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Abstract

With the popularity of electronic mobile and online payment, the demand for detecting
financial fraudulent transactions is increasing. Although numerous efforts are devoted to
tackling this problem, there are still two key challenges that are not well resolved, i.e., the
class imbalance ratio of test samples are extremely larger than that of training samples
and amount of detected fraudulent transactions do not be considered. In this paper, we
propose a simple and effective framework composed of majority and minority branches to
address the above issues. The input samples of majority and minority branches come from
vanilla and re-adjusted distribution, respectively. Parameters of each branch are optimized
individually, by which the representation learning for majority and minority samples are
decoupled. Besides, an extra loss re-weighted by amount is added in the majority branch
to improve the recall amount of detected fraudulent transactions. Theoretical results show
that under the proposed framework, minimizing the empirical risk is guaranteed to achieve
small generalization risk on more imbalanced data with high probability. Experiments
on real-world datasets from Tencent Wechat payments demonstrate that our framework
achieves superior performance than competitive methods in terms of both number and
money of detected fraudulent transactions.

Keywords: Imbalance Learning, Fraud Detection, Tabular Data

1. Introduction

With rapid development of digital economy, mobile payments have been integrated into
people’s daily lives. Accompanied by the widespread popularity of mobile payments, the
occurrences of fraudulent transactions also increase significantly, resulting in large quanti-
ties amounts loss of users (Lin et al., 2021; Liu et al., 2021b,a). Therefore, financial fraud
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detection has drawn increasing attention in recent years. There are two main tasks in finan-
cial fraud detection, i.e., user-oriented task and transaction-oriented task. The former aims
to judge whether a user is fraudulent or benign. The latter aims to distinguish fraudulent
transactions from numerous transactions. In this work, we focus on the latter one. Both
user-oriented and transaction-oriented financial detection tasks can be abstracted as im-
balance classification (He and Garcia, 2009), one of the most fundamental but challenging
problems in machine learning and data mining. Existing methods for imbalance classifica-
tion generally fall into re-sampling approaches (Batista et al., 2004; Peng et al., 2019; Liu
et al., 2020a), re-weighting approaches (Ren et al., 2018; Shu et al., 2019; Hu et al., 2019),
ensemble learning approaches (Wang and Yao, 2009; Galar et al., 2013; Liu et al., 2020b),
cost-sensitive learning approaches (Karakoulas and Shawe-Taylor, 1998; Fan et al., 1999),
AUC optimization approaches (Qi et al., 2021; Yang et al., 2021), to name a few.

Although the above studies have made great progress in tackling the class imbalance
problem, it is not trivial to apply them on real financial fraudulent detection scenarios.
We emphasize the following three additional challenges. First, the number of fraudulent
transactions is extremely smaller than that of benign transactions in real scenarios. Con-
cretely, there is only one fraudulent transaction in millions of transactions. However, the
ratio of majority to minority is commonly in the order of hundreds in previous studies. The
extreme imbalance ratio seriously affects their effectiveness. Second, previous works (Cui
et al., 2019; Cao et al., 2019; Shu et al., 2019) assume that class imbalance lies only in the
training data. However, in real financial detection tasks, both training and test samples are
class-imbalanced, and the test set has an even higher class-imbalance ratio than training
data, due to the number of frauds will decrease under interception from online anti-fraud
system. Third, the amounts vary by transaction, and it is required that the amounts of
detected fraud transactions are as large as possible. Unfortunately, previous works only
consider the number of recalled fraudulent transactions, leading to the model failing to
discover some fraudulent transaction with large amounts. Besides, the data of payment
transactions is commonly presented in tabular form, which is much more challenging than
both image (Lin et al., 2017; Cui et al., 2019; Zhou et al., 2020) and graph-structured
data (Lin et al., 2021; Liu et al., 2021b,a).

To overcome these challenges, in this paper, we propose a simple but effective method for
detecting fraudulent transactions. We empirically found that re-weighting and re-balanced
methods fail to handle the real-application data. Inspired by the conventional branch pro-
posed in recent work (Zhou et al., 2020), our model is composed of majority-level and
minority-level branches, which receive data from vanilla distribution and re-adjusted dis-
tribution, respectively. Since majority samples are dominant in vanilla distribution, the
majority-level branch focuses on learning representations of majority samples. Differently,
the minority samples are over-sampled in a re-adjusted distribution, by which the minority
become dominant. It is worth mentioning that sharing weights in (Zhou et al., 2020) limit
the representation ability of model, particularly on tabular data. To this end, the param-
eters of all branches are updated individually, so that the representations from majority
and minority are decoupled. Besides, we additionally design loss re-weighted by amount
for majority branch to improve the recall rate of amounts. After that, representations from
different branches are aggregated via learnable weights to obtain the final prediction. Sur-
prisingly, this simple model obtains superior performance on real-world data, which sheds



