
Proceedings of Machine Learning Research 222, 2023 ACML 2023

Supplementary Material: Advancing Deep Metric Learning
With Adversarial Robustness

Inderjeet Singh inderjeet78@nec.com
Kazuya Kakizaki kazuya1210@nec.com
Toshinori Araki toshinori araki@nec.com
NEC Corporation, Kawasaki, Kanagawa, Japan

Editors: Berrin Yanıkoğlu and Wray Buntine

1. Evaluation Metrics

We use the standard evaluation metrics in deep metric learning (DML): Recall@K (R@K)
(Jegou et al. (2010)) with k = {1, 4}, Normalized Mutual Information (NMI) (Manning
et al. (2010)), and πratio. Increased R@k and NMI values indicate improved image retrieval
performance and clustering quality, respectively, and the decreased πratio values approxi-
mately indicate increased inter-class and decreased intra-class distances in the embedding
space of the trained model.

1.1. Recall@k (Jegou et al. (2010))

For a given DML function f , let Fk
q be the set of first k nearest neighbors of a sample

xq ∈ Xtest defined as
Fk

q = arg min
F⊂Xtest ,|F|=k

∑
xn∈F

d (f (xq) , f (xn)) (1)

Finally, Recall@k is calculated as

R@k = 1
|Xtest |

∑
xq∈Xtest

{
1 ∃xi ∈ Fk

q s.t. yi = yq

0 otherwise
(2)

This means Recall@k measures the average number of cases in which, for a given query xq,
there is at least one sample among its top k nearest neighbors xi with the same class, i.e.,
yi = yq.

1.2. Normalized Mutual Information (NMI) (Manning et al. (2010))

NMI quantifies the clustering quality in the embedding space of a DML model f . To
calculate NMI for the embedding space ΦXtest of all test samples xi ∈ Xtest, we assign a
cluster label wi corresponding to each sample xi indicating the closest cluster center and
define Ω = {ωk}K

k=1 with ωk = {i|wi = k} and K = |C| being the number of classes and
clusters. Similarly for the true labels yi we define Υ = {υc}K

c=1 with υc = {i|yi = c}.

© 2023 I. Singh, K. Kakizaki & T. Araki.

Singh Kakizaki Araki

The NMI is then computed with mutual Information I(·, ·) between cluster and labels, and
entropy H(·, ·) on the clusters and labels, respectively, as

NMI(Ω,Υ) = I(Ω,Υ)
2(H(Ω) +H(Υ)) (3)

1.3. Embedding Space Density (πratio)

We define embedding space density πratio as

πratio(Φ) = πintra(Φ)
πinter(Φ) (4)

where πintra(Φ) is the intra class distance and πinter(Φ) inter class distance in the feature
space ΦX := {fθ(x) | x ∈ Xtest} of a DML model fθ and they are calculated as follows:

πintra(Φ) = 1
Zintra

∑
yl∈Y

∑
ϕi,ϕj∈Φyl

,i ̸=j

d (ϕi, ϕj) (5)

πinter(Φ) = 1
Zinter

∑
yl,yk,l ̸=k

d (µ (Φyl
) , µ (Φyk

)) (6)

Here, Φyl
= {ϕi := fθ (xi) | xi ∈ X, yi = yl} denotes the set of embedded samples of a class

yl. µ(Φyl
) their mean embedding and Zintra, Zinter are the normalization constants.

2. Benchmarks

We evaluate the performance on the CUB200 (Wah et al. (2011)), CARS 196 (Krause et al.
(2013)), and Stanford Online Products (Oh Song et al. (2016)) benchmarks following the
experimental setting by Roth et al. (2021) for data pre-processing.
CUB200 (Wah et al. (2011)) contains 200 bird classes over 11,788 images, whereas the first
and last 100 classes with 5864/5924 images are used for training and testing, respectively.
CARS196 (Krause et al. (2013)) contains 196 car classes and 16,185 images, where again,
the first and last 98 classes with 8054/8131 images are used to create the training/testing
split.
Stanford Online Products (SOP) (Oh Song et al. (2016)) is built around 22,634 product
classes over 120,053 images and contains a provided split: 11318 selected classes with 59551
images are used for training, and 11316 classes with 60502 images for testing.

3. Complete Experimental Setup

We provide comprehensive experimental details for the evaluation of MDProp in order to en-
sure reproducibility. To maintain consistency with Roth et al. (2021), we follow their setup
with the exception of frozen batch normalization (Ioffe and Szegedy (2015)). Frozen batch
normalization is exclusively used for baselines in order to replicate prior results and con-
duct a fair comparison with state-of-the-art methods. Our experiments employ ResNet18,
ResNet50, and ResNet152 architectures (He et al. (2016)) with output embeddings normal-
ized with 128 dimensions and optimization with Adam (Kingma and Ba (2014)) using a

Supplementary Material

learning rate of 10−5 and weight decay of 4 · 10−4. Training images were randomly resized
and cropped to 224 × 224 pixels, with further augmentation through random horizontal
flipping with p = 0.5. During testing, center crops of size 224 × 224 were used, with a batch
size of 112. All experiments were conducted on CUB200 and CARS 196 for 150 epochs,
and on SOP for 100 epochs, without any learning rate schedule.

Additionally, we implemented S2SD (Roth et al. (2021)) with ResNet50 architecture and
Multisimilarity loss (Wang et al. (2019)), keeping all other hyperparameters in line with the
defaults outlined in Tab. 1 of Roth et al. (2020). The implementation was conducted in
PyTorch (Paszke et al. (2019)), on GPU servers consisting of Nvidia Tesla V100, Titan V,
and RTX 1080Ti, with data parallelization and distributed training. Results presented in
Tab. 1 of the paper are averaged over three seeds, while those in Tab. 2 are the average of
two seeds. We report means and standard deviations for better reproducibility and validity.

