3 still only lost one degree of freedom due to the
fixed diagonal values. Based on Lemma 2, one can define another measure µ2 on S1, then
we have µ(S3) = 0. Hence matrices contained in S3 are of full rank. Then based on Lemma
1 we have RHRGCN = RATT , and that completes the proof.

We now prove the Lemma 3 included in the paper. Since Lemma 3 aims to show the
propose HRGCN is potentially capable of handling the bottleneck problem mentioned in
Topping et al. (2021) by preventing the long range dependency (negative curvatures) from
being diluted in the original GCN. To prove lemma 3, we need the following proposition
from Topping et al. (2021):

Proposition 1 (Theorem 2 in Topping et al. (2021)) Given an unweighted graph G,
for any edge ei,j ∈ E, we have κ(i, j) ≥ Ric(i, j).

Here κ(i, j) is the Ollivier Ricci curvature and Ric(i, j) is the balanced Forman curvature
defined in Topping et al. (2021). Please refer to Topping et al. (2021) for the details of
the proof of this proposition. We note that since we have κ(i, j) ≥ Ric(i, j) and the nega-
tive balanced Forman curvature has been proved to be responsible for the over-squashing
problem, hence when we have κi,j < 0 we must have Ric < 0 and this illustrates that the
negative κi,j is also responsible to the over-squashing problem. With this conclusion in
mind, we now provide the proof for Lemma 3.
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Lemma 3 Consider the propagation H(ℓ+1) = σℓ(AH(ℓ)Wℓ) at layer ℓ with H(0) = X and

A = Λ⊙ Â for some Λ ∈ Rn×n
+ as matrices with size n× n and all positive entry. Let h

(ℓ)
v

represents the feature of node v at layer ℓ. Suppose |σ′ℓ| ≤ α and ∥Wℓ∥2 ≤ β for all ℓ. Then

we have for any node u, v with dG(u, v) = ℓ+ 1, we have
∥∥∥∂h

(ℓ+1)
v
∂xu

∥∥∥
2
≤ (αβ)ℓ+1(Aℓ+1)uv.

Proof First we see h
(ℓ+1)
v = σℓ(W

T
ℓ (H(ℓ))Tav) = σℓ(

∑n
i=1 aviW

T
ℓ h

(ℓ)
i ), where we let a⊤i be

the i-th row of matrix A and aij be the i, j-th entry of A. Then by chain rule, we obtain∥∥∥∥∥∂h(ℓ+1)v

∂xu

∥∥∥∥∥
2

=

∥∥∥∥∥∥diag
(
σ′ℓ(W

T
ℓ (H(ℓ))Tav)

)
⊙
( n∑
iℓ=1

aviℓW
T
ℓ

∂h
(ℓ)
iℓ

∂xu

)∥∥∥∥∥∥
2

≤ α

∥∥∥∥∥∥
n∑

iℓ=1

aviℓW
T
ℓ

∂h
(ℓ)
iℓ

∂xu
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2

≤ α(ℓ+1)
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∑

iℓ,iℓ−1,...,i0

aviℓaiℓiℓ−1
· · · ai1i0W T

ℓ W
T
ℓ−1· · ·W T

0

∂h
(0)
i0

∂xu

∥∥∥∥∥∥
2

= α(ℓ+1)
( ∑
iℓ,iℓ−1,...,i1

aviℓaiℓiℓ−1
· · · ai1u

)∥∥W T
ℓ W

T
ℓ−1· · ·W T

0

∥∥
2

≤ (αβ)(ℓ+1)(Aℓ+1)uv

where we apply the second inequality recursively to obtain the third inequality.

Lemma 3 shows when the derivative of activation functions and the weights are bounded,
the sensitivity of the features on the input depend critically on the matrix A, and this lead
us to present the numerical verification (i.e., Table 2) in the main page.

A.2.1. Random Perturbation and Over-Smoothing

In this section, we show the reduction from tiny values of ϵ ∼ U(0, 0.01)/1000 s.t.ϵ <
min(ηi,j ⊙ âi,j) to the non-zero entries of η ⊙ Â can help HRGCN to enjoy a higher distin-
guishability (expressive power) than GCN and attention based models, in the meanwhile,
let HRGCN have a lower risk of over-smoothing than GCN. We show the advantages from
ϵ in the next proposition.

