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Abstract

Graph neural networks (GNNs) have demonstrated impressive achievements in diverse
graph tasks, and research on their expressive power has experienced significant growth
in recent years. The well-known Weisfeiler and Lehman (WL) isomorphism test has been
widely used to assess GNNs’ ability to distinguish graph structures. However, despite be-
ing considered less expressive than other GNNs in graph-level tasks based on the WL test,
two prominent GNN models, namely graph convolution networks (GCN) and attention-
based graph networks (GAT), still exhibit strong performance in node-level classification
tasks. In this paper, we present a comprehensive analysis of their expressive power using a
novel evaluation metric: the number of linear regions. We demonstrate that by enhancing
GCN with refined graph Ricci curvature, our proposed high-rank graph convolution net-
work (HRGCN) can match or even surpass the prediction advantage of attention models.
Thus, the two models exhibit equivalent node-level expressive powers. This fresh perspec-
tive highlights the evaluation of GNNs’ expressive power in node-level classifications rather
than solely at the graph level. Experimental results showcase that the proposed HRGCN
model outperforms the state-of-the-art in various classification and prediction tasks.

Keywords: Graph Neural Networks; Expressive Equivalence; Number of Linear Regions

1. Introduction

Over the past decades, deep learning (DL) models have been developed as one of the most
powerful tools in machine learning. It is well known that a feed-forward deep neural net-
work is capable of approximating any Borel measurable function with a sufficient number
of neurons (Hornik et al., 1989). Among enormous successful DL models, deep neural net-
works (DNN), convolutional neural networks (CNN), and recently the graph neural networks
(GNN) were recognized as three milestones that have inspired countless developments based
on them. Ever since these three classes of models were published, the discussions on how
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powerful they are in terms of their architecture, geometric feature, and bounds of learning
capacity have never stopped. Among various metrics used to quantify the model learning
capability, the number of linear regions (Lei et al., 2020; Montufar et al., 2014) reflects
the model’s expressive power of distinguishing the input data, separating and representing
them into different affine spaces of the output domain. While in the last two decades, the
estimate of the expressive power of DNN (Montufar et al., 2014; Pascanu et al., 2013) and
CNN (Xiong et al., 2020) has been vigorously discussed, such results for GNNs are still on
going. Thanks to the recent development on the expressive power of GNNs (Wijesinghe
and Wang, 2022; Xu et al., 2018), the relationship between the number of linear regions of
GNNs in terms of their model architectures is emerging. However, the comparison between
various GNNs expressive power in terms of linear regions is still unclear. In addition, exist-
ing evaluation metrics of GNN’s expressive power varies between literatures. Specifically,
most of the literatures (Wijesinghe and Wang, 2022; Xu et al., 2018) investigate the expres-
sive power of GNNs via graph level distinguishability (i.e., Weisfeiler and Lehman test of
isomorphism). While these methods show significant improvements via GNNs graph level
classification performance, the reason for those ”less” powerful GNNs can still yield good
performance on node level classification task is still unclear.

In this paper, we resolve the challenges illustrated above by evaluating two selected ”less”
powerful GNNs: graph convolution networks (GCN) (Kipf and Welling, 2016) and attention
based graph learning models (Veličković et al., 2017) via a new expressive power metric,
that is the number of linear regions. Despite been labelled as less powerful via graph
level, we explicitly show how and why these two models perform/express well in the node
classification tasks. Our comparison result shows that the reason for causing different
expressive power between GCN and attention-based models is determined by whether the
nodes features are considered or not. Specifically, the consideration of nodes features gives
attention models higher capacity than GCN by enhancing the rank of the re-weighted
adjacency matrix (see Section 4 for details). We further note that in the sequel, when we
present expressive power of GNNs, we mean the model’s ability of generating linear regions
unless we further specify.

Furthermore, to potentially further enhance GCN such that it can produce identical
or superior expressive power to attention based models, one scheme is to consider a re-
weighting matrix that aggregates both graph topology and node feature information. In
terms of graph topological information, we consider graph Ollivier Ricci curvature (Ollivier,
2007) which has shown to enhance the performance of graph neural networks (Li et al., 2022;
Ye et al., 2019). To enable Ollivier Ricci curvature to incorporate nodes features, we refine
the curvature with node feature distance while maintaining the initial properties of Ollivier
Ricci curvature. We show the details on how this curvature is defined and its properties in
Section 5. Moreover, we prove that the enhanced model is capable of producing the same
number of linear regions and thus has identical expressive power compared to attention
models. We also verify that the refined Ricci curvature enhanced GCN model can be
understood as one-step graph Ricci flow and has the potential to alleviate over-squashing
phenomenon and improve the prediction tasks on heterophilic graphs.

