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Abstract

Graph classification is a crucial task in the field of graph learning with numerous practi-
cal applications. Typically, the first step is to construct vertex features by the statistical
information of the graph. Existing graph neural networks often adopt the one-hot degree
encoding strategy to construct vertex features. Then, these features are fed into a linear
layer, which outputs a low-dimensional real vector serving as the initial vertex represen-
tation for the graph model. However, the conventional approach of constructing vertex
features may not be optimal. Intuitively, the method of constructing vertex features can
have significant impact on the effectiveness of model. Hence, the construction of informa-
tive vertex features from the graph and the design of an efficient graph model to process
these features pose great challenges. In this paper, we propose a novel method for con-
structing hierarchical topology vertex features and designing a hybrid convolution method
to handle these features. Experimental results on public graph datasets of Social Networks,
Small Molecules, and Bioinformatics demonstrate the superior performance of our method
compared to baselines.

Keywords: Vertex Feature Construction, Graph Convolution, Hierarchical Topology Fea-
ture, Hybrid Convolution Method.

1. Introduction

Graph is consisted of vertices and edges, where vertices represent entities and edges repre-
sent relationships between entities. And graph is everywhere. That is why many researchers
pay attention to graph learning recently. Up to now, neural networks achieved excellent
performance in many tasks of graph learning, such as vertex classification, graph classi-
fication, and link prediction. Graph neural networks (GNNs), a kind of well-preforming
models, have been widely applied to deal with graph classification. Briefly review it below,
GNNs can be divided into Graph Convolutional Neural Networks (GCNs), Graph Auto
Encoders (GAEs), and Graph Attention Networks (GATs). In order to study representa-
tions of vertices, we can use initial vertex features and aggregate them over the topological
structure. In this way, a common pre-step when using these neural networks to process
graph data is to construct vertex features (if no pre-prepared vertex features are available).
As the first step, this operation can be considered as the basis of graph learning. Therefore,
how to construct effective vertex features becomes an important issue in graph learning.
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In recent works, one of the most widely used methods is to construct vertex features by
degree. Degree-based vertex features are essentially characterized by the connectivity of
vertices in the graph. It can intuitively reflect the connectivity property of vertices, which
is well reasonable and easy to manage with high efficiency. However, in complex graphs,
the degree cannot fully represent the importance of a vertex, and often obeys a power-law
distribution, which means using only degree may not be a proper way.

For the learning process, convolution handle the transfer and fusion of graph information,
it is an essential and widely used mathematical method. Generally, the graph convolution
can be categorized into two types: spectral convolution and spatial convolution. For spec-
tral convolution, we use the Hadamard product and Fourier inverse transform on the input
signal in the spectral domain to aggregate vertices’ information. And for spatial convo-
lution, it defines convolution operation directly in the spatial domain, this gives it more
flexibility, while it also suffers from over-smoothing Li et al. (2018). We have noticed that
both convolution methods above only use the 1-hop adjacency relations as the aggregation
field of vertex features (see Figure 1(a)), which may not be informative enough intuitively.
Obviously, how to construct a more powerful vertex feature and a more effective convolution
method deserve further exploration.

Figure 1: Different Levels of Structural Information (a) Classical Convolution using 1-hop
Adjacency; (b) Convolution using 2-hop Adjacency; (c) Global topological struc-
ture information with multi-hop neighbors.

Figuratively Speaking, the essence of graph convolution can be regarded as vertex fea-
tures aggregation by graph structure. In this paper, in order to utilize the rich structural
information in graph, we propose a new graph topology feature construction method called
Hierarchical Topology Feature (HTF ), which constructs topology features fusing different
levels of topological relationships based on the adjacency relationship of vertices in the graph
(Figure 1 (a)&(b)&(c)) and use the One-Hot degree encoding method as the origin vertex
features. Based on the HTF , this paper designs a graph convolution method called Hybrid
Convolution Method (HCM), which is specialized in processing these fused features and can
operate convolution on different levels of topology at the same time. Our contributions are
as follows:
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1) Hierarchical Topology Feature (HTF ): We introduce a pseudo-node in the global
graph and use a fixed step length random walker to obtain the global topological
structure of the vertex, while the first-order adjacency matrix is fused to form a
structure matrix containing the hierarchical topological structure. After giving the
initial vertex features by one-hot degree encoding, the features are multiplied with the
structure matrix to obtain the target vertex features. In addition, the use of One-Hot
degree encoding also alleviates problems due to uneven degree distribution, because
it uses the degree as the index of the feature vector with a value of 1 and all others
are 0.