Proposition 2 Let Rϵ
F ,θ(HRGCN) and RF ,θ(ATT ) be the number of linear regions in-

duced from HRGCN and attention based model, respectively. For any fixed input and output
feature dimension as d0 and d1, we have:

Rϵ
F ,θ(HRGCN) > RF ,θ(ATT )

Proof Based on the proof of theorem 1 we have RF ,θ(HRGCN) = RF ,θ(ATT ), and the
only situation that causes both HRGCN and attention based model lost their distinguisha-
bility is a graph or a subset of a graph that is complete and all nodes are with the same
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features. The tiny perturbation from ϵ to the non-zero entries of η⊙ Â addresses this issue
by introducing the differences into the re-weighted matrix while preserving the connectivity
of such complete graph (subset),thus we have Rϵ

F ,θ(HRGCN) > RF ,θ(ATT ).

Now we show that the introduction of ϵ can potentially prevent HRGCN from the over-
smoothing problem in the original GCN and GAT model Cai and Wang (2020). To show
this, we firstly quantify the over-smoothing issue by defining graph Dirichlet energy as
follows:

Definition 3 (Graph Dirichlet Energy) Given node embedding matrix X(l) =: {x(l)1 , x
(l)
2 ...x

(l)
N }T ∈

Rn×dl learned from GCN at l-th layer, the Dirichlet energy E(X(l)) is defined as:

E(X(l))=Tr(X(l)T ∆̃X(l))

=
1

2

∑
i,j

wi,j

∥∥∥∥∥ x
(l)
i√

1 + di
−

x
(l)
j√

1 + dj

∥∥∥∥∥
2

2

,

where ∆̃ = I − Â is the normalized graph Laplacian and Â is the normalized adjacency
matrix. The graph Dirichlet energy shows how smooth the information propagates in terms
of GNN computation, and it has been reckoned as one of the metric that measures the
over-smoothing issue in both GCN and GAT Cai and Wang (2020). Specifically, recall the
computation within GCN can be described as:

H(ℓ+1) = σ(ÂH(ℓ)W (ℓ)), H(0) = X,

If one were to remove the activation function σ, we have liml→∞ ÂlH(0) = H(∞), where
each row of H(∞) only depends on the degree of the corresponding node, meaning that
the graph node features produced from the prior layer is irreducible and aperiodic. Thus
the learning model loses discriminative information provided by the node features as the
number of layers increases. Thanks to the next theorem we can show that by reducing ϵ to
the product of η ⊙ Â, HRGCN produces a higher Dirichlet energy than GCN within any
finite layers.

Theorem 3 Let Ã = η⊙ Â and Ãϵ = η⊙ Â− ϵ be the re-weighted matrices of the curvature
matrix η and the perturbed curvature matrix ηϵ, respectively. Let ∆̃ and ∆̃ϵ be the Laplacian
matrices induced from Ã and Ãϵ, respectively. Then for any ϵ > 0 and ϵ < min(ηi,j ⊙ âi,j),
at any specific layer (i.e., l-th layer), we have:

Eη(X
(l)) < Eη(X

(l))ϵ,

where Eη(X
(l)) and Eη(X

(l))ϵ are the Dirichlet energy at layer k induced from η with and
without perturbation ϵ.

Proof The result can be easily proved by verification since we have:

Ã = η ⊙ Â and Ãϵ = η ⊙ Â− ϵ
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Table 7: Performance comparison between graph property prediction models. QM7 is a
regression task evaluated by MSE; ogbn-molhiv task by AUC-ROC percentage;
others datasets are for classification and evaluated by test percentage accuracy.
The values after ± are standard deviations. The top results are highlighted in
bold.

Datasets PROTEINS Mutagenicity D&D NCI1 ogb-molhiv QM7

TOLPooL 73.48±3.57 79.84±2.46 74.87±4.12 75.11±3.45 78.14±0.62 175.41±3.16

ATTENTION 73.93±5.37 80.25±2.22 77.48±2.65 74.04±1.27 74.44±2.12 177.99±2.22

SAGPooL 75.89±2.91 79.86±2.36 74.96±3.60 76.30±1.53 75.26±2.29 41.93±1.14

SUM 74.91±4.08 80.69±3.26 78.91 ±3.37 76.96±1.70 77.41±1.16 42.09±0.91

MAX 73.57±3.94 78.83±1.70 75.80±4.11 75.96±1.82 78.16±1.33 177.48±4.70

MEAN 73.13±3.18 80.37±2.44 76.89±2.23 73.70±2.55 78.21±0.90 177.49±4.69

HR PooL 76.77±2.15 81.49±3.15 77.50±2.21 77.1±3.25 79.40±2.51 150.24±3.25

Then we have:

∆̃ = I − η ⊙ Â and ∆̃ϵ = I − η ⊙ Â+ ϵ

For the perturbed graph Laplacian ∆̃ϵ we have:

E(X(l))ϵ = Tr(X(l)T ∆̃ϵX
(l))

= Tr(X(l)T (I − η ⊙ Â+ ϵ)X(l)

= Tr(X(l)T (∆̃ + ϵ)X(l))

= Tr(X(l)T ∆̃X(l)) + Tr(X(l)T ϵX(l))

= Tr(X(l)T ϵX(k)) + E(X(l))

Since ϵ > 0 thus we have Tr(X(l)T ϵX(l)) > 0 and therefore we have an positive increase of
Dirichlet energy from ϵ

Hence we have proved that with the help of the random perturbation that initially assigned
to HRGCN to increase its expressive power, we also lift system’s Dirichlet energy to make
HRGCN robust to over-smoothing.

A.3. Experiment Extend

The code for this paper can be found at
https://anonymous.4open.science/r/HRGCN-high-rank-GCN--ACCEPT/.

A.3.1. Curvature Assisted Graph Pooling

In this section, we show numerical results on (refined) curvature assisted graph pooling.
Specifically, recall the self-attention graph pooling model Lee et al. (2019) in which the

https://anonymous.4open.science/r/HRGCN-high-rank-GCN--ACCEPT/
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attention score is generated as: Z = σ(ÂXθatt), where Â is the normalized adjacency
matrix and θatt ∈ Rd0×1 is the attention coefficient matrix learned by the model. Since we
have shown that HRGCN can produce the identical expressive power compared to attention
based models, thus the refined Ricci curvature can naturally enhance the graph pooling
schemes by illustrating the graph topological importance in terms of information (pooling)
aggregation. Therefore, the curvature-based graph pooling model can be formulated as:
Z = σ(η ⊙ ÂX), where ηi,j = Exp(−κ̃i,j), similar to attention pooling model, the pooling
ratio k ∈ (0, 1] is a hyperparameter that determines the number of nodes to keep. The top
[kn] nodes are selected based on the value of Z. Finally we equip the curvature pooling
strategy into the HRGCN model and therefore the final attention score for HR PooL can
be expressed as: Z = σ(HRGCN(X, Â)).

Dataset Six benchmarks were selected to test the prediction power of HR PooL , including
four classification tasks with moderate sample size, one large scale classification task and one
regression task. The classification tasks use the TUDataset benchmarks Morris et al.
(2020) including D&D Dobson and Doig (2003), PROTEINS Borgwardt et al. (2005)
to categorize proteins into enzyme and non-enzyme structures; NCI1 Wale et al. (2008)
to identify chemical compounds that block lung cancer cells; Mutagenicity Kazius et al.
(2005) to recognize mutagenic molecular compounds for potentially marketable drug; and
QM7 Blum and Reymond (2009) to predict atomization energy value of molecules. The
rest, namely ogbn-molhiv Hu et al. (2020) is used for large scale molecule classification.

Setup All the baseline models are with two fixed convolutional layers followed by one
pooling layer as the network architecture. The graph convolution for the five TUDatasets
uses the GCN model, and for ogbg-molhiv uses GIN with virtual nodes Ishiguro et al.
(2019). Given graph representations, the prediction is made by a two-layer MLP, in which
the hidden unit is identical to that of the convolutional layer. The parameters, including
learning rate, weight decay, number of hidden units in the convolutional layer and drop
out ratio, are fine-tunded using grid search mentioned earlier. The dataset was also split
using standard data splitting method as the benchmark models did. Similar to the method
mentioned in Zheng et al. (2021), the training stops when the validation loss stops improving
for 20 consecutive epochs or reaching maximum 200 epochs. The accuracy results are
averaged over 10 repetitions. For TUDataset, the mean test accuracy is reported, and for
ogbg-molhiv, ROC-AUC score is used. The regression task on QM7 is reported as mean
square error (MSE).

Baseline The learning outcome of RC-Pooling models are compared to seven baseline
methods. These baselines are TOPKPooL Gao and Ji (2019), ATTTENTIONPooL Li
et al. (2020), SAGPooL Lee et al. (2019), Zheng et al. (2021), and the classic SUM, MAX
and MEAN pooling.