Decouple then Combine

light on addressing this challenging issue for an industrial circle. Experiments are conducted
on real-world datasets from Tencent Wechat payments, one of the largest electronic mobile
and online payment platforms. The proposed framework significantly outperforms other
competitive baselines. The main contributions of this work are summarized as follows:

• We propose to decouple the representation learning of majority and minority samples,
which is simple to implement and empirically shown to be effective in addressing the
extreme class imbalance problem.

• We provide a theoretical analysis on the proposed framework, which demonstrates
that the proposed framework can achieve a small generalization risk on data with a
higher class-imbalanced ratio.

• Experimental results on real-world data from Tencent Wechat payments verify the
effectiveness of the proposed method.

2. Problem Formulation

Let X denote the feature space, Y = {0, 1} denote the space of class labels, and M ∈
R+ ∪ {0} denote the space of transactions amounts. The training set D̂ = {(xi, yi,mi)}Ni=1

is drawn from the distribution D over X ×Y ×M. For a transaction (xi, yi,mi), the label
yi = 0 means it is benign while the label yi = 1 means it is fraudulent, where mi is the
amount of this transaction. mi > 0 when yi = 1 and mi = 0 when yi = 0. Denote I(·)
as the indicator function. In our work, we consider the real-world fraudulent transaction
detection, where the number of fraudulent payments is much less than the number of benign
payments, i.e., ∑

(xi,yi,mi)∈D̂ I(yi = 0)∑
(xi,yi,mi)∈D̂ I(yi = 1)

≫ 1. (1)

Evaluation Metrics. Let c(x; θ) ∈ [0, 1] denote a classifier parameterized by θ, which
outputs a score measuring whether a payment is fraudulent. In real-world scenarios, to
keep users from being defrauded, fraud detection can tolerate a certain number of benign
payments being misclassified as fraudulent payments. Thus, the ratio of detected fraudulent
payments to total fraudulent payments is commonly chosen as the evaluation metric. Due
to the large scale of the payments, we can only focus on a small portion of the payments
whose scores rank in the top. In our work, we use PK and AK as metrics, which are defined
by:

PK =

∑
(xi,yi)∈t(K) yi∑
(xi,yi)∈D̂test

yi
, (2)

AK =

∑
(xi,yi,mi)∈t(K)mi∑
(xi,yi,mi)∈D̂test

mi
, (3)

where D̂test = {xi, yi,mi)}Mi denotes the test dataset. t(K) ∈ D̂test denotes the subset of
the test set whose scores rank in the top K:

t(K) =
{
(xi, yi,mi)|(xi, yi,mi) ∈ D̂test, c(xi; θ) > ŝK

}
, (4)
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Figure 1: Illustration of the bi-collaborative learning framework. The green (orange)
color denote the majority (minority) branch receiving samples from vanilla (re-
adjusted) distribution.

where ŝK is exactly the K-th largest score in {c(xi; θ)}Mi ,xi ∈ D̂test.
Note that in real-world scenarios, test set is still imbalanced, which is contrary to plenty

of existing literature of imbalance learning (Cui et al., 2019; Cao et al., 2019; Shu et al.,
2019). Thus, Equation (1) still holds in test set.

3. Our Proposed Method

In this section, we detail our proposed method, including data samplers, bi-collaborative
learning framework, tri-collaborative learning framework and inference phase.

3.1. Data Samplers

In Figure 1, we visualize the bilateral branches framework for our bilateral collaborative
learning method (BiCo). The two branches achieve different functions in imbalance learning
via different data samplers. The majority branch adopts a instance-uniform data sampler for
representation learning, while the minority branch adopts a class-reversed data samplers for
re-balancing learning. The collaborative learning of these bilateral branches with different
data samplers facilitates the learning in imbalanced scenarios.

First, we introduce the two data samplers in Figure 1, i.e., instance-uniform data sampler
and class-reversed data sampler. Recently, some literature show that in imbalance learning,
using the cross entropy loss function over the original given imbalanced training dataset
can lead to better semantic representation (Zhou et al., 2020; Yuan et al., 2021) as it can
retain the original characteristics of the training data. The instance-uniform data samplers
adopt the same distribution as the original training data. It is termed ”instance-uniform
data samplers” because it is equivalent to sampling each instance with same probability.