Contribution and Outline To our knowledge, this is the first study to compare graph
learning models in terms of their expressive power which measured by the capability of
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generating linear regions. In Section 2 we show a detailed literature review on the research
development in the areas that are considered in this paper. In Section 3 we provide basic
notions and quantify the number of linear regions based on graph learning model architec-
tures. After that, in Section 4 we derive the expressive upper bound of attention based
models and theoretically show that this upper bound is higher than its GCN counterpart.
In Section 5 we define the refined graph Ricci curvature and prove that it can be considered
as one of the enhancement schemes to let GCN potentially produce identical or even higher
expressive power than attention based models. We then make a direct comparison on the
expressive power differences between two evaluation metrics: number of linear regions and
WL test of isomorphism. In addition, we also prove that the computation within the new
curvature model is equivalent to the classic graph Ricci flow and has the potential to handle
the over-squashing problem (Topping et al., 2021) in the original GCN model. Furthermore,
we verified the random perturbation that we further introduced to the proposed model can
not only help the model to generate higher expressive power than attention model but also
prevent our model from the over-smoothing issue (Cai and Wang, 2020). Lastly, we test the
proposed model on several real-world datasets and show its state-of-the-art experimental
outcomes in Section 6.

2. Related Works

Expressive Power of DNN and GNN models The expressive power measured by
the number of linear regions generated by deep learning models was firstly studied by
Pascanu et al. (2013). The paper proves the number of linear regions is upper bounded
by

∑n0
i=0

(
n1

i

)
for a one-layer fully connected ReLU neural network with n0 inputs and

n1 neurons. Furthermore, a lower bound was also derived in (Pascanu et al., 2013) as
(
∏L−1

l=0 { nl
n0
})

∑n0
i=0

(
nL
i

)
for the maximum number of linear regions of a fully-connected ReLU

network with n0 inputs and L hidden layers of widths n1, ..., nL. The lower bound estimate
was further improved by Montufar et al. (2014) as (

∏L−1
l=0 { nl

n0
})n0

∑n0
i=0

(
nL
i

)
. Generalized

from their works, the discussion on the expressive power of GNNs has also conducted
recently. The most famous one in this filed is proposed in Xu et al. (2018) in which the
tool named as Weisfeiler and Lehman (WL) test of isomorphism is utilized to measure
GNNs power of distinguishing different graph (structures). Wijesinghe and Wang (2022)
further generalize this idea by developing a GNN model that is more expressive than the
standard WL test via sub-graph hierarchy. Most recently, the lower and upper bound of
the maximum linear regions of GCN is also developed in (Chen et al., 2022).

Attention Based Graph Learning Models The initial idea of attention based learning
models was firstly established to help the models attend to the structural importance of the
data (Mnih et al., 2014). After that, the mechanism was successfully adopted by models for
various tasks including image classification (Mnih et al., 2014) and captioning (Xu et al.,
2015), image question answering (Yang et al., 2016), natural language question answering
(Kumar et al., 2016). More recently, there has been a growing interest in attention models
for graphs. The graph attention mechanism was firstly developed in (Veličković et al., 2017)
and extensively applied into many tasks both homogeneous (Lee et al., 2018b) and hetero-
geneous graphs (Lee et al., 2018a; Shang et al., 2018). Although the attention coefficients
are generated based on slightly different mechanisms in these papers, the approaches share
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Table 1: The rank of (re-weight) adjacency matrices of GCN and GAT. From Table 1
one can check that rank degeneracy phenomenon widely exists in all commonly
analyzed benchmarks. In particular, even the repeated rows are removed, the
adjacency matrix (Â) utilized in GCN is still with large number of rank degeneracy
whereas the re-weighted adjacency matrices in GAT (θ ⊙ Â) is with much larger
number of ranks.

Datasets Cora Citeseer Pubmed Computers CS Physics Photo

Number of Nodes 2708 3327 19717 13752 18333 34493 7650

Number of Repeated Rows 83 252 2902 35 115 81 15

Rank of Â 2401 2780 7596 13241 17146 33799 7501

Rank of θ ⊙ Â 2638 3090 19604 13440 17817 33994 7473

the common ground in that the attention is imported to allow models to adapt and focus
on the importance which is the task relevance of the data.

Graph Ricci Curvature Graph Ricci curvature is a discrete analogue of Ricci curvature
on Riemannian manifolds, which is useful in identifying tumor-related genes in bioinfor-
matics (Sandhu et al., 2015), predicting and managing the financial market risks (Sandhu
et al., 2016) and detecting network backbone and congestion (Ni et al., 2015). One of the
major paths to define graph curvature is through Ollivier’s discretization in metric space
(Ollivier, 2007). Ricci curvature is a type of edge-based curvature which captures the prop-
erty (relative importance) of the underlying graph. Recently, graph Ricci curvature has
been considered to enhance the capacity of GNNs. For example Ye et al. (2019); Li et al.
(2022) applied Ollivier Ricci curvature to construct attention coefficients. Topping et al.
(2021) defined a refined Forman curvature to adjust the over-squashing and bottleneck
issues within the GNN learning process.