We generated single and multi-targeted adversarial examples (MTAXs) during training
through projected gradient descent (PGD) update (Madry et al. (2017)), setting the number
of iterations to 1, L∞ constraint ϵ on the adversarial noise to 0.01, and the PGD learning
rate as ϵ/Attack Iterations. Four values of T (i.e., 2, 3, 5, and 10) were used as attack
targets during the MTAX generation. We kept the loss function as squared L2 norm for
generating feature space AXs. To assess the robustness of the DML models trained with
MDProp against multiple input distributions during inference, we generated single and
multi-targeted AXs.

Unadversarial Example Generation Setting. In generating unadversarial examples
during training with MDProp, we used the same update settings as PGD, with ϵ = 0.01,
but with a modified loss function for unadversarial examples.

Few-Shot Learning Experiments. We evaluate the performance of our method in the
few-shot evaluation setting, where we aim to classify images with few labeled examples. To
generate training subsets for this evaluation, we uniformly removed samples from all classes
of the dataset, creating three subsets with different fractions of the original training data.
Specifically, we generated subsets with 0.25, 0.50, and 0.75 fractions of the original training
data. This few-shot evaluation setting allows us to assess the generalization ability of our
method in scenarios where data is limited, and classify images with fewer labeled examples.

3.1. DML Loss Functions

3.1.1. Multisimilarity (Wang et al. (2019))

Multisimilarity loss (Wang et al. (2019)) uses the concept of different types of similarities in
all positive and negative samples for an anchor xi in training data while using hard sample
mining:

d∗
c(i, j) =

dc (ψi, ψj) dc (ψi, ψj) > minj∈Pi dc (ψi, ψj) − ϵ

dc (ψi, ψj) dc (ψi, ψj) < maxk∈Ni
dc (ψi, ψk) + ϵ

0 otherwise
(7)

Singh Kakizaki Araki

We used additive angular margin penalty γ = 0.5. The radius of the effectively utilized
hypersphere S denoted as the scaling s = 16 was used. The class centers were optimized
with a learning rate of 0.0005.

3.2. Adversarial Training with Targeted Attacks

It is well known that adversarial training results in highly robust models, but causes a
reduction in the clean data performance of the model. In this study, our primary focus is
to improve the accuracy of clean data using AXs in the form of multi-distribution inputs.
Hence, to make the comparison fair and effectively evaluate the effect of separate BN layers,
we used both clean and adversarial data during training without using separate BN layers.
For generating adversarial data, we use the same single targeted AXs xt

adv used in the
AdvProp-D case of MDProp, which are generated as

xf
adv = xj

i + δt
f s.t. δt

f = arg min
||δ||∞≤ϵ

[
L(f(xj

i + δ), f(xk
i))

]
(10)

where L measures the distance, f is the DML model, and xk
i is the target identity’s image.

Finally, the objective of the adversarial training in our setting is as follows:

Z1 = arg min
θ

E{
(x,y)∼D
δt

f ∼D′

}L
(
θ, (x, y) ,

(
x+ δt

f , y
)) (11)

where (x, y) ∼ D denotes a clean data instance. L denotes the DML training loss. θ =
{θn, θb} are the parameters of the model that does not have auxiliary BN layers.

3.3. Evaluating Multi-Distribution Inputs

For robustness assessment, the STAX and MTAX datasets were generated corresponding
to the clean samples in the test sets of the CUB200 (Wah et al. (2011)), CARS 196 (Krause
et al. (2013)), and SOP (Oh Song et al. (2016)) datasets. We used the PGD (Madry et al.
(2017)) update with 20 iterations, calling it PGD-20 attacks. We used 0.01 and 0.1 for the

Supplementary Material

ϵ constraint. for MTAXs, we used T = 5. The remaining attack hyper-parameters were
kept the same as during the training time of attack generation.

4. Detailed Results

This section presents the detailed results of the comparison of our methods against baselines
on clean data performance in Tab. 1, robustness against STAX inputs in Tab. 2, robustness
against powerful STAX inputs generated using ϵ = 0.1 in Tab. 3, clean data performance
and adversarial robustness across architectures and SOTA S2SD methods in Tab. 5, and
clean data performance for larger models with larger embedding dimensions in Tab. 7.
Each table also presents the results for the case where MTAXs without separate batch
normalization were used, which is included in the adversarial training method case. In
addition, these tables show the results for additional values of the number of targets
T for MTAX generation.

4.1. Performance on MTAX Inputs

We also evaluate the performance against MTAX inputs to test check decreased overlapped
feature space in the MDProp models. The results for MTAX inputs are presented in Tab.
4. Clearly, MDProp models result in improved metrics for MTAX inputs.

4.2. Effect of Number of Adversarial Targets T

Fig. 1 illustrates the effect of T parameters on the performance of the trained model using
MDProp. We conducted experiments using five values of T : 1, 2, 3, 5, and 10. It was
found that increasing T improves performance on clean data only up to a certain number
for which the predefined generation recipe’s hyperparameters provide sufficient semantic
capability to the attack generation procedure, causing the positions in the embedding space
of generated MTAXs shift to the overlapped regions of the DML model under training.
In particular, MDProp using clean and MTAXs performed best for T = 3, and MDProp
using clean, STAXs, and MTAXs performed best for T = 5. For smaller values of T , lesser
performance improvements result because of the decreased probability of finding highly
overlapped embedding-space regions.

4.3. Results for PGD-20 attacks with ϵ = 0.1

To evaluate the robustness gains for powerful attacks, we generate attacks with larger
values of the ϵ constraint. We use ϵ = 0.1 for generating single targeted AXs to compare
the reduction in performance of AdvProp-D and MDProp. Similar to the case for PGD-20
attacks with ϵ = 0.01, robustness gain was found to be marginally higher for the AdvProp-
D followed by MDProp, which can be seen in Tab. 3. AdvProp-D and MDProp result in
significantly high adversarial robustness compared to the baseline standard training and the
adversarial training methods. Hence, we can conclude that our proposed AdvProp-D and
the MDProp methods provide significant robustness gains for attacks of varying strength
with different sizes of adversarial noise.