However, in imbalance training dataset, the ”head” class dominates the loss function,
making the classifier not pay enough attention to the ”tail” class. Therefore, we introduce
the class-reversed data sampler, which samples more ”tail” class (fraudulent payments) than
”head” class (benign payments). The class-reversed data sampler reverses the sampling
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probability of the benign payments and fraudulent payments in training dataset. Let N0

denote the number of benign payments and N1 denote the number of fraudulent payments in
the original training dataset. The class-reversed data sampler samples benign transactions
with probability N1

N0+N1
and samples fraudulent transactions with probability N0

N0+N1
.

3.2. Bi-Collaborative Learning Framework

Next, we elaborate the details of our bilateral branch framework for collaborative learning
in Fraud transaction detection, which is termed BiCo. Both the upper branch and the lower
branch are firstly fed to a multi-layer perceptron (MLP), which outputs two different feature
representations. Let (xu, yu,mu) and (xc, yc,mc) denote the data generated by instance-
uniform sampler and class-revversed sampler, respectively. Let fu(xu) ∈ RD denote the
representation from instance-uniform data sampler (upper branch) and fc(xc) ∈ RD denote
the representation from class-reversed data sampler (lower branch). These two MLPs adopt
the same network architecture but do not share weights, which is one of key differences
between BiCo and BBN (Zhou et al., 2020).

Furthermore, we propose a simple but effective approach to achieve collaborative learn-
ing of two branches. We introduce two mixed weights wu ∈ RD and wc ∈ RD to integrate
fu(xu) and fc(xc). Then, we get the final mixed logit by a simple element addition, which
is formulated as

z = w⊤
u fu(xu) +w⊤

c fc(xc), (5)

where z ∈ R is the mixed logit. We adopt sigmoid function to calculate the predicted scores

s =
1

1 + exp(−z)
. (6)

Then, the loss function of the proposed framework for collaborative learning is defined by

L = lce(s, yu) + lce(s, yc), (7)

where lce is the cross-entropy loss function:

lce(s, y) = − [ylog(s) + (1− y)log(1− s)] . (8)

We adopt the mini-batch gradient descent to optimize the parameters of the two MLPs and
the two mixed weights simultaneously.

In some real-world application scenarios, we are supposed to care more about the amount
of the detected fraudulent payments (PK) but not the number of the detected fraudulent
payments, i.e., AK . A simple approach is to adopt the amounts as the coefficients for the
cross-entropy loss function of the fraudulent payments, which is formulated as

lmce = − [m · ylog(s) + (1− y)log(1− s)] . (9)

Thus, the loss function for increasing total amount of detected fraudulent payments is

Lm = lmu
ce (s, yu) + lmc

ce (s, yc). (10)

The bi-collaborative learning framework with Equation (10) is termed BiCo-A.
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Figure 2: Illustration of the tri-collaborative learning framework. Compared with Figure 1,
an extra branch denoted by blue is added to improve the amount of detected
fraudulent payments.

3.3. Tri-collaborative Learning Framework

Although the use of the improved loss function Lm is effective for increasing Ak, it un-
dermines the representation learning via original cross-entropy loss function, which hurts
the capability of identifying detected fraudulent payments. To improve PK and AK si-
multaneously is a very challenging problem. To address this challenge, we propose the
Tri-collaborative Learning Framework (TriCo) on top of BiCo, as shown in Figure 2.

In Figure 2, we adopt two data samplers, including instance-uniform data sampler and
class-reversed data sampler, which is the same as the data samplers in BiCo. However,
contrary to BiCo, the instance-uniform data sampler is adopted by two branches, i.e., the
upper branch and the middle branch. The upper branch of TriCo plays the same role as
the upper branch of BiCo, which aims to learn good semantic representation via instance-
uniform data sampler. The lower branch of TriCo is also the same the lower branch of
BiCo. The middle branch is the difference between TriCo and BiCo. The mixed logit in
the trilateral branch framework is defined as

z = w⊤
u fu(xu) +w⊤

a fa(xu) +w⊤
c fc(xc), (11)

where wu,wa,wc ∈ RD are the mixed weights of the upper branch, the middle branch and
the lower branch, respectively.

On top of the overall loss function Equation (8) used in BiCo, we add a sub loss function,
which is related to the middle branch. The middle branch aims to increase AK . Thus, the
middle branch adopt the improved cross-entropy loss function weighted by the amount of
the fraudulent payments, i.e., Equation (9).