3. Preliminaries

Graphs and graph convolutional network In this section, we introduce some prelim-
inaries on graphs, GCN, graph Ricci curvature and linear regions of neural networks. We
denote a graph G = (V,E) where V , E represent the sets of vertices and edges, respectively.
We also consider X = [x⊤1 ; . . . ;x

⊤
n ] ∈ Rn×d0 as the feature matrix of the n nodes with each

node feature vector xi ∈ Rd0 . We also let A ∈ Rn×n be the adjacency matrix of the graph
G and Â = D−1/2(I +A)D−1/2 ∈ Rn×n be the symmetrically normalized adjacency matrix
with D as the degree matrix of I +A. We recall the propagation of a GCN layer (Kipf and
Welling, 2016) is given by

H(ℓ+1) = σ(ÂH(ℓ)W (ℓ)), H(0) = X, (1)

where σ(·) is an activation function and W (ℓ) ∈ Rdℓ×dℓ+1 is the weight matrix at layer ℓ.

Attention based graph networks Attention based graph networks contain one (or a set
of) matrices (denoted as T ) whose entries are learnable attention coefficients that element-
wisely multiply to the graph adjacency matrix, i.e., T ⊙ Â. Without loss of generality, we



Expressive Equivalence Between GCN and GAT

consider the general attention models in which the attention coefficients are generated from
various attention mechanisms defined as functionals in feature space domain. Accordingly,
the graph attention model at layer l is defined as:

H(ℓ+1) = σ(θ ⊙ ÂH(ℓ)W (ℓ)), H(0) = X, (2)

where θ ∈ Rn×n is the matrix that contains the attention coefficients. Each entry of θ
represents the attention from a central node to one of its peripheral nodes which is computed
in its neighbourhoods. For example, in (Veličković et al., 2017), the attention coefficients

are computed from softmax function that is: θij =
exp(eij)∑

k∈Ni
exp(eik)

, where Ni stands for

all first order neighbourhoods of point xi, and eij = a(wTxi, w
Txj)) is obtained from a

function a(·) with w ∈ Rd0×d′ as the trainable coefficient parameter for all nodes and their
neighbourhoods. Furthermore, the row normalization in θ ensures

∑
j θi,j = 1, ∀i.

Graph Ricci curvature. In this paper, we particularly focus on the graph Ollivier Ricci
curvature defined in (Ollivier, 2007; Lin et al., 2011) on graph. Specifically, given two con-
nected nodes, their Ricci curvature illustrates how difficult the mass (information) from one
distribution generated from one node with its neighbours transact to another distribution
defined from another node with its neighbours, compare to the flat case. Therefore, before
we introduce the definition, we define a probability measure at node i ∈ V as for a given
α ∈ [0, 1]

mi(j) =


α, j = i
1−α
|Ni| , j ∈ Ni

0, otherwise

where |Ni| is the size of Ni, i.e. the degree of xi. We highlight that this is the original
definition in (Ollivier, 2007) and there exist many alternatives to define mi as long as each
mi generates a discrete distribution over every node in V . Then the graph Ollivier Ricci
curvature between node i, j is defined as

κ(i, j) = 1− W1(i, j)

ds(i, j)
,

where ds(i, j) is the shortest path distance on G between nodes i, j and W1(i, j) is the L1-
Wasserstein distance computed as W1(i, j) = infΓ

∑
i′
∑

j′ Γi′j′ds(i
′, j′) where Γ is the joint

distribution satisfies the coupling conditions, i.e.,
∑

i′ Γi′j′ = mj(j
′),

∑
j′ Γi′j′ = mi(i

′) for
all i′, j′. Note that if node i and j are not connected, we set the edge weight as 0 as in
(Ollivier, 2009). Similar to the settings from previous literatures (Li et al., 2022; Ni et al.,
2019) we set curvature as 1 for nodes with self-loop.

Linear regions of GCNs. Here we consider a general form of GCN given by H(ℓ+1) =
σ(AH(ℓ)W (ℓ)) for some symmetric matrix A ∈ Rn×n with the same structure as the adja-
cency matrix where the only nonzero entries are on the edges. When A = Â, this becomes
the original GCN (Kipf and Welling, 2016). From this point on, we restrict the activation
function σ in GCN to be the Rectifier Linear Unit (ReLU). In this case, GCN can be written
as a piecewise linear function.
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Definition 1 (Activation patterns and linear regions (Montufar et al., 2014)) Let
F be an L-layer GCN with k neurons in total. An activation pattern is a function of the k
(pre-activation) neurons (denoted as zi(X), i = 1, ..., k) where X is the input. An activation
pattern of F is a function P from {zi(X)} to {−1, 1}. Let θ be a fixed set of parameters
of F . The region corresponding to P and θ is R(P, θ) = {X : zi(X) · P(zi(X)) > 0, ∀ i}.
A linear region of F at θ is a non-empty set R(P, θ). Then the number of linear regions
of F is RF ,θ = #{R(P, θ) : R(P, θ) ̸= ∅}, where for a set Q, #Q denotes the number of
elements in Q.