Singh Kakizaki Araki

Figure 1: Impact of the number of attack targets T on the clean data performance. The
sample trends generally demonstrate improved R@1, NMI, and πratio scores with
the increase in T initially and then the decrease due to increased MTAX genera-
tion complexity and restricted attack generation procedure.

4.4. Results When MDProp Use 4 Separate BN Layers

Tab. 6 presents the results when MDProp uses three additional BN layers for the STAXs and
MTAXs data generated for two different numbers of targets. Clearly, there were significant
performance gains. However, the performance gains remained marginally lower than those
of MDProp using the three separate BN layers presented in the paper.

4.5. Results for MDProp With Unadversarial Examples

Tab. 8 displays the performance improvements achieved by our MDProp method using
unadversarial examples. The combination of unadversarial examples and clean data in
MDProp with two separate BN layers resulted in a clean data R@1 score of 63.56% for
the Multisimilarity loss setting. However, no further performance gains were observed with
the combination of unadversarial examples and adversarial data in the MDProp setting.
This could be due to incompatibility with adversarial data or overlapping effects with the
combination of clean and adversarial data during training. This issue remains an open
research question.

We also evaluated the effect of using clean data augmentation techniques, such as stan-
dard crop and affine transformations, when using separate BN layers. However, no improve-
ment was achieved, and in some cases, separate BN layers even resulted in a reduction in
performance on clean data.

References

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular
margin loss for deep face recognition. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4690–4699, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Supplementary Material

Mean ratio = 1.524

(a) Standard Training (b) MDProp

Figure 2: t-SNE (Van der Maaten and Hinton (2008)) visualization of embedding space
of DML models trained using (a) standard training and (b) MDProp on the
CARS196 dataset (Krause et al. (2013)). The decreased mean πratio score for
MDProp means sparser embedding space.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE transactions on pattern analysis and machine intelligence, 33(1):
117–128, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proceedings of the IEEE international conference on computer
vision workshops, pages 554–561, 2013.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to infor-
mation retrieval. Natural Language Engineering, 16(1):100–103, 2010.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via
lifted structured feature embedding. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4004–4012, 2016.

Singh Kakizaki Araki

Method T
CUB200 Data CARS196 Data

Multisimilarity Loss ArcFace Loss Multisimilarity Loss ArcFace Loss

R@1 R@4 NMI πratio R@1 R@4 NMI πratio R@1 R@4 NMI πratio R@1 R@4 NMI πratio

ST - 62.80
[±0.70]

83.70
[±0.54]

68.55
[±0.38]

1.007 62.22
[±0.01]

83.18
[±0.23]

67.79
[±0.42]

0.726 81.68
[±0.19]

93.47
[±0.27]

69.43
[±0.38]

1.129 79.17
[±0.73]

92.23
[±0.21]

66.99
[±0.04]

0.661

AT

1 61.73
[±0.71]

83.20
[±0.07]

68.04
[±0.51]

1.001 60.18
[±0.22]

82.61
[±0.31]

67.75
[±0.05]

0.721 80.02
[±0.42]

92.59
[±0.09]

68.56
[±0.06]

1.082 76.43
[±0.11]

91.14
[±0.06]

67.14
[±0.04]

0.686

2 61.52
[±0.81]

82.84
[±0.18]

67.87
[±0.21]

0.994 60.30
[±0.10]

82.78
[±0.01]

67.78
[±0.01]

0.718 79.56
[±0.23]

92.38
[±0.13]

68.85
[±0.54]

1.091 76.70
[±0.04]

91.27
[±0.09]

66.90
[±0.06]

0.692

3 61.72
[±0.33]

83.02
[±0.48]

67.93
[±0.54]

0.987 60.03
[±0.21]

82.64
[±0.02]

67.61
[±0.14]

0.737 79.59
[±0.04]

92.54
[±0.21]

69.09
[±0.08]

1.107 76.79
[±0.04]

91.31
[±0.36]

67.41
[±0.25]

0.687

5 61.62
[±0.52]

83.13
[±0.41]

68.20
[±0.02]

0.993 60.26
[±0.62]

82.82
[±0.06]

67.81
[±0.09]

0.718 79.49
[±0.16]

92.32
[±0.04]

68.47
[±0.01]

1.094 76.90
[±0.07]

91.36
[±0.12]

66.96
[±0.34]

0.692

10 61.24
[±0.66]

83.03
[±0.28]

67.82
[±0.52]

0.996 60.11
[±0.42]

82.55
[±0.69]

67.81
[±0.11]

0.704 79.75
[±0.18]

92.53
[±0.05]

68.75
[±0.57]

1.078 76.67
[±0.15]

91.37
[±0.16]

67.13
[±0.16]

0.693

AP′ 1 63.69
[±0.13]

84.47
[±0.36]

69.15
[±0.27]

0.985 63.23
[±0.09]

84.11
[±0.05]

69.83
[±0.50]

0.723 82.37
[±0.96]

93.54
[±0.51]

70.10
[±1.13]

1.074 79.62
[±0.23]

92.63
[±0.18]

69.31
[±0.59]

0.681

MP′

2 64.34
[±0.69]

84.22
[±0.45]

69.50
[±0.28]

0.959 63.22
[±0.09]

84.24
[±0.13]

69.73
[±0.16]

0.720 82.72
[±0.18]

93.77
[±0.05]

70.27
[±0.78]

1.064 80.63
[±0.23]

93.24
[±0.18]

70.62
[±0.59]

0.689

3 64.71
[±0.41]

84.45
[±0.25]

69.73
[±0.14]

0.962 63.77
[±0.04]

84.60
[±0.45]

69.90
[±0.89]