To summarize, the overall loss function adopted by TriCo is formulated as

LTri = lce(s, yu) + lce(s, yc) + lmu
ce (s, yu). (12)

3.4. Inference Phase

For the bi-collaborative learning framework, during inference phase, the two branches are
fed to the same input test data. It finally outputs a mixed logit with the information of
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feature fu and fc. Thus, through original feature and re-balancing feature, the network can
assign the fraudulent payments high scores.

For the tri-collaborative learning framework, during inference phase, the three branches
are also fed to the same input test data. With original feature, re-balancing feature and the
feature of increasing AK , the network can also give the fraudulent payments high scores.
Moreover, when only considering the fraudulent payments, the network can give fraudulent
payments with more amount higher scores.

3.5. Theoretical Analysis

In this part, we provide theoretical analysis to the proposed framework. Without loss of
generality, the analysis is oriented to BiCo whose loss function is given by Equation (7).
Denote Du and Dc the samples distribution of instance-uniform and class-reversed sampler.
The training samples (xu, yu) and (xc, yc) are drawn independently from the joint distribu-
tion Du×Dc. Denote by p = N0

N1+N0
the probability that (xu, yu) is benign in training sets,

i.e., Pr{yu = 1} = p. Let x+ ∼ D+ and x− ∼ D− be the fraudulent (positive) and benign
(negative) samples, respectively. D+ and D− are the distribution of positive and negative
samples.

Theorem 1 Minimizing the loss defined in Equation (7) is guarantee to achieve a small
generalization risk on more imbalanced data with high probability.

Proof Denote by
E(xu,yu),(xc,yc)∼Du×Dc

[L(xu, yu,xc, yc)]

the expectation of Equation (7). We have

E(xu,yu),(xc,yc)∼Du×Dc
[L(xu, yu,xc, yc)]

=2p(1− p)Ex+,x−

[
log

(
1 + e−zu(x+)−zc(x+)

)]
+ p2Ex+,x−

[
log

(
1 + e−zu(x+)−zc(x−)

)
+ log

(
1 + ezu(x+)+zc(x−)

) ]
+ (1− p)2Ex+,x−

[
log

(
1 + ezu(x−)+zc(x+)

)
+ log

(
1 + e−zu(x−)−zc(x+)

) ]
+ 2p(1− p)Ex+,x−

[
log

(
1 + ezu(x−)+zc(x−)

)]
≥2p(1− p)Ex+,x−

[
log

(
1 + e−zu(x+)−zc(x+)

)]
+ 2p(1− p)Ex+,x−

[
log

(
1 + ezu(x−)+zc(x−)

)]
+ 2

(
p2 + (1− p)2

)
log 2,

where zu(x+) = w⊤
u fu(x+), zu(x−) = w⊤

u fu(x−), zc(x+) = w⊤
c fc(x+), and zc(x−) =

w⊤
c fc(x−). Denote by p′ the probability that (x, y) is benign in test sets, i.e., Pr{y =

1} = p′. As we have mentioned, p′ < p holds in real-world financial fraudulent detection
scenarios. Note that in the interference phase, both the majority and minority branch
receive the same samples. Thus, the generalization risk is

E(x,y) [L(x, y,x, y)]

=p′Ex+,x−

[
log

(
1 + e−zu(x+)−zc(x+)

)]
+ (1− p′)Ex+,x−

[
log

(
1 + ezu(x−)+zc(x−)

)]
.
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Therefore, we have

E(xu,yu),(xc,yc) [L(xu, yu,xc, yc)]

>2p′(1− p′)Ex+,x−

[
log

(
1 + e−zu(x+)−zc(x+)

)]
+ 2

(
p2 + (1− p)2

)
log 2

+ 2p′(1− p′)Ex+,x−

[
log

(
1 + ezu(x−)+zc(x−)

)]
≥2p′Ex+,x−

[
p′ log

(
1 + e−zu(x+)−zc(x+)

)
+ (1− p′) log

(
1 + ezu(x−)+zc(x−)

) ]
+ 2

(
p2 + (1− p)2

)
log 2

>2p′E(x,y) [L(x, y,x, y)] .

Thus, the expectation of L on test samples is the lower bound of the expectation of L on
training samples, when neglecting the constant coefficient. According to the generalization
analysis in (Mohri et al., 2018), the expectation term E(xu,yu),(xc,yc) [L(xu, yu,xc, yc)] can
be upper bounded by the training loss L with high probability. This finishes the proof.