The following Lemma derives the number of linear regions of a single layer of GCN.

Lemma 1 (Number of linear regions of one-layer GCNs (Chen et al., 2022)) Let
X ∈ Rn×d0 and H(1) = σ(AXW ) ∈ Rn×d1 be the input and output of a GCN F . Let
Ã be the adjacency matrix that excludes the repeated rows, and D∗ = rank(A). Fur-
thermore, assume that total number of p parameters are drawn from some distribution
µ which has densities with respect to Lebesgue measure in Rp. Then the number of lin-

ear regions of F is RF ,θ =
(∑d0

i=0

(
d1
i

))D∗

almost surely. Moreover, the expectation is

Eθ∼µ(RF ,θ) =
(∑d0

i=0

(
d1
i

))D∗

.

Based on Lemma 1, the number of linear regions (expressive power) of the GCNs depends
on d0, d1 and D∗, for any two models that with fixed input and output feature dimension,
the only variable that determines their expressive power is D∗. This observation provides
a way to study the expressive power between GCN and graph attention based models, and
a chance of enhancing GCN to achieve identical or even higher expressive power compared
to graph attention models by preserving the rank of A.

4. Expressive Power Comparison Between GCN and Attention Models

In this section, we show the difference in the number of linear regions between the original
GCN model and attention based models. Compared to original GCN model defined in
(1), in which only the graph connectivity information is considered, the attention based
models defined in (2) aggregates both connectivity and feature information of the graph and
offers a re-weighting process onto graph adjacency matrix. In terms of the graph adjacency
information (Â) processed in GCN, however, there are many possibilities for rank degeneracy
on Â. For example, if G contains a fully connected subset whose nodes may or may not
connect to common nodes outside the subset, as a consequence, the row values of these nodes
in Â will be identical causing GCN failed to distinguish them. Table 1 summarizes the rank
degeneracy phenomenon existed in GCN and GAT using adjacency matrices in citation
networks. Please refer to Section 6 and Appendix A.1 for more detailed discussions. The
next lemma shows that in real-world datasets, with the help of the attention coefficients,
the chance of having a rank degeneracy re-weighted adjacency matrix is zero.

Lemma 2 Let S1 := {M ∈ Rn×n|mi,j ≥ 0,mi,j = mj,i,
∑

j mi,j = 1∀i} be the space that
contains all normalized matrices of size n × n, with symmetric and positive entries, and
S2 ⊂ S1, s.t. ∀M ∈ S2, det(M) = 0 be the subset of all matrices with rank degeneracy from
S1. Let µ be a measure defined on S1, then we have µ(S2) = 0.
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Therefore S1 can be regarded as the space that contains all re-weighted adjacency matrix
(i.e., T ⊙ Â), and S2 as the space that contains all possible Â’s that degenerate. We note
that the conclusion in Lemma 2 also holds when Â has graph structure (i.e., if two nodes are
disconnected, the edge weight of them remains 0 after the re-weighting process). The proof
of this lemma relies on the fact that the manifold defined by S1 is higher dimensional than
the manifold S2. Hence for any measure µ on S1, we have µ(S2) = 0. We include the whole
proof of this lemma in Appendix A as well. By direct comparison, it is clear to see that
although it is possible to have a rank degenerated Â, it is almost impossible to have a rank
degenerated T ⊙ Â from real-world datasets. Hence, let RF ,θ(ATT ) and RF ,θ(GCN) be
the number of linear regions generated from attention based and GCN model respectively,
based on Lemma 1 and the Lemma 2 we showed above, if we fix the input and output
feature dimensions as d0 and d1, we have:

RF ,θ(ATT ) ≥ RF ,θ(GCN) (3)

We note that the equal sign appears only when the graph nodes are all with the same feature
and connectivity (i.e., the complete graph, with all node features identical). Based on the
observation in the inequality 3 it is natural to ask the following question: Is it possible to
develop a meaningful re-weighting scheme to Â other than attention mechanism such that
the new model has the identical or even higher expressive power to attention models? In
the next section, we will propose a new model and show this task can be done by a refined
version of graph Ollivier Ricci curvature.

5. High Rank Graph Convolution Network (HRGCN)

To properly define the refined graph Ricci curvature, we recall the definition of Ricci cur-
vature mentioned in Section 3, that is: κ(i, j) = 1 − W1(i,j)

ds(i,j)
. Clearly, κ(i, j) shows the

potential of being a re-weighting coefficient since it illustrates the topological importance
of neighboring nodes which plays an important role in the information aggregation (i.e.,
message-passing). In fact, as most of the existing GNN models are message-passing based
(Gilmer et al., 2017), one can define a message-passing neural network (MPNN) to explicitly
illustrate the importance of the inclusion of graph Ricci curvature as:

h
(ℓ+1)
i = ϕℓ

⊕
j∈Ni

ψℓ(h
(ℓ)
i , h

(ℓ)
j )