2) Hybrid Convolution Method (HCM): Based on the characteristics of HTF , this paper
modifies the traditional graph convolution formula to form a model that can simultane-
ously perform different levels of graph convolution and fusing them together. In HCM,
vertex features can be computed on the first-order neighborhood structure, second-
order neighborhood structure, and random neighborhood structure (which represents
the global structure information) of the graph in a single convolution operation, greatly
improving the efficiency and learning ability of graph convolution models. Specifically,
we use additive arithmetic to perform all the fusion operations.

3) Mathematics and Experiments: We give the mathematical form of the HTF and
HCM, and explain through derivation that these method can perform convolution on
different levels structures. In addition, experimental results on benchmark graph clas-
sification datasets from different domains show that our Hybrid Convolution Method
is highly competitive with state-of-the-art models, and significantly outperforms many
other baseline models for graph classification.

2. Related Work

Graph learning refers to the process of extracting meaningful information and patterns from
graph structured data. The typical feature of graph is that data are organized into nodes
(vertices) and edges, where nodes represent entities and edges represent relations between
nodes. The goal of graph learning is to leverage the inherent structural information of graphs
to solve various tasks such as node classification, link prediction, and graph classification.
Graph convolution networks (GCNs), are classical and powerful method for learning from
graphs. Graph convolution can be divided into spectral approaches (including GCN, AGCN
Park et al. (2020), STSGCN Song et al. (2020), etc.) and spatial approaches (including
GAT, GraphSAGE, SACNN Li et al. (2020a), etc.). In recent years, GCN research has
evolved simultaneously in the optimization of computational resources Gao et al. (2018);
Hu et al. (2021), feature enhancement Abu-El-Haija et al. (2019), and node embedding
Lee et al. (2019); Mendonça et al. (2020). An end-to-end structure-aware convolutional
network (SACN) Shang et al. (2019) combines the benefits of GCN and ConvE together.
It has the composition of an encoder that can adapt from the local information quantity
and a decoder with identical connection prediction performance to ConvE. Conventional
GCNs often suffer from limited expressiveness due to the simplicity of input node features,
as well as confinement to local neighborhood structures. Recent advances have attempted
to enhance graph learning in different ways. Some work obtain richer node features by
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sampling techniques such as random walks, while others explore hierarchical pooling to
select and aggregate features of different granularity.

Many regular methods are designed to learn node-level representations based on the
adjacent neighbor clustering scheme Tan et al. (2022). Specifically, they update the node
embeddings by iteratively clustering the embeddings of adjacent nodes, for example, GCN
Kipf and Welling (2016), GAT Veličković et al. (2017), and GraphSAGE Hamilton et al.
(2017). These models share the commonality of using information from adjacent neighbors
to learn and update node representations. GCN considers first-order neighbors, which may
underperform in handling long distance dependencies. GAT incorporates attention mecha-
nisms to dynamically learn the importance of different nodes, but this comes at the cost of
higher computational overhead and resource demands. GraphSAGE allows node sampling
and is applicable to large-scale graphs, but sampling may lead to information loss, making
it unsuitable for all graph structures. In this paper, Hierarchical Topology Feature(HTF )
achieves sufficient random walk sampling by introducing pseudo-node. This enables it to
directly and effectively integrate global and local multi-granularity structural information,
learn node features with richer expressive capabilities, and provide more robust structural
support for subsequent graph-learning tasks. The integrated information support in HTF
encompasses the global nature of the neighbor structure, the computational efficiency, and
the richness of characteristics. Additionally, a network embedding algorithm uses a random
walk (similar to the skip gram) method to capture the local structure of a graph Rozember-
czki et al. (2021). Furthermore, a GNN architecture based on Generalized PageRank (GPR)
optimizes node features and topological information extraction through adaptive learning of
GPR weights Chien et al. (2020). Recent advancements in Graph Neural Networks (GNNs)
have introduced methods for encoding node connection relationships, effectively encapsulat-
ing structural information in a manageable fashion Li et al. (2020b); Dwivedi et al. (2021).
Graph convolutional networks (GCNs) has been widely used in computer vision Pang et al.
(2022), recommendation systems Zhang et al. (2019), knowledge graph Li et al. (2021) graph
classification Nagar et al. (2021), and flow prediction Guo et al. (2019).