0.718 83.13
[±0.22]

93.81
[±0.16]

70.64
[±0.24]

1.056 80.69
[±0.16]

93.12
[±0.06]

70.38
[±0.30]

0.689

5 64.45
[±0.38]

84.33
[±0.24]

69.63
[±0.28]

0.972 63.08
[±0.49]

84.22
[±0.31]

69.56
[±0.19]

0.716 82.35
[±0.06]

93.70
[±0.14]

70.13
[±0.24]

1.080 80.83
[±0.56]

93.24
[±0.54]

70.30
[±0.64]

0.688

10 64.30
[±0.29]

84.46
[±0.31]

69.37
[±0.51]

0.976 63.02
[±0.19]

84.22
[±0.26]

69.56
[±0.19]

0.712 81.42
[±0.02]

93.65
[±0.23]

70.92
[±0.30]

1.084 80.33
[±0.08]

93.05
[±0.13]

69.93
[±0.17]

0.687

MP′′

1,2 65.40
[±0.16]

84.72
[±0.01]

70.21
[±0.28]

0.956 64.13
[±1.01]

84.59
[±0.57]

70.26
[±0.13]

0.710 83.61
[±0.19]

94.21
[±0.11]

71.93
[±0.44]

1.049 81.75
[±0.45]

93.47
[±0.26]

71.52
[±0.03]

0.695

1,3 65.41
[±0.17]

84.78
[±0.16]

69.90
[±0.06]

0.966 64.21
[±0.42]

85.03
[±0.12]

70.33
[±0.62]

0.709 83.41
[±0.41]

94.27
[±0.06]

71.87
[±0.20]

1.069 81.86
[±0.13]

93.86
[±0.01]

71.64
[±0.31]

0.696

1,5 65.76
[±0.28]

85.23
[±0.21]

70.43
[±0.04]

0.974 64.07
[±0.11]

84.78
[±0.15]

70.32
[±0.06]

0.703 83.81
[±0.49]

94.31
[±0.26]

71.59
[±0.56]

1.055 82.02
[±0.36]

93.65
[±0.30]

72.43
[±0.18]

0.697

1,10 65.03
[±0.05]

84.89
[±0.13]

69.77
[±0.01]

0.962 63.57
[±0.06]

84.36
[±0.07]

69.94
[±0.35]

0.707 83.61
[±0.25]

94.30
[±0.06]

71.75
[±0.17]

1.073 81.75
[±0.12]

93.71
[±0.18]

71.35
[±0.52]

0.699

Table 1: This table provides detailed results for the clean data performance of our AdvProp-
D (AP′) and MDProp (MP) methods, as well as standard training (ST) (Roth et al.
(2021)) and adversarial training (AT) baselines. The MP

′ and MP
′′ variants

represent the addition of one and two extra BN layers, respectively. We evaluated
model performance using multisimilarity (Wang et al. (2019)) and ArcFace (Deng
et al. (2019)) losses. In comparison to Tab. 1 in the paper, this table demonstrates
additional results for models trained using multiple MTAX targets T , as well
as the effect of using separate batch normalization (BN) layers. Specifically, we
provide results for the use of MTAXs in the AT setting without separate BN layers
(T = 2, 3, 5, 10 for method AT in the table).

Supplementary Material

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta, Bjorn Ommer, and
Joseph Paul Cohen. Revisiting training strategies and generalization performance in
deep metric learning. In International Conference on Machine Learning, pages 8242–
8252. PMLR, 2020.

Karsten Roth, Timo Milbich, Bjorn Ommer, Joseph Paul Cohen, and Marzyeh Ghassemi.
Simultaneous similarity-based self-distillation for deep metric learning. In International
Conference on Machine Learning, pages 9095–9106. PMLR, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-
similarity loss with general pair weighting for deep metric learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5022–5030,
2019.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Singh Kakizaki Araki

Method T
CUB200 Data CARS196 Data

Multisimilarity Loss ArcFace Loss Multisimilarity Loss ArcFace Loss

R@1 R@4 NMI πratio R@1 R@4 NMI πratio R@1 R@4 NMI πratio R@1 R@4 NMI πratio

ST - 32.96
[±0.32]

64.40
[±0.35]

54.38
[±0.45]

1.429 38.45
[±1.19]

67.62
[±1.66]

55.92
[±0.46]

0.761 51.98
[±0.91]

79.99
[±0.80]

54.29
[±0.74]

1.455 34.82
[±1.14]

64.43
[±0.19]

42.85
[±0.20]

0.943

AT

1 38.88
[±0.60]

70.67
[±0.18]

58.33
[±0.21]

1.087 39.44
[±1.80]

70.04
[±0.51]

58.68
[±0.44]

0.743 52.42
[±0.11]

81.13
[±0.15]

56.52
[±0.60]

1.239 36.84
[±0.80]

67.87
[±0.62]

45.99
[±0.56]

0.829

2 39.63
[±1.31]

71.55
[±0.68]

57.85
[±0.38]

1.078 39.78
[±1.07]

69.61
[±0.93]

58.65
[±0.57]

0.732 52.84
[±0.04]

81.31
[±0.42]

56.15
[±0.20]

1.214 37.33
[±0.42]

67.73
[±0.34]

46.28
[±0.01]

0.838

3 39.53
[±1.62]

71.79
[±0.82]

58.28
[±0.66]

1.101 38.90
[±0.49]

69.51
[±0.47]

57.34
[±0.62]

0.764 51.90
[±0.38]

80.74
[±0.13]

55.20
[±0.32]

1.245 37.71
[±0.22]

68.78
[±0.56]

46.44
[±0.76]

0.833

5 40.76
[±0.61]

72.24
[±0.59]

58.86
[±0.48]

1.088 39.27
[±0.86]

70.01
[±1.37]

57.59
[±0.08]

0.758 52.16
[±0.44]

80.74
[±0.23]

56.37
[±0.47]