Theorem 1 shows that minimize L is beneficial to improving the generalization performance
of model on testing samples when the test samples have a higher class-imbalance ratio than
training samples. That is to say, if the model has a small training error, it can still achieve a
small test error on more imbalanced samples with high probability. Now we briefly discuss
the case that there is only the majority branch. It can be verified that

E(xu,yu) [L(xu, yu)]

=pEx+

[
log

(
1 + e−zu(x+)

)]
+ (1− p)Ex+,x−

[
log

(
1 + ezu(x−)

)]
,

E(x,y) [L(x, y)]

=p′Ex+

[
log

(
1 + e−zu(x+)

)]
+ (1− p′)Ex−

[
log

(
1 + ezu(x−)

)]
.

It can be found that minimizing E(xu,yu) is not necessarily guarantee to minimize E(x,y) [L(x, y)],
due to p′ < p and 1−p′ > 1−p. Similar results can be obtained for the case that there is only
the minority branch. Therefore, directly learning on the vanilla distribution or re-adjusted
distribution do not guarantee to tackle the case that test sample are more imbalanced.

4. Experiments

4.1. Datasets and Metrics

Datasets. In experiments, we verify the effectiveness of our methods on a real-world trans-
action payment dataset from Tencent Wechat Group. Due to the need for confidentiality,
the information about datasets is obscured. The training set is specially collected by Wechat
Group, whose imbalance ratio is around a few tens. The training set was collected over a
period of time. The test set contains 6 days of payment data, and we refer to them as Day1,
Day2, Day3, Day4, Day5 and Day6. The test set is highly imbalanced, which is different
from the setting of the majority of literature in computer vision (Zhou et al., 2020). The
imbalance ratio of test set much exceeds that of training set and it may be up to millions.
In our experiments, we will show the results of the six days and the average results.
Metrics. We adopt the metrics P20000, A20000, P50000 and A50000. Please refer to Section 2
for the detailed definitions.
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4.2. Baselines

In this section, we introduce some strong baseline method in computer vision to overcome
data imbalance, which are detailed below.

Cross Entropy. Cross entropy loss is the most used loss function for classification
tasks, which easily suffers from data imbalance.

Focal Loss (Lin et al., 2017). Focal loss adopts modulating weights to the cross-entropy
loss in order to focus learning on hard samples.

Mixup (Zhang et al., 2018). Mixup is a data-agnostic data augmentation method,
which convexly combines random pairs of training data and their associated targets.

CE-DRS and CE-DRW. These methods do not use bi-lateral branches but adopt
two-stage training. In the first stage, it uses cross entropy loss for representation learning;
in the second stage, it adopts re-balance learning to overcome data imbalance. Following
the previous literature (Cao et al., 2019), we use re-sampling (CE-DRS) and re-weighting
(CE-DRW) to achieve re-balance in the second stage.

LDAM and LDAM-DRW (Cao et al., 2019). The label-distribution-aware margin
loss (LDAM) encourages larger margins for minority classes to address class imbalance. The
LDAM-DRW is the combination of LDAM and re-weighting, which trains network first with
vanilla LDAM loss and then transitions to using LDAM loss with a re-weighting schedule.

Class-balanced Loss (Cui et al., 2019). The class-balanced loss is to re-weight loss
inversely with the effective number of samples per class. We adopt class-balanced cross
entropy loss (CB-CE) and class-balanced focal loss (CB-Focal).

BBN (Zhou et al., 2020). BBN is the most relevant to our work. BBN also adopts a
bilateral-branch network with instance-uniform and class-revered sampler for representation
learning and classifier learning. The key difference between our method and BBN is that
the two branches of BBN apply the same network but the two branches of our method
adopt two difference networks with the same network architecture.

The Variant Loss of the Above Methods for Increasing AK . In order to improve
AK , we adopt the amountm as the coefficient of the loss function of the fraudulent payments
for the above method, which is similar to Equation (9). We use “-A” to represent these
variants. including Cross Entropy-A, Focal Loss-A, Mixup-A, CE-DRS-A, CE-DRW-A,
LDAM-A, LDAM-DRW-A, CB-CE-A, CB-Focal-A and BBN-A.

4.3. Implementation Details

The experiments is implemented by TensorFlow. For fair comparisons, the base settings
are the same for all methods. The mini-batch size is set to 512. The training epochs is set
to 20. The architecture of MLPs is set to 2048-512-128-1 except LDAM and BBN. LDAM
Loss and its variant adopt the architecture 2048-512-128-2. BBN and its variant adopt the
architecture 2048-512-128-64-1, where the architecture part 2048-512-128 is used for sharing
weights. We adopt Adam optimizer to train the MLP. The initial learning rate is 0.0001.