 , (4)

where Ni stands for the set of all neighbours of node i, ϕℓ is the updated function, usually
presented as the activation function,

⊕
is the aggregation function and ψℓ is the message

passing function which is usually trainable. It is not hard to check that whether a MPNN
model is capable of delivering a high prediction outcome largely depends on how the feature
information is aggregated via propagation. This observation directly shows the advantage
of choosing Ricci curvature for model enhancement. However, κ(i, j) cannot distinguish
the nodes with the same connectivity and cannot escape rank degeneracy in Â, resulting
a limited expressive power of the learning model. Therefore, to equip Ricci curvature
with identical expressive power as the attention models, node feature information shall be
considered. We define the refined graph Ricci curvature as follows:
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(a) (b) (c)

(d) (e) (f )

Figure 1: Changes of the graph Ricci curvature distribution before (first row) and after
(second row) the computation conducted in HRGCN. The datasets on each row
from left to right are Cora, Citeseer and Pubmed, we fixed α = 0.7 as the
initial mass for curvature computation. We observe HRGCN is able to smooth
the curvature of graphs by contracting both the negative and positive curvatures.

Definition 2 (Refined Graph Ollivier Ricci Curvature) The refined, feature infor-
mation based graph Ollivier Ricci curvature is defined as:

κ̃(xi, xj) = κ(xi, xj)× d(xi, xj), (5)

where d(xi, xj) is the Euclidean distance between two nodes’ features.

The refined Ricci curvature maintains the sign of the original Ollivier Ricci curvature,
and thus the topological information of the graph is preserved. In fact the sign of Ricci
curvature is an important indicator for a list of graph related tasks and problems such as
community detection (Ni et al., 2019) and over-squashing (Topping et al., 2021). Thanks to
the following theorem, we can show that the adjacency re-weighting scheme induced from
the refined Ricci curvature on GCN can balance or even surpass the prediction advantage
in attention based models.

Theorem 1 (Expressive Equivalence) Let D∗
ATT and D∗

HRGCN be the rank of θ ⊙ Â

and η ⊙ Â, respectively, where θ is the matrix contains all learnable attention coefficients
and η is the matrix with entries of the refined graph Ollivier Ricci curvature similarities
that is:

ηij = Exp(−κ̃ij)

Then we have RHRGCN = RATT .

The proof of Theorem 1 is based on the fact that each row of the matrices of both θ⊙ Â
and η ⊙ Â lost one degree of freedom and resulted in an identical dimension of the space
that contains them. The loss of the degree of freedom is due to the feature of normalization
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in the attention model and the definition of graph Ricci curvature in HRGCN since the
diagonal of the matrix η ⊙ Â is equal to Exp(0) = 1. We leave the detailed proof of
Theorem 1 in Appendix A. Based on Theorem 1 the inclusion of the refined graph Ollivier
Ricci curvature protects the rank of Â from the rank degeneration similar to the attention
matrix. Therefore, one can denote the computation within one single layer of HRGCN is:

H(ℓ+1) = σ(η ⊙ ÂH(ℓ)W (ℓ)), H(0) = X.

Similar to the graph attention model in (Veličković et al., 2017), we set σ as Leaky relu
activation function.

Compared with WL Test of Isomorphism We briefly show the difference between
two measures of expressive power of GNNs: number of linear regions and WL test of
isomorphism. Specifically, the WL test acts on the connected node features (known as
multisets) via subtree graph structure and a GNN can only reach as powerful as WL test
in terms of distinguishing non-isomorphic graphs (Xu et al., 2018). Therefore it is not hard
to check that WL test is unable to illustrate how expressive one GNN is in terms of node
level learning tasks. Our proposed method, however, aims to quantify what the maximal
power of a GNN model is in terms of the capability in distinguishing node features on a
single graph.

Relationship with Graph Ricci Flow Graph Ricci flow (Weber et al., 2016) is a
discrete version of Ricci flow on Riemannian manifold (Hamilton, 1982), which iteratively
shrinks the positive edges and pushes away the negative edges. Here we demonstrate the
connection of the proposed HRGCN with graph Ricci flow as follows.

Let ai,j represent the weight between nodes i and j. The Ricci flow on graph (Ni et al.,
2019) updates the weights iteratively by a+i,j = ds(i, j)(1−κi,j), where ds(i, j) is the shortest
path distance between node i and j and κi,j is the Olivier Ricci curvature for the edge i
and j, both calculated using the weight ai,j at current iteration. For unweighted graph,
if there exists an edge between i, j, then at first iteration ds(i, j) = ai,j = 1 and thus the
process can be interpreted as increasing the edge weight for negatively curved edges and
decreasing the edge weight for positively curved ones. It is easy to verify that the curvature
re-weighting process, i.e., η⊙Â, η = Exp(−κi,jd(xi, xj)) of HRGCN aligns with the property
of graph Ricci flow as ηi,j > 1 for κi,j < 0 and ηi,j < 1 for κi,j > 0. Thus the proposed
re-weighting scheme smooths the curvature via the re-weighted matrix η⊙ Â. Fig. 1 shows
this phenomenon for citation networks. It is clear that the computation in HRGCN shrinks
both positive Ricci curvatures and the negative curvatures to a narrower range compared to
the curvature based on the initial weights from the adjacency matrix. This has the potential
of alleviating the problem of bottleneck which will be discussed.