1.216 37.27
[±1.03]

68.41
[±0.33]

46.26
[±0.45]

0.844

10 39.35
[±1.08]

72.07
[±0.40]

67.82
[±0.52]

1.080 39.52
[±0.32]

69.18
[±0.18]

58.07
[±0.67]

0.745 52.32
[±1.63]

81.21
[±1.11]

55.55
[±0.28]

1.264 37.75
[±0.21]

68.60
[±0.66]

46.45
[±0.16]

0.827

AP′ 1 58.80
[±2.15]

83.38
[±0.08]

62.21
[±0.29]

0.921 51.24
[±0.96]

77.81
[±0.09]

63.33
[±1.04]

0.712 79.11
[±1.35]

93.05
[±0.43]

70.87
[±0.99]

0.978 65.67
[±1.24]

87.11
[±0.83]

62.01
[±0.57]

0.723

MP′

2 56.99
[±0.45]

82.13
[±0.28]

66.69
[±0.30]

0.831 50.58
[±0.82]

78.23
[±0.49]

63.30
[±1.29]

0.691 79.78
[±0.47]

92.89
[±0.54]

71.09
[±0.76]

0.911 65.29
[±1.24]

87.38
[±0.83]

62.17
[±0.57]

0.728

3 57.06
[±1.15]

81.42
[±0.80]

67.03
[±0.68]

0.838 50.96
[±0.28]

77.84
[±0.42]

62.73
[±0.36]

0.705 78.18
[±0.52]

92.55
[±0.38]

71.21
[±0.52]

0.896 64.76
[±0.71]

86.88
[±0.31]

62.38
[±0.25]

0.726

5 55.11
[±1.65]

81.09
[±1.25]

66.52
[±0.97]

0.858 49.74
[±0.94]

77.24
[±0.77]

62.48
[±0.12]

0.698 78.27
[±0.01]

92.62
[±0.23]

69.39
[±0.59]

0.914 63.53
[±0.05]

86.47
[±0.06]

61.66
[±0.16]

0.735

10 55.28
[±4.07]

81.00
[±1.19]

65.46
[±0.93]

0.841 49.01
[±0.93]

76.97
[±0.44]

61.99
[±0.63]

0.707 77.63
[±0.37]

92.37
[±0.04]

69.75
[±0.75]

0.925 61.54
[±0.54]

85.05
[±0.48]

59.03
[±1.14]

0.739

MP′′

1,2 57.75
[±0.19]

82.93
[±0.18]

68.07
[±0.62]

0.838 53.30
[±1.22]

81.22
[±0.46]

67.79
[±0.67]

0.662 80.84
[±0.13]

93.35
[±0.23]

72.58
[±0.76]

0.912 74.88
[±0.76]

91.86
[±0.27]

70.67
[±0.28]

0.681

1,3 58.23
[±0.15]

82.13
[±0.15]

67.73
[±0.19]

0.807 54.01
[±0.35]

80.96
[±0.10]

67.70
[±0.22]

0.654 80.17
[±0.01]

93.45
[±0.08]

72.20
[±1.12]

0.894 73.94
[±0.39]

91.67
[±0.35]

70.57
[±0.21]

0.691

1,5 57.27
[±1.91]

82.21
[±0.84]

68.06
[±0.61]

0.836 51.93
[±0.33]

80.15
[±0.27]

66.28
[±0.02]

0.645 80.25
[±0.19]

93.50
[±0.01]

72.37
[±0.06]

0.899 73.91
[±0.07]

91.28
[±0.08]

69.01
[±1.13]

0.688

1,10 55.51
[±1.08]

81.78
[±0.27]

67.20
[±0.01]

0.846 51.64
[±0.50]

79.90
[±0.42]

65.86
[±0.74]

0.655 79.31
[±1.10]

93.10
[±0.02]

71.17
[±0.94]

0.919 72.86
[±0.13]

90.95
[±0.14]

69.00
[±1.02]

0.686

Table 2: This table provides detailed results for the adversarial data performance of our
AdvProp-D (AP′) and our MDProp (MP) methods, as well as the baseline stan-
dard training (ST) (Roth et al. (2021)) and adversarial training (AT) methods,
when subjected to single-targeted PGD-20 attacks generated with ϵ = 0.01. Per-
formance is evaluated for models trained using multisimilarity (Wang et al. (2019))
and ArcFace (Deng et al. (2019)) losses. In addition to the results presented in
Tab. 1 of the paper, this table includes results for models trained with multiple
targeted adversarial examples (MTAXs) and the impact of using separate batch
normalization (BN) layers, demonstrating the additional results for the AT set-
ting without separate BN layers (T = 2, 3, 5, 10 for method AT). These results
offer a comprehensive analysis of the performance and robustness of our methods
in adversarial data scenarios, enabling better comparison and evaluation of their
effectiveness.

Supplementary Material

Method T
CUB200 Data CARS196 Data

Multisimilarity Loss ArcFace Loss Multisimilarity Loss ArcFace Loss

R@1 R@4 NMI πratio R@1 R@4 NMI πratio R@1 R@4 NMI πratio R@1 R@4 NMI πratio

ST - 16.60
[±0.17]

35.64
[±0.37]

30.32
[±0.37]

2.957 10.35
[±0.36]

30.69
[±0.86]

38.68
[±0.36]

1.252 17.80
[±0.21]

36.84
[±0.75]

23.15
[±0.09]

5.245 10.44
[±0.35]

31.81
[±0.47]

34.53
[±0.04]

1.398

AT

1 16.58
[±0.29]

44.67
[±0.45]

46.14
[±0.18]

1.914 16.67
[±0.02]

42.70
[±0.26]

47.65
[±0.05]

1.009 22.53
[±0.24]

53.85
[±0.40]

45.52
[±0.01]

2.351 11.94
[±0.44]

35.25
[±0.32]

36.70
[±0.42]