Compared to these methods, HTF realizes the multi-granularity of structural informa-
tion aggregation in a more direct and efficient way, without complex training processes or
additional feature extraction modules. By aggregating the first-order adjacency matrix and
the global random walk matrix, HTF jointly incorporates the global and local structure
at the feature level, providing richer structured feature inputs. Hierarchical pooling can be
used to store information from different granularity, supported by relevant research. e.g.
ASAP Ranjan et al. (2020), SAGPool Lee et al. (2019), DiffPool Ying et al. (2018), and
Graph U-Net Gao and Ji (2019). HTF realizes the joint utilization of multi-granularity
structural information in a more concise and efficient way. Geometric graph convolution
network (Geom-GCN) Pei et al. (2020) that breaks free from the constraints of long-term
dependencies in message passing neural networks (MPNN) and addresses the challenge of
losing neighborhood structure. Geo-GCN achieves efficient transformation learning of the
graph, encompassing node embedding, structural neighborhood, and dual-level aggregation.
While Geom-GCN focuses on overcoming long-term dependency issues and neighborhood
structure loss, HCM concentrates on multi-granularity convolution and hierarchical infor-
mation integration. Compared to Geom-GCN, the advantage of HCM lies in its introduc-
tion of multi-granularity convolution, improved convolution efficiency, enhanced learning
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capabilities, and support for hierarchical information integration. HCM introduces multi-
granularity convolution, bolsters convolution efficiency, enhances learning capacity, and fa-
cilitates hierarchical information integration, establishing it as a potent and versatile graph
convolution method for various graph learning tasks. In contrast to SACN, HCM is based
onHTF , allowing the more comprehensive capture of structural information from the graph
and providing a more efficient and flexible solution for the processing of graph data.

3. Preliminary

In this paper, we work on constructing vertex features containing more information about
graph structure and more efficient convolution operations. Given a graph G, we define
the vertices as V , the edges as E, the first-order adjacency matrix as A, the pseudo-node
connected to all nodes as P , the perceptible global topology of vertex which is defined by a
fixed step length random walker as matrix T , the degree matrix as D, the initial encoding
of the vertex features by one-hot degree as H, and the different levels of convolution use a
shared weight matrix W .

4. Methodology

In this section, we will detail the vertex feature construction method and the graph con-
volution method in this paper. From the general workflow, the HTF is first constructed,
then the HTF is entered into a linear layer for pre-processing, after which it is convoluted
using the HCM. In HCM, a convolution operation includes two parts, hybrid convolution
and linear transformation. After two layers of HCM, the output is obtained by two fully
connected layers.

4.1. Hierarchical Topology Feature Construction

For a graph G, we look at the different levels structures in the graph from the vertex
perspective, and in this paper, we divide the structural information into three part. First,
the first-order nearest neighborhood is the basic structural information in the graph. By
analyzing the first-order nearest neighbors, the nature of connections between them can be
revealed. This structure can be represented by the first-order adjacency matrix A, in which
the existence of edges between vertices is indicated by 0 or 1. The second-order adjacency
structure indicates the number of two-step connections between vertices. By analyzing the
second-order adjacency matrix, the connectivity between the far distant neighbors can be
explored which is important for discovering hidden information at the community level, it
can be represented by A2. The global structure refers to the global topology of the entire
graph, that is, all nodes in the graph and the connectivity between them, and the global
structure provides a higher-level perspective that can reveal the features and patterns of
the entire graph, and it is represented using the matrix T in this paper.