Over-Squashing and Bottleneck Based on the relationship with Ricci flow, HRGCN
allocates larger edge weight to the edge that initially with negative curvatures. From the
perspective of graph neural networks, a larger edge weight corresponds to strong connection
between the nodes. From (Topping et al., 2021), we see that negative edges are responsible
for the over-squashing and bottleneck in GNNs where the long-range dependencies of the
nodes cannot be captured. In (Topping et al., 2021), a remedy is proposed by adding
edges in the neighbourhood leading to negatively curved edges. Here we show the proposed
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Table 2: Sensitivity Bottleneck value comparison between GCN and HRGCN in both ho-
mophily and heterophily networks. We can see HRGCN produces stronger connec-
tivity to the negative curvature edges and has lower bottleneck values to prevent
model from over-squashing.

Datasets Cora Citeseer Pubmed Cornell Wisconsin Actor

Minimum Curvature -0.539 -0.516 -0.575 -0.155 -0.159 -1.60

Sensitivity (GCN) 0.0006 0.051 0.0003 0.011 0.026 0.0008

Sensitivity (HRGCN) 0.024 0.094 0.0012 0.031 0.029 0.0054

Bottleneck Value (GCN) 6901.4 6099.8 63352.7 130.6 161.86 11813.5

Bottleneck Value (HRGCN) 5985.4 4924.2 50610.8 121.2 130.32 9123.4

ηij = Exp(−κ̃ij) can also alleviate the issue by increasing the edge weight for negatively
curved edges. The following Lemma quantifies the sensitivity of propagation in the form
H(ℓ+1) = σℓ(AH(ℓ)Wℓ). This Lemma adapts Lemma 1 in (Topping et al., 2021).

Lemma 3 Consider the propagation H(ℓ+1) = σℓ(AH(ℓ)Wℓ) at layer ℓ with H(0) = X and

A = Λ⊙ Â for some Λ ∈ Rn×n
+ . Let h

(ℓ)
v represents the feature of node v at layer ℓ. Suppose

|σ′ℓ| ≤ α and ∥Wℓ∥2 ≤ β for all ℓ. Then we have for any node u, v with dG(u, v) = ℓ + 1,

we have
∥∥∥∂h

(ℓ+1)
v
∂xu

∥∥∥
2
≤ (αβ)ℓ+1(Aℓ+1)uv.

Lemma 3 shows when the derivative of activation functions and the weights are bounded,
the sensitivity of the features on the input depends critically on the matrix A. We show
the details of the proof in Appendix A. Since negative curvatures are responsible for the
bottleneck problem (Topping et al., 2021) and in HRGCN and a negative curvature will
give a larger weight (strong connectivity) due to ηi,j = Exp(−κ̃i,j), thus HRGCN naturally
has the potential of preventing the sensitivity of the node feature respect to the input from
diluting away which happens in GCN.

Another measurement on the bottleneck problem is through the notion of Betweenness
Centrality (Freeman, 1977) which illustrates the frequency of a node that appears in the

minimal path of distinct pairs of nodes, that is: cB(u) =
∑

s,t∈V
σ(s,t|u)
σ(s,t) , where σ(s, t) is the

number of shortest (s, t)-path and σ(s, t|u) is the number of shortest paths between s and
t that route through node u. According to (Topping et al., 2021), the bottleneck value of
the graph is defined as:

bG =
1

n

∑
i

cB(i). (6)

When graph G is complete, bG = 1. Thus bG shows how far away a given graph G’s topology
is from the complete graph in which any pair of nodes are connected, and thus no bottleneck
occurs. In (Topping et al., 2021), this was the motivation of conducting the graph-rewiring
scheme to fix the bottleneck problem. In Table 2, we measure the bottleneck problem
via both sensitivity and bottleneck value to demonstrate the effectiveness of HRGCN in
handling the bottleneck problem. For the sensitivity comparison, we select the node u as
one of the nodes with its edge that contains the most negative curvature and select the node
v which is one of the 2-hop neighbours (as models are set as two layers by default) of u with
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Table 3: Test Accuracy scores(%) for HRGCN in six heterophily graph benchmarks. Ac-
curacies are highlighted in bold when HRGCN outperforms GAT and GCN.