1.148

2 16.06
[±0.84]

43.48
[±0.89]

45.99
[±0.22]

1.901 17.48
[±1.02]

43.38
[±1.26]

47.79
[±0.49]

0.992 20.84
[±1.03]

52.65
[±0.97]

44.32
[±0.43]

2.273 12.33
[±0.49]

35.90
[±0.22]

37.21
[±0.11]

1.153

3 17.08
[±0.91]

41.19
[±0.50]

46.33
[±0.10]

1.951 16.30
[±0.14]

42.88
[±0.19]

47.80
[±0.32]

1.031 21.82
[±0.04]

53.52
[±0.09]

43.55
[±0.67]

2.337 12.54
[±0.45]

35.77
[±0.47]

36.63
[±0.84]

1.142

5 16.47
[±0.56]

44.29
[±0.95]

46.16
[±0.40]

1.921 16.38
[±0.16]

42.80
[±0.58]

47.81
[±0.23]

1.021 21.20
[±0.20]

53.43
[±0.13]

44.32
[±0.65]

2.297 11.52
[±0.36]

35.81
[±1.03]

36.81
[±1.19]

1.170

10 16.60
[±0.42]

44.21
[±0.69]

46.13
[±0.44]

1.899 17.12
[±0.28]

43.96
[±1.46]

47.81
[±0.03]

1.010 21.26
[±0.25]

53.60
[±0.18]

44.30
[±0.60]

2.394 11.86
[±1.02]

35.58
[±0.68]

37.50
[±0.35]

1.144

AP′ 1 20.91
[±0.44]

50.80
[±0.68]

47.97
[±0.47]

1.857 18.11
[±0.33]

44.58
[±0.30]

48.82
[±0.41]

1.030 26.40
[±0.32]

59.86
[±0.67]

46.92
[±0.52]

2.133 14.42
[±0.28]

39.58
[±0.72]

39.42
[±0.39]

1.125

MP′

2 19.33
[±0.20]

48.62
[±0.52]

47.61
[±0.56]

1.740 17.98
[±1.39]

44.72
[±1.11]

49.00
[±0.08]

1.010 26.86
[±1.07]

59.34
[±0.53]

47.53
[±0.23]

1.992 14.38
[±0.28]

39.94
[±0.72]

39.72
[±0.40]

1.155

3 18.90
[±0.23]

48.00
[±0.23]

47.56
[±0.14]

1.760 17.80
[±0.16]

44.97
[±0.86]

49.39
[±0.73]

1.020 25.83
[±0.36]

59.43
[±0.50]

47.28
[±0.79]

2.021 14.35
[±0.09]

39.61
[±0.30]

39.93
[±0.02]

1.157

5 18.44
[±0.62]

48.09
[±0.74]

47.48
[±0.50]

1.794 18.96
[±1.49]

45.32
[±0.51]

48.73
[±0.30]

1.011 25.05
[±0.45]

58.85
[±0.47]

46.69
[±0.92]

2.047 13.57
[±0.84]

39.24
[±0.33]

40.02
[±0.94]

1.149

10 18.80
[±1.22]

48.30
[±1.08]

47.21
[±0.41]

1.735 17.73
[±0.40]

45.06
[±0.84]

48.70
[±0.57]

1.022 25.10
[±0.91]

58.48
[±0.14]

46.23
[±0.25]

2.039 13.10
[±0.11]

38.75
[±0.76]

39.31
[±0.79]

1.156

MP′′

1,2 19.84
[±0.79]

50.38
[±0.56]

49.11
[±1.21]

1.729 18.14
[±0.01]

49.04
[±0.29]

49.47
[±0.41]

1.020 28.40
[±0.40]

64.10
[±0.27]

50.03
[±0.19]

1.985 26.95
[±0.53]

61.25
[±0.14]

49.45
[±0.37]

0.991

1,3 20.25
[±0.10]

50.51
[±0.37]

49.00
[±0.29]

1.636 18.29
[±0.44]

47.45
[±0.72]

49.75
[±0.16]

1.011 28.84
[±0.73]

63.87
[±0.61]

49.98
[±0.06]

1.933 26.46
[±0.15]

60.62
[±0.33]

49.53
[±0.44]

1.001

1,5 20.61
[±0.16]

50.61
[±0.23]

49.42
[±0.62]

1.731 18.93
[±0.38]

48.45
[±0.79]

49.53
[±0.48]

0.994 28.19
[±0.65]

63.81
[±0.25]

50.12
[±0.37]

1.961 26.27
[±0.19]

60.81
[±0.26]

49.68
[±0.05]

1.002

1,10 20.01
[±0.86]

50.06
[±0.62]

49.06
[±0.65]

1.705 17.69
[±0.77]

47.53
[±1.51]

48.66
[±0.71]

0.999 27.97
[±0.24]

63.24
[±0.44]

50.04
[±0.45]

1.979 26.80
[±0.58]

60.57
[±0.33]

48.92
[±0.44]

1.004

Table 3: This table presents a detailed comparison of the adversarial data performance of
our AdvProp-D (AP′) and MDProp (MP) methods against the baseline standard
training (ST) and adversarial training (AT) (Roth et al. (2021)), with a stronger
single-targeted PGD-20 attack generated using ϵ = 0.1. We evaluated the per-
formance of the models trained using both Multisimilarity (Wang et al. (2019))
and ArcFace (Deng et al. (2019)) losses. Compared to Tab. 1 in the paper, this
table includes additional results for the models’ robustness trained using multiple
MTAX targets T and the impact of separate batch normalization layers on the
results. We present the additional results for the AT setting, where separate BN
layers were not used, with T = 2, 3, 5, 10 for the method AT in the table. This
comprehensive comparison provides insights into the effectiveness of our methods
against different types of attacks and highlights the impact of various hyperpa-
rameters on the models’ performance.