In this paper, these three different levels of graph structures are combined with the
construction of vertex features and the convolution method. It is easy to get first-order
adjacency structure and the second-order neighbor structure, so how to obtain the global
graph structure is a key point here.
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We introduce a pseudo-node P in the graph which is the first-order neighbor of all
vertices, and then perform a fixed-step random wander from each vertex vi (except the
pseudo-node P ), and record the vertices vj visited by the random wander using a matrix T
with all zeroes initially, that is, the position (vi, vj) is recorded as 1. In this way, after we
have performed the above operations on all vertices, we can obtain a matrix containing the
multi-hop neighbor relation information which is the global topological structure informa-
tion T . The main purpose of introducing pseudo-node is to avoid the problems of random
wandering interruption and imbalance sampling caused by isolated vertices. In addition,
the step length of random wandering is set to a fixed value of 6 in this paper, referring
to the sociological six-degree theory, i.e., the phenomenon that people can be connected
with each other through a limited chain of social relationships, and any two people can be
connected with each other through no more than six intermediaries at most.

After obtaining A and T , we use the One-Hot degree method to initialize the vertex
feature encoding H. Specifically, for a graph G with n vertices, the degree of each vertex
can be represented by a vector d = [d1, d2, ..., dn], where di is the degree of vertex i, then
we can initialize the vertex feature using structure based method, one-hot degree encoding,
the feature for vertex i is defined as: hi = [0, 0, ..., 1, .., 0], in this vector, the 1 is placed at
the index corresponding to the degree of vertex i. For example, if vertex i has a degree of
di, then the 1 is placed at index di. Then, we add A and T , and multiply them with H to
obtain the HTF .(See Fig.2)

Figure 2: Hierarchical Topology Feature Construction Method

HTF can be represented mathematically as:

HTF = ((A+ T )H +H) (1)

where A represents the first-order adjacency matrix, T represents the global topological
structure matrix, H represents the initial vertex features encoded by One-Hot degree, and
’+’ denotes matrix addition.

4.2. Hybrid Convolution Method

Based on HTF , we propose a new graph convolution called Hybrid Convolution Method
(HCM). This method takes HTF as input and enables convolution on first-order structure,
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second-order structure, and global structure in the graph, which is greatly enhancing the
efficiency and learning capability of graph convolution. And we use H to represent vertex
features, then HTF is defined as ((A+ T )H +H), and the degree matrix is denoted as D.
The convolution operation is then defined as follows:

D−1A((A+ T )H +H) (2)

We can expand it as follows:

D−1AH +D−1A2H +D−1ATH (3)

Here, AH represents the first-order adjacency convolution, A2H represents the second-
order adjacency convolution, and ATH represents the global structure convolution. This
expanded form allows us to perform convolution on the first-order, second-order, and global
structures of the graph, enhancing the efficiency and learning capacity of the convolution.
We can write the iterative formula for obtaining the final output by adding the results of
these convolutions and passing it through a shared weight matrix W .

Z(l+1) = D−1A((A+ T )Z(l) + Z(l))W (4)

where Z is the output at the (l + 1) layer, D−1 is the inverse degree matrix. This for-
mula shows the propagation of information across the graph through multiple layers of the
convolution operation.

We use the negative log loss function as the objective function for training, and the loss
function can be expressed as:

L = −
N∑
i=1

C∑
j=1

yi,jlog(pi,j) (5)

where N represents the number of graphs, C represents the number of classes, yi,j is the
true label value of the jth class of the ith sample, and pi,j is the predicted probability value
of the jth class of the ith sample. log represents the natural logarithm function.