4.4. The Effect of Our Method

In Tables 1 to 4, we show the performance comparisons between our methods and the
baseline methods over Day1-Day4. Tables 1 and 3 show the performance comparisons
between BiCo and the baseline methods without considering the amount of fraud payments.
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Table 1: Performance comparisons between our methods and baselines with considering
amount (Day1 - Day2). The best results are denoted by bold.

Date Day 1 Day 2

Method P20000 A20000 P50000 A50000 P20000 A20000 P50000 A50000

Cross Entropy 21.8 10.9 30.8 18.2 41.9 36.7 49.6 45.7
Focal Loss 24.8 11.9 27.1 12.4 35.0 20.9 48.7 41.0
Mixup 18.0 9.2 28.6 23.1 40.2 31.6 51.3 46.8
CE-DRS 0.0 0.0 0.8 0.2 0.9 5.1 0.9 5.1
CE-DRW 22.6 11.8 30.8 18.7 36.8 30.4 47.0 42.5
LDAM 21.1 7.8 27.8 14.5 41.9 41.8 49.6 44.6

LDAM-DRW 20.3 10.5 25.6 12.3 38.5 25.7 44.4 31.3
CB-CE 18.8 15.0 26.3 22.7 30.8 17.7 43.6 37.5
CB-Focal 19.5 10.0 26.3 14.2 33.3 27.2 38.5 28.8
BBN 3.8 2.1 5.3 5.8 6.0 8.2 7.7 17.5

BiCo 25.6 15.9 32.3 20.2 29.1 27.1 53.0 45.4

Table 2: Performance comparisons between our methods and baselines considering amount
(Day1 - Day2). The best results are denoted by bold.

Date Day 1 Day 2

Method P20000 A20000 P50000 A50000 P20000 A20000 P50000 A50000

Cross Entropy-A 25.6 12.8 37.6 30.5 41.9 39.5 50.4 45.7
Focal Loss-A 26.3 12.3 32.3 20.5 43.6 36.1 53.0 47.0
Mixup-A 26.3 17.6 34.6 27.6 31.6 33.0 41.9 43.6
CE-DRS-A 4.5 1.9 8.3 4.2 0.0 0.0 0.0 0.0
CE-DRW-A 27.8 13.2 33.1 18.9 40.2 26.6 53.0 45.2
LDAM-A 21.8 14.4 33.8 24.0 40.2 38.2 51.3 46.4

LDAM-DRW-A 24.1 11.7 29.3 14.9 41.9 41.4 52.1 46.1
CB-CE-A 24.1 16.1 33.1 21.7 28.2 24.4 49.6 34.1
CB-Focal-A 22.6 16.6 30.8 19.4 30.8 22.2 42.7 32.6
BBN-A 6.0 13.7 9.8 21.0 2.6 8.9 6.0 14.5

BiCo 25.6 15.9 32.3 20.2 29.1 27.1 53.0 45.4
BiCo-A 31.6 27.3 39.1 33.3 30.8 39.0 47.9 51.1
TriCo 29.3 17.9 35.3 25.4 47.9 44.1 58.1 47.9

Tables 2 and 4 show the performance comparisons between our three methods and the
baseline methods with considering the amount of fraud payments. In Table 5, the average
experiment results are presented. The experiment results of Day5-Day6 are detailed
in the supplementary. In Tables 5 to 7, the experiment results are the average
of 6 Days.

In Tables 2 and 4, we can observe that BiCo, a method which also does not consider
the money of fraudulent payments, obtains the best results in most cases. According to
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Table 3: Performance comparisons between our methods and baselines with considering
amount (Day3 - Day4). The best results are denoted by bold.

Date Day 3 Day 4

Method P20000 A20000 P50000 A50000 P20000 A20000 P50000 A50000

Cross Entropy 17.9 9.7 25.9 19.2 12.2 6.5 21.6 11.6
Focal Loss 17.9 8.0 25.9 12.1 10.8 6.0 20.3 10.6
Mixup 11.6 5.5 26.8 16.3 10.8 4.2 29.7 15.5
CE-DRS 0.9 0.9 1.8 1.4 0.0 0.0 0.0 0.0
CE-DRW 18.8 8.9 27.7 14.4 12.2 7.3 25.7 13.8
LDAM 20.5 13.6 27.7 16.6 17.6 8.6 27.0 13.8

LDAM-DRW 17.0 9.3 31.2 18.7 24.3 13.0 27.0 14.6
CB-CE 21.4 21.4 32.1 28.3 18.9 10.1 21.6 11.3
CB-Focal 14.3 9.2 24.1 14.1 18.9 9.6 25.7 13.8
BBN 3.6 4.7 3.6 4.7 2.7 2.6 4.1 3.1

BiCo 27.7 13.7 41.1 17.7 24.3 13.6 40.5 26.2

Table 4: Performance comparisons between our methods and baselines without considering
amount (Day3 - Day4). The best results are denoted by bold.