Methods Cornell Wisconsin Texas Actor Chameleon Squirrel
MLP-2 91.30±0.70 93.87±3.33 92.26±0.71 38.58±0.25 46.72±0.46 31.28±0.27
GAT 76.00±1.01 71.01±4.66 78.87±0.86 35.98±0.23 63.90±0.46 42.72±0.33
APPNP 91.80±0.63 92.00±3.59 91.18±0.70 38.86±0.24 51.91±0.56 34.77±0.34
H2GCN 86.23±4.71 87.50±1.77 85.90±3.53 38.85±1.77 52.30±0.48 30.39±1.22
GCN 66.56±13.82 66.72±1.37 75.66±0.96 30.59±0.23 60.96±0.78 45.66±0.39
Mixhp 60.33±28.53 77.25±7.80 76.39±7.66 33.13±2.40 36.28±10.22 24.55±2.60
GraphSAGE 71.41±1.24 64.85±5.14 79.03±1.20 36.37±0.21 62.15±0.42 41.26±0.26
HRGCN 78.25±0.25 91.01±1.55 82.25±0.91 37.21±0.29 56.81±0.12 44.28±0.91

the middle node v′ such that the edge ev,v′ has the second smallest curvature within all edges
of v. Therefore, a larger sensitivity value illustrates a stronger preservation of the model in
terms of long range dependencies. We fixed α = 0.7 for all curvature computations.

Further Improvement from Random Perturbation It is possible to observe that
two nodes have the same connectivity and features in the real-world datasets. In this
case, both the feature-based attention model and HRGCN fail to distinguish these nodes
as the Euclidean distance between nodes goes to 0, causing rank degeneracy for the re-
weighting matrix. In this paper, we address this problem by inserting a random perturbation
ϵ ∼ U(0, 0.01)/1000 s.t.ϵ < min(ηi,j ⊙ âi,j)

1 to the non-zero entries of η ⊙ Â to ensure
the model’s distinguishability. Moreover, we show this operation is capable of lifting and
stabilizing system’s Dirichlet energy and thus has the advantage of preventing the model
from over-smoothing. We show our conclusion as the theorem 3 in Appendix A.2.1

6. Experiment

In this section, we show a variety of numerical tests to solidify our theoretical analysis.
Section 6.1 tests the performance of HRGCN on seven citation benchmarks. Section 6.2
shows that with greater expressive power compare to GCN, our proposed model can even
handle the node classification task in heterophily graph datasets. Section 6.3 presents the
ablation study to show HRGCN is robust to the changes of the model parameters. Moreover,
we show the performance of HRGCN in graph level classification (pooling) in Appendix A.3.
All experiments were conducted using PyTorch on NVIDIA® Tesla V100 GPU with 5,120
CUDA cores and 16GB HBM2 mounted on an HPC cluster.

6.1. Node Classification for HRGCN

Datasets and Setup We tested HRGCN model against the state-of-the-arts on seven
node classification datasets. The task for node classification is conducted on several bench-
mark citation networks: Cora, Citeseer, Coauthor CS and Physics. In terms of the
model setup, HRGCN is designed with two curvature assisted convolutional layers to com-
pute graph embedding. The hidden layer output is followed by softmax activation function

1. U(0, 0.01) stands for an uniform distribution with low and upper bound as 0 and 0.01 respectively.
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Table 4: Test Accuracy for citation networks with standard deviation after ±. The top
results are highlighted in First, Second and Third.

Method Cora Citeseer PubMed CS Physics Computers Photo

MLP 55.1 59.1 71.4 88.3±0.7 88.9 ± 1.1 44.9±0.8 69.6±3.8

MoNet 81.7 71.2 78.6 90.8±0.6 92.5±0.9 83.4±2.2 91.2±1.3

GS-mean 79.2 71.2 77.4 91.3±2.8 93.0±0.8 82.4±0.8 91.4±1.3

GCN 81.5±0.5 70.9±0.5 79.0±0.3 91.1±0.5 92.8±1.0 82.6±2.5 91.2±1.2

GAT 83.0±0.7 72.5±0.7 79.0±0.3 90.5±0.6 92.5±0.9 78.0±1.9 85.1±2.3

GIN 81.0±1.1 70.5±0.9 78.3±1.2 91.2 ±1.4 88.5±0.6 77.1±0.4 84.8±0.7

CurvGN 82.6±0.6 71.5±0.8 78.8±0.6 92.9±0.4 94.3±0.2 86.5±0.7 92.5±0.5

HRGCN 83.6±0.4 71.8±0.3 80.1±0.2 93.4±0.6 95.9±0.5 87.4±0.3 92.9±0.1

for the final prediction. Most of hyperparameters were set the default values except from
learning rate, weight decay, hidden units, dropout ratio, negative slop of leaky relu function.
We used grid search to tune the hyperparameters. The hyperparameter values and tuning
results are listed in Appendix A.3. In addition, similar to (Ye et al., 2019), in Appendix A.3,
we show that the computational cost of Ricci curvature can be relaxed by using approxi-
mation and parallel computation even in large datasets. We set the maximum number of
epochs of 200 for all citation networks. All the datasets included in this series of experiment
are split followed by the standard public processing rules. All the average test accuracy and
standard deviations are summarized from 10 random trials.