Singh Kakizaki Araki

Method T R@1 R@4 NMI πratio

ST - 36.35
[±0.41]

62.23
[±0.87]

47.69
[±0.42]

1.447

AT

1 55.31
[±0.70]

82.40
[±0.25]

67.83
[±0.22]

0.755

2 53.76
[±0.92]

81.62
[±0.29]

66.84
[±0.26]

0.757

3 54.16
[±1.01]

82.43
[±0.19]

67.21
[±0.66]

0.775

5 54.72
[±0.17]

81.91
[±0.64]

67.73
[±0.54]

0.758

10 54.32
[±0.22]

81.66
[±0.25]

67.74
[±0.15]

0.765

AP′ 1 59.97
[±0.17]

83.83
[±1.02]

71.27
[±1.74]

0.746

MP′

2 61.00
[±0.53]

86.43
[±0.50]

72.14
[±0.76]

0.612

3 61.13
[±0.85]

86.05
[±0.41]

71.88
[±0.61]

0.617

5 60.65
[±0.54]

86.19
[±0.55]

71.92
[±0.58]

0.632

10 60.55
[±2.49]

85.76
[±1.39]

71.45
[±0.29]

0.618

MP′′

1,2 62.69
[±0.00]

86.96
[±0.45]

72.68
[±0.81]

0.621

1,3 62.04
[±0.07]

86.34
[±0.18]

72.81
[±0.10]

0.606

1,5 61.41
[±0.38]

86.49
[±0.17]

72.33
[±0.75]

0.624

1,10 60.11
[±1.56]

86.38
[±0.28]

71.37
[±0.33]

0.619

Table 4: Detailed results for the adversarial data performance of our AdvProp-D (AP′)
and our MDProp (MP) methods, compared against the baseline standard training
(ST) (Roth et al. (2021)) and adversarial training (AT) methods, when subjected
to white-box multi-targeted PGD-20 attacks with T = 5 using ϵ = 0.01.
The evaluation was conducted on models trained with multisimilarity loss (Wang
et al. (2019)) on CUB200 (Wah et al. (2011)) data.

Supplementary Material

Method T
ResNet50+S2SD Method ResNet18 ResNet152

Clean CUB200 Data Adversarial CUB200 Data Clean CUB200 Data Clean CUB200 Data

R@1 R@4 NMI πratio R@1 R@4 NMI πratio R@1 R@4 NMI πratio R@1 R@4 NMI πratio

ST - 67.69
[±0.13]

86.32
[±0.08]

71.46
[±0.13]

1.123 47.35
[±1.24]

76.08
[±0.64]

60.26
[±0.40]

1.393 58.81
[±0.52]

81.34
[±0.33]

66.12
[±0.45]

1.131 65.11
[±0.28]

84.64
[±0.10]

69.70
[±0.02]

0.967

AT

1 66.46
[±0.59]

85.63
[±0.12]

70.78
[±0.40]

1.092 45.13
[±1.09]

75.40
[±0.40]

60.89
[±0.25]

1.416 58.33
[±0.13]

81.15
[±0.11]

65.54
[±0.31]

1.093 64.98
[±0.47]

84.83
[±0.46]

70.56
[±0.14]

0.896

2 66.10
[±0.45]

85.52
[±0.15]

70.69
[±0.11]

1.109 46.49
[±0.04]

75.59
[±0.05]

60.51
[±0.46]

1.383 58.90
[±0.52]

81.27
[±0.15]

65.58
[±0.40]

1.088 64.44
[±0.19]

84.59
[±0.21]

70.49
[±0.03]

0.923

3 66.14
[±0.95]

85.63
[±0.37]

70.76
[±0.07]

1.099 45.90
[±0.27]

75.73
[±0.08]

61.23
[±0.29]

1.419 58.62
[±0.15]

81.35
[±0.01]

65.90
[±0.23]

1.092 64.61
[±0.88]

84.32
[±0.17]

69.91
[±0.54]

0.893

5 66.18
[±0.99]

85.55
[±0.11]

70.67
[±0.35]

1.095 46.70
[±1.85]

75.71
[±0.81]

60.50
[±0.12]

1.391 58.45
[±0.23]

81.15
[±0.02]

65.85
[±0.28]

1.093 64.46
[±0.40]

84.27
[±0.31]

70.60
[±0.05]

0.910

10 66.08
[±0.67]

85.50
[±0.27]

70.91
[±0.50]

1.113 44.48
[±0.41]

75.50
[±0.51]

60.59
[±1.23]

1.414 58.47
[±0.16]

81.37
[±0.04]

65.77
[±0.03]

1.091 64.06
[±0.26]

84.18
[±0.14]

70.22
[±0.72]

0.893

AP′ 1 68.14
[±0.16]

86.45
[±0.05]

71.18
[±0.10]

1.091 62.47
[±1.37]

84.18
[±0.59]

69.64
[±0.11]

1.102 60.91
[±0.47]

82.52
[±0.44]

66.52
[±0.57]

1.028 66.95
[±0.04]

85.88
[±0.23]

71.72
[±0.21]

0.916

MP′

2 68.32
[±0.23]

86.52
[±0.01]

71.80
[±0.01]

1.111 63.10
[±0.84]

85.10
[±0.19]

69.81
[±0.69]

1.094 60.91
[±0.54]

82.33
[±0.00]

66.59
[±0.30]

1.042 66.99
[±0.33]

85.65
[±0.21]

71.80
[±0.13]

0.907

3 68.76
[±0.24]

86.47
[±0.27]

71.78
[±0.29]

1.106 62.47
[±0.13]

84.66
[±0.84]

69.62
[±0.86]

1.109 60.92
[±0.18]

82.82
[±0.11]

66.56
[±0.30]

1.024 66.66
[±0.24]

85.77
[±0.03]

71.73
[±0.35]

0.910

5 68.54
[±0.43]

86.45
[±0.16]

71.86
[±0.01]