Date Day 3 Day 4

Method P20000 A20000 P50000 A50000 P20000 A20000 P50000 A50000

Cross Entropy-A 15.2 9.8 22.3 13.7 14.9 9.6 18.9 12.3
Focal Loss-A 15.2 10.1 27.7 16.1 12.2 6.9 16.2 9.6
Mixup-A 17.9 16.7 23.2 19.4 12.2 7.6 17.6 10.7
CE-DRS-A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CE-DRW-A 15.2 10.3 33.0 18.1 10.8 7.0 21.6 12.0
LDAM-A 14.3 7.0 25.0 15.0 8.1 4.5 25.7 13.6

LDAM-DRW-A 13.4 8.7 24.1 13.1 17.6 8.3 21.6 11.1
CB-CE-A 14.3 10.2 22.3 12.9 10.8 6.8 23.0 16.2
CB-Focal-A 9.8 5.0 17.9 8.9 9.5 6.4 14.9 9.1
BBN-A 0.0 0.0 10.7 22.4 1.4 0.8 5.4 7.2

BiCo 27.7 13.7 41.1 17.7 24.3 13.6 40.5 26.2
BiCo-A 25.0 20.1 45.5 50.8 14.9 14.5 20.3 18.1
TriCo 30.4 16.6 45.5 23.9 24.3 13.9 32.4 17.4

Table 5, BiCo outperforms the baseline methods without considering the money of fraud-
ulent payments with a significant margin. We can also observe that these strong baselines
in computer vision have very limited improvement or even worse performance compared to
the performance of Cross Entropy. It means that compared to image data, the real-world
payment data have many different characteristics including the extreme high imbalance of
the test data and the tabular form in which the payments present, leading to ineffectiveness
of the methods in computer vision. Note that the BBN method similar to BiCo also has
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Table 5: Performance comparisons between ours methods and baseline methods (Average
of Day1 - Day 6). The best results are denoted by bold.

Average Results

Method P20000 A20000 P50000 A50000

Cross Entropy 21.8 16.8 32.3 26.5
Cross Entropy-A 22.6 19.8 32.7 32.0

Focal Loss 20.0 13.6 29.4 22.6
Focal Loss-A 22.1 16.9 31.7 25.2

Mixup 18.2 15.4 30.8 26.9
Mixup-A 20.7 18.2 30.7 30.7
CE-DRS 0.3 1.0 0.7 1.2

CE-DRS-A 0.8 0.3 1.6 0.8
CE-DRW 21.6 16.3 33.7 25.7

CE-DRW-A 22.7 18.6 35.3 27.9
LDAM 23.6 21.1 33.6 30.0

LDAM-A 19.4 16.0 31.7 24.9
LDAM-DRW 23.0 13.7 32.3 24.1

LDAM-DRW-A 22.1 17.8 29.7 22.7
CB-CE 21.9 20.8 31.0 28.7

CB-CE-A 19.1 16.8 32.5 28.2
CB-Focal 20.7 17.3 30.4 26.3

CB-Focal-A 16.7 13.9 26.3 21.6
BBN 4.2 4.9 5.9 9.5

BBN-A 4.2 10.2 9.6 19.9

BiCo 27.7 19.8 43.9 30.5
BiCo-A 27.1 33.0 39.7 45.9
TriCo 32.3 25.0 45.5 34.8

very poor performance, which is probably due to the operation of sharing weights. MLP
does not have the same powerful performance in tabular data as performance of Convolu-
tional neural network (CNN) in image data. We provide more discussions and experiments
in our ablation study to further investigate the difference between our methods and BBN.

In Tables 2 and 4, we compare our three methods with the baseline methods while
considering the amount of the fraudulent payments. We can observe that our methods
have the best performance in most cases. In Table 5, both BiCo-A and TriCo outperform
the baseline methods with considering the money of fraudulent payments in all metrics.
Combined with Table 1 and Table 2 or Table 3 and Table 4, we can observe that considering
the amount of the fraudulent payments, i.e., adopting the amount as the coefficient of the
loss of the fraudulent payments like Equation (9), help increase A20000 and A50000, which
means that the networks have greater capability of identifying the fraudulent payments with
high amount. In Table 5, we can observe that directly replacing the normal cross entropy
loss with Equation (9), i.e., BiCo-A, can increase A20000 and A50000, but it undermines
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Table 6: Performance comparisons between BiCo and BBN under different adaptor strate-
gies (Average of Day1 - Day6).