5. Experiments

5.1. Experimental Setup

To express convenience, this paper uses HCM to represent the whole method proposed in
this article. In order to validate the effectiveness of HCM, experiments are conducted on six
datasets, including Social Networks, Bioinformatics, and Small Molecules. For each dataset,
the vertex features are constructed by HTF . The detail of the datasets are summarized in
Table 1.

In our experiments, a 2-layer HCM model is used with a total of 200 iterations. The
learning rate is set to 0.001, dropout rate is set to 0.6, and we use a fixed random walk step
length which is set to 6. The datasets are splited into training, validation, and testing sets
in an 8:1:1 ratio. The proposed methods in this paper require relatively low GPU memory
usage, and the experiments are conducted on an NVIDIA GeForce RTX 3090 GPU, using
the PyTorch 1.11.0 framework and CUDA 11.3 environment. Furthermore, the experiments
are repeated three times to ensure the stability of the results.



Sun Lin Hao Song

Table 1: Summary of the datasets used in our experiments

SOCIALNETWORKS BIOINFO MOLECULES

COLLABIMDb-B IMDb-MPROTEINSMUTAGPTC-MR

# Graphs 5000 1000 1500 1113 188 344
# Avg. Nodes 74.49 19.77 13.00 39.06 17.93 14.29
# Avg. Edges 2457.78 96.53 65.94 72.82 19.79 14.69
# Classes 3 2 3 2 2 2
# Training Graphs 80% 80% 80% 80% 80% 80%
# Validation Graphs 10% 10% 10% 10% 10% 10%
# Test Graphs 10% 10% 10% 10% 10% 10%

5.2. Baselines

We compare the HCM with nine baselines for graph classification.

- DropGIN Papp et al. (2021): This model aims to deal with the limitations of standard
GNN, and it can also distinguish multiple kinds of graph neighbors that cannot be
distinguished by the message-passing GNNs.

- GIN Xu et al. (2018): Graph Isomorphism Network (GIN) proposes theoretical frame-
work to enhance the expressive power of GNNs. The enhancement includes neighbor-
hood aggregation and graph readout functions, showing experimentally that the model
is as powerful as WL.

- WEGL Kolouri et al. (2020): The fast framework proposed by this model supports
the entire graph vector embedding. Meanwhile, it proposes a low-complexity graph
similarity analysis method to measure the differences between node embeddings.

- CT-Layer Arnaiz-Rodŕıguez et al. (2022): This model adds the weight function for
learning the commute times in the traditional message passing framework, and can
obtain a better global topology structure.

- PPGN Maron et al. (2019): The first one proposed a model with a 3-WL expressive-
ness. This model innovatively integrates the multi-layer perceptron (MLP) into the
matrix multiplication (second-order operation) and the feature dimension.

- GFN & GFN-light Chen et al. (2019): This paper linearizes the graph filtering and set
function parts of the graph classification task respectively, and finds that the linear
graph filtering with nonlinear set function can handle the graph classification task
efficiently and accurately.

- DGCNN Wu et al. (2018): The model mainly solves the problem that the graph struc-
ture information is lost during the transmission process. First, the disordered graph
convolutional layer (DGCL) is used in the pretreatment layer. Secondly, in the con-
volutional layer, DGCNN is further optimized by learning the irregular neighborhood
characteristics.
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- CapsGNN Xinyi and Chen (2019): This article mainly addresses the graph embed-
ding defects of the existing GNN. It optimizes graph-level expression by a routing
mechanism. Secondly, Multiple-Attention are integrated to strengthen the weight of
key parts.

5.3. Experiment Results

We compared the graph classification test accuracy of HCM with the baselines, and the
results are shown in Table 2. The results indicate that HCM consistently outperforms other
methods.(See Table 2) According to our experiments, we have achieved better performance
on these datasets for graph classification.