Results From Table 3 we can see the the propose pooling model in this paper outperforms
the attention based pooling model in terms of both graph-level regression and classification
tasks.
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Table 8: Summary statistics for homophily citation networks. Moreover, the computational
time for curvatures in these networks are: 1.99s, 2.38s, 20.8s,3̇9.5s, 312.8s, 620s and
820s.

Datasets #Classes #nodes #Edges #Features #Training #Edges/#Nodes

Cora 7 2708 5429 1433 140 2.0

Citeseer 6 3327 4372 3703 120 1.42

Pubmed 3 19717 44338 500 60 2.25

Coauthor CS 15 18333 100227 6805 300 5.47

Coauthor Physics 5 34493 495924 8415 100 14.37

Amazon Computer 10 13381 259159 767 200 19.37

Amazon Photo 8 7487 126530 745 150 16.90

Table 9: Summary Statistics of the datasets, H(G) represent the level of homophily of
overall benchmark datasets

Datasets #Class #Feature #Node #Edge Training Validation Testing H(G)

Chameleon 5 2325 2277 31371 60% 20% 20% 0.247

Squirrel 5 2089 5201 198353 60% 20% 20% 0.216

Film 5 932 7600 26659 60% 20% 20% 0.221

Wisconsin 5 251 499 1703 60% 20% 20% 0.150

Texas 5 1703 183 279 60% 20% 20% 0.097

Cornell 5 1703 183 277 60% 20% 20% 0.386

A.3.2. Summary Statistics of the Datasets

In this section, we show some statistics of the graph datasets mentioned in the paper, and
provide the sensitivity analysis on the hyperparameter α which is the initial mass assigned
onto each node of the graph. As the graph Ricci curvature illustrates the connectivity
importance between nodes, when α ≈ 1, indicating most of the initial mass are assigned
to the nodes itself, causing the Wasserstein distance approaching to the shortest distance
if the graph is unweighted and thus κi,j = 1 − Wi,j

di,j
≈ 0. On the other hand, when α ≈ 0,

the connectivity importance based on the Wi,j value gradually appears. In the next few
tables we show the benchmark statistics on (homophily) citation networks, (heterophily)
benchmarks and datasets for graph Pooling. Moreover, similar to Ye et al. (2019), the
computational complexity and time of the refined Ricci curvature for citation networks are
also included.In addition, we also provide the hyperparameter searching spaces for both
node classification and graph pooling.
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Table 10: Summary statistics for the Graph Pooling Benchmarks, the letter R in the class
number of QM7 represents a regression task

Datasets PROTEINS Mutagenicity D&D NCI1 ogbg-molhiv QM7

#Graphs 1113 4337 1178 4110 41127 7165

Min #Nodes 4 4 30 3 2 4

Max # Nodes 620 417 5748 111 222 23

Avg#Nodes 39 30 284 30 26 15

Avg#Edges 73 31 716 32 28 123

#Features 3 14 89 37 9 0

#Classes 2 2 2 2 2 1(R)

Hyperparameter Tuning Space We tuned the hyperparameters with the following
selection of values. For learning rate:{0.1, 0.05, 0.01, 0.005}, number of hidden units in
{16, 32, 64, 96}, weight decay in {0.001, 0.005, 0.01, 0.05} and scale in {0.1, 0.5, 0.7, 0.9} for
Cora, Citeseer and Pubmed,{7, 8, 9, 10} for CS, Physics, Computers and Photo.
For the homophily graph and the graph dataset used in pooling we fixed Ollivier α = 0.9
whereas for heterophily graphs we fixed α = 0.4. The following tables shows the summary
statistics of the datasets experimented in the paper.

A.3.3. Computational Complexity for Graph Ricci Curvature

The exact computation of graph Ricci curvature for large graph is somehow time costly
since a learning programming problem need to be solved on each edge of the graph. Based
on Ye et al. (2019), on each edge, to obtain the Wasserstein distance between the distribu-
tions generated from the probability measure function, the learn programming is conducted
with dx × dy variables and dx + dy constraints. Using the interior point solver (ECOS), the
complexity is O((dx × dy)

w in which w is the exponent of the complexity of matrix multi-
plication (the best known is 2.373). However, there are many approximation methods that
can relax the computation of optimal transportation such as Sinkhorn Algorithm Cuturi
(2013) and some methods can increase the precision of the Wasserstein distance for example
Shi et al. (2021) and has proved to have almost identical computational complexity to the
classic OT algorithms. We included the computation time for citation networks in Table 8.
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