1.108 62.88
[±1.05]

84.41
[±0.02]

69.79
[±0.02]

1.105 61.41
[±0.62]

82.59
[±0.23]

66.46
[±0.30]

1.045 66.77
[±0.08]

85.51
[±0.28]

71.53
[±0.03]

0.914

10 68.48
[±0.45]

86.46
[±0.14]

71.86
[±0.01]

1.149 62.01
[±0.40]

84.07
[±0.02]

69.84
[±0.10]

1.138 60.82
[±0.38]

82.33
[±0.27]

66.49
[±0.14]

1.054 66.38
[±0.64]

85.28
[±0.35]

71.25
[±0.01]

0.910

MP′′

1,2 68.62
[±0.26]

86.76
[±0.23]

72.28
[±0.17]

1.197 65.23
[±0.21]

86.75
[±0.15]

70.42
[±0.94]

1.044 61.68
[±0.66]

83.00
[±0.17]

67.58
[±0.32]

1.042 67.48
[±0.61]

86.08
[±0.13]

72.25
[±0.13]

0.907

1,3 69.04
[±0.21]

86.88
[±0.16]

71.99
[±0.13]

1.165 64.83
[±0.54]

86.05
[±1.06]

70.27
[±0.29]

1.026 61.64
[±0.92]

83.18
[±0.54]

67.57
[±0.69]

1.048 67.22
[±0.05]

86.00
[±0.25]

72.48
[±0.43]

0.910

1,5 69.08
[±0.23]

87.19
[±0.19]

71.98
[±0.17]

1.252 65.01
[±0.02]

86.60
[±0.08]

71.14
[±0.21]

1.034 61.67
[±0.47]

82.75
[±0.17]

67.38
[±0.47]

1.091 67.63
[±0.16]

86.20
[±0.06]

72.61
[±0.01]

0.902

1,10 68.74
[±0.00]

86.87
[±0.24]

72.54
[±0.39]

1.208 64.35
[±0.17]

86.52
[±0.24]

70.65
[±0.89]

1.039 61.49
[±0.11]

82.84
[±0.19]

67.17
[±0.36]

1.052 67.12
[±0.31]

86.27
[±0.13]

72.05
[±0.08]

0.920

Table 5: The table presents detailed results showcasing the clean data performance and ro-
bustness gains achieved by the AdvProp-D and MDProp methods across ResNet18,
ResNet50, and ResNet152 architectures of varying sizes on the CUB200 (Wah
et al. (2011)) dataset. The implementation of ResNet50 utilized the state-of-the-
art S2SD method (Roth et al. (2021)). The table highlights the effectiveness of
our proposed methods in improving the clean data performance and robustness of
DML models on the CUB200 dataset. The results demonstrate the generalization
capability of our methods across various architecture sizes, showcasing their ability
to provide consistent improvements in performance.

Singh Kakizaki Araki

Method T
CUB200 Data CARS196 Data

R@1 R@4 NMI πratio R@1 R@4 NMI πratio

MP′′′

1,3,5 65.13
[±0.84]

85.07
[±0.58]

70.25
[±0.01]

0.985 84.08
[±0.03]

94.57
[±0.25]

72.23
[±0.47]

1.058

1,3,10 65.11
[±0.55]

84.93
[±0.47]

69.93
[±0.01]

0.988 84.07
[±0.23]

94.46
[±0.11]

71.98
[±0.25]

1.078

Table 6: Results of MDProp (MP) method with three additional BN layers on CUB200
(Wah et al. (2011)) and CARS 196 (Krause et al. (2013)) datasets using multisim-
ilarity (Wang et al. (2019)) loss. The table presents the performance of the method
for different numbers of attack targets T used for adversarial data generation.

Method T R@1 R@4 NMI πratio

ST - 64.97 85.15 66.52 1.163

AT

1 65.20 84.65 66.59 1.348

2 64.87 84.49 66.89 1.352

3 65.03 84.78 66.76 1.352

5 65.23 84.88 67.09 1.354

10 65.30 84.92 66.81 1.346

AP′ 1 68.85 68.91 68.33 1.214

MP

2 68.39 86.56 69.30 1.211

3 68.91 86.69 68.85 1.181

5 68.19 86.36 68.63 1.190

10 68.62 86.95 69.24 1.170

Table 7: Results when an embedding size of 512 was used while training the ResNet152
architecture with the S2SD (Roth et al. (2021)) method on the CUB200 (Wah
et al. (2011)) dataset. MDProp, followed by AdvProp-D, demonstrated significant
clean data performance gains over the baselines.

Supplementary Material

Method R@1 R@4 NMI

ST 62.80
[±0.70]

83.70
[±0.54]

68.55
[±0.38]

MP 61.68
[±0.52]

82.55
[±0.32]

68.05
[±0.21]

MP′ 63.56
[±0.84]

83.75
[±0.58]

68.97
[±0.41]

Table 8: Comparison of MDProp’s performance on CUB200 Wah et al. (2011) dataset, using
multisimilarity Wang et al. (2019) loss for training with unadversarial examples.
The table compares the use of separate BN layers (MP’) versus training without
separate BN layers (MP) in addition to the standard training baseline (ST). All
experiments were conducted using ResNet50 architecture. T denotes the number
of attack targets used for generating different types of adversarial data.

	Evaluation Metrics
	Recall@k (recall)
	Normalized Mutual Information (NMI) (nmi)
	Embedding Space Density (ratio)

	Benchmarks
	Complete Experimental Setup
	DML Loss Functions
	Multisimilarity (multisimilarity)

	Adversarial Training with Targeted Attacks
	Evaluating Multi-Distribution Inputs

	Detailed Results
	Performance on MTAX Inputs
	Effect of Number of Adversarial Targets T
	Results for PGD-20 attacks with =0.1
	Results When MDProp Use 4 Separate BN Layers
	Results for MDProp With Unadversarial Examples