Table 2: Graph Classification Test Accuracy

Model COLLAB IMDb-B IMDb-M PROTEINS MUTAG PTC-MR

CT-Layer 69.87% 69.84% - 75.38% 87.58% -
DropGIN - 75.70% 51.40% 76.30% 90.60% 66.20%
WEGL 79.80% 75.40% 52.00% 76.50% 88.30% 67.50%
CapsGNN 79.62% 73.10% 50.27% 76.28% 86.67% -
GFN-light 81.34% 73.00% 51.20% 77.44% 89.89% -
GFN 81.50% 73.00% 51.80% 76.46% 90.84% -
PPGN 81.38% 72.60% 50.00% 77.20% 90.55% 66.17%
GIN 80.20% 75.10% 52.30% 76.20% 89.40% 64.60%
DGCNN 73.70% 70.00% 47.80% 75.10% 85.80% 65.43%

HCM 82.80% 77.00% 55.33% 80.36% 100% 68.57%

We can see that HCM is better than all the baseline models, and we believe that the main
reason is that we use the equation (4) as the computing method which can aggregate first-
order adjacency relations, second-order adjacency relations and higher-order information
simultaneously. And this may due to the fact that there are many potential relations or
structures in the graph which are not connected directly between two vertices, we use the
HTF to rebuild these relations and HCM to learn from this kind of features. The ablation
study demonstrates it.

In addition, we notice that the model achieves 100% accuracy on MUTAG. We believe
it’s because that the task of MUTAG is to identify whether the compound would have
a mutagenic effect on Salmonella typhimurium and its task is very clear and loose with
small amount of graphs. And the Salmonella typhimurium may be associated with some
specific molecular structures, so it is only necessary to find the presence or absence of such
a molecular structure. We also find that the split rate does affect the results, using more
training sets can lead to more competitive results. So we also do a split rate analysis for our
model and our model still shows competitive performance, we use */*/* to represent the
different training/validation/test split rate. According to our experiments, the split rate
does affect the performance within 1.2%. (See Figure 3).
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Figure 3: Test accuracy of HCM under different split rate

5.4. Ablation study

We think that HTF is the key factor that affects the model’s expression ability. So we just
use the initial vertex feature as the model’s input. The vertex features are also initialized
by one-hot degree method. And we find that the model with HTF outperforms the one
withoutHTF . We use HCN to represent the model withoutHTF and HCM to represent the
model with HTF . In the ablation study we divide the datasets into training/validation/test
according to 80%/10%/10%. (See Table 3). The experimental results show that without

Table 3: Ablation Study Results of HCM (Test Accuracy)

Model COLLAB IMDb-B IMDb-M PROTEINS MUTAG PTC-MR

HCN 81.8% 74% 52.67% 74.1% 89.4% 57.14%

HCM 82.80% 77.00% 55.33% 80.36% 100% 68.57%

HTF , the model performance decreased by 1% on the COLLAB, 3% on the IMDb-B, 6.26%
on the PROTEINS, 10.6% on the MUTAG, and 11.43% on the PTC-MR, and the models
without HTF all show significant decreases, which indicates that HTF indeed significantly
affect the model, and aggregating vertex information at higher-order positions in graph
convolution can effectively improve the model’s performance.

6. Conclusion

This study focuses on the fundamental element of graphs, the vertices. Existing graph
neural networks typically rely on vertex features as the basic input for learning. Based
on the intuition that vertex features with richer structural information would yield bet-
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ter performance, the study proposes a more effective vertex feature construction approach
called HTF (Hierarchical Topology Feature). Additionally, leveraging the characteristics
of HTF , the study also introduces a HCM (Hybrid Convolution Method) that can perform
convolutions across different hierarchical structures simultaneously.

The effectiveness of the proposed methods is demonstrated through experiments con-
ducted on Social Network, Bioinformatics, and Small Molecule graph datasets. This high-
lights the significance of structural information in graphs for various graph learning tasks.
The study primarily focuses on static graph vertex features and convolution methods. How-
ever, real-world scenarios often involve dynamic graphs with temporal attributes. Thus,
future work will involve designing more effective vertex feature construction methods and
graph learning models for dynamic graphs.
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