Baseline The learning accuracy of HRGCN is compared against other methods. We
consider multiple baselines that are applicable to the tasks. The test accuracy of the baseline
models are retrieved from the published results: MLP, MoNet (Monti et al., 2017), WSCN,
GINXu et al. (2018), (Morris et al., 2019), GraphSAGE with mean aggregation(GS-mean)
(Hamilton et al., 2017), GCN (Kipf and Welling, 2016), GAT (Veličković et al., 2017) and
Curvature graph networks (CurvGN) (Ye et al., 2019). The datasets for all baseline models
are also split based on the standard public rules.

Results The top-3 test accuracy scores (in percentage) are highlighted in Table 4. HRGCN
achieved highest predictive accuracy among all citation networks compared to baseline mod-
els. Both GAT and HRGCN models show superior prediction power within those relatively
small datasets (i.e., Cora, Citeseer and Pubmed); whereas HRGCN remains producing
the top accuracy in larger graph inputs.

6.2. Node Classification on Heterophily Graph datasets

In this section, we show that with the enhancement power from refined graph Ricci cur-
vature, HRGCN can even handle the (heterophily) graph datasets in which the labels of
nodes’ neighbours are largely different compared to the (homophily) citation networks.

Datasets and Baselines We compare the learning outcomes of HRGCN to various base-
line models,MLP with 2 layers (MLP-2), GCN,GAT,APPNP (Chien et al., 2020), H2GCN
(Zhu et al., 2020), MixHop (Abu-El-Haija et al., 2019) and GraphSAGE (Hamilton et al.,
2017). We test these models 10 times on Cornell, Wisconsin, Texas, Film, Chameleon
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and Squirrel following the same early stopping strategy, and the same random data split-
ting method applied to the citation networks.

Results The testing accuracy and standard deviations of HRGCN for heterophily graph
datasets are listed in Table 3. It is clear to see that HRGCN outperforms attention model
(i.e. GAT) and GCN in most of datasets.

Discussion on Graph Density and Rank Degeneracy As we have illustrated previ-
ously, the rank degeneracy phenomenon is closely related to graph connectivity. Specifically,
we observed that a degenerated graph has a high degree of symmetry. Apart from the exam-
ple we have given in Section 4, if a graph is a complete graph, where every node is connected
to every other node. Then the adjacency matrix is a matrix with all its entries equal to 1,
and its rank is 1. Therefore, in general, any graph structure where the edges between nodes
are highly symmetric, or where there is a high degree of homogeneity in the connections
between nodes, will result in a normalized adjacency matrix with some rank degeneracy.
Thus, HRGCN will tend to deliver a better performance if the graph becomes denser. This
claim is supported by our experimental outcomes (i.e., Table 4) in which HRGCN produces
much higher learning accuracy in denser graphs (i.e., PubMed and Physics).

6.3. Ablation Study

Table 5: Results of Ablation study by changing the
quantity of α and the metric of computing
feature distances. The highest accuracy is
highlighted in red.

Methods Cora Citeseer Pubmed

HRGCN0.3 82.5±0.3 70.9±0.2 78.8±0.3
HRGCN0.6 83.1±0.2 71.3±0.7 79.2±0.6
HRGCN0.9 83.4±0.4 71.4±0.5 79.6±0.3
HRGCN-S 83.5±0.2 70.8±0.3 79.9±0.7
HRGCN-H 83.2±0.1 72.0±0.6 80.0±0.5

HRGCN 83.6±0.4 71.8±0.3 80.1±0.2

In this section, we conducted ab-
lation studies on how the changes
of the initial mass α affect the
prediction accuracy of our model.
The quantity of α is selected from
0.3, 0.6, 0.9. We note that when α is
small, meaning that model will take
more information from the node
neighbours rather than the node it-
self. In addition, we also modified
the metric of computing the feature
distances from Euclidean distance
to both spherical and hyperbolic
distances to see whether HRGCN is
robust to the metric changes. Accordingly, we named two ablation models as HRGCN-S and
HRGCN-H. We select Cora, Citeseer and Pubmed datasets and the results are contained
in Table. 5. From the results, one can check that HRGCN is robust to the changes of the
newly introduced model parameters. In addition, despite changes are applied, all HRGCN
variants kept outperforming the baseline results in Table. 4, suggesting the effectiveness of
incorporating the refined Ricci curvature enhance the expressive power of GNNs.

7. Final Remark and Conclusion

This paper introduced a new evaluation metric on measuring the expressive power of GNNs,
that is the number of linear regions. We applied this new metric to compared the expressive
differences between the original GCN and attention based models. We theoretically proved
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that the advantage in attention based models can be matched and even surpassed by in-
troducing a curvature re-weighting scheme to GCN which gave rise to our HRGCN model.
This claim was verified by extensive numeric experiments where our proposed model outper-
formed baselines in various node-level and graph-level learning tasks. The positive results
show the great potential and encourage us to explore it further. Our future research will
focus on exploring the curvature guided graph surgery techniques such as graph re-wiring.
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