α Method P20000 A20000 P50000 A50000

0.5
BiCo 27.7 19.8 43.9 30.5
BBN 10.9 11.1 14.6 13.2

Beta(0.2, 0.2)
BiCo 30.1 21.9 43.5 32.4
BBN 7.7 7.0 12.8 10.8

( t
Tmax

)2
BiCo 25.5 14.3 40.2 23.7
BBN 4.1 4.4 5.1 4.8

1− t
Tmax

BiCo 28.5 21.8 41.6 33.6
BBN 19.4 13.4 24.0 16.9

cos( t
Tmax

· π
2 )

BiCo 30.1 21.1 39.4 26.3
BBN 4.3 5.3 8.1 9.1

1− ( t
Tmax

)2
BiCo 25.9 18.8 40.2 26.8
BBN 4.5 7.0 6.7 8.5

Table 7: Performance comparisons between TriCo and TriCo-CR (Average of Day1 - Day6).

Method P20000 A20000 P50000 A50000

TriCo 32.3 25.0 45.5 34.8
TriCo-CR 28.5 27.9 42.9 41.7

P20000 and P50000. TriCo, the method with trilateral branch framework, can help increase
A20000 and A50000 and not undermine P20000 and P50000.

5. Ablation study

5.1. More Study about BiCo and BBN

The BBN method (Zhou et al., 2020) seems similar to BiCo (ours). BiCo and BBN both
use instance-uniform data sampler and class-reversed data sampler, and both employ the
bi-lateral branch framework. In BiCo and BBN, the branch with instance-uniform data
sampler both aims to achieve representation learning based on the original characteristic
of the training data; the branch with class-revered data sampler both aim to overcome the
high imbalance. For BBN, its loss function is formulated as

L = αlupper + (1− α)llower,

where α is a trade-off between lupper and llower, and BBN adopts a parabolic decay strategies
α = 1−( t

Tmax
)2 to adjust α. According to paper proposed BBN method (Zhou et al., 2020),

it investigates different adaptor strategies to adjust α dynamically. Thus, we also investigate
these strategies on BiCo and BBN. As shown in Table 6. We present the comparisons
between Bico and BBN on six different adaptors strategies. We can observe that BiCo
outperforms BBN under all six different strategies with significant margins. BBN has very
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poor performance under all six adaptor strategies compared to Cross Entropy from Table 5.
However, BiCo performs well under all conditions. Thus, the reason why BBN perform
poorly but BiCo performs well is that MLP do not have the powerful capability to capture
representation information and re-balanced information in one network in tabular data as
CNN in image data. Thus, the operation of sharing weights in BBN makes it suffer from
serious performance degradation.

5.2. More about Tri-collaborative Framework

The extra middle branch in Figure 2 adopts the cross-entropy considering the amount of
the fraudulent payments and it applies the instance-uniform data sampler. In this sec-
tion, we investigate the middle branch with class-revered data sampler, and we term such
tricollaborative learning framework TriCo-CR. As shown in Table 7, we can observe that
TriCo-CR also performs well. For P20000 and P50000, TriCo performs better than TriCO-CR.
In contrast, for A20000 and P50000, TriCo-CR outperforms TriCo. The extra middle branch
of TriCo considers instance-uniform data, which can help improve the representation abil-
ity, and thus improve the capability of identifying fraudulent payments. The extra middle
branch of TriCo-CR considers class-reversed data sampler where fraudulent payments dom-
inate the mini-batch, and mainly cares about the fraudulent payments with high amount.
Thus, TriCo-CR has high value of A20000 and A50000.

6. Conclusion

In this paper, we propose a simple and effective model to detect fraudulent transactions in
electronic mobile and online payment platforms. With the key insight that decoupling the
representation learning of majority and minority samples, our framework contains paral-
lel branches with individual parameters to learn representations for majority and minority
samples. Besides, we additionally add a loss re-weighted by amount to improve the recall
amount of detected fraudulent transactions. Theoretical analysis shows that the proposed
framework is applicable in the scenarios where test samples have a higher class-imbalanced
ratio. Experiments on real-world datasets show that the proposed framework surpasses com-
petitive methods. Our future work includes deploying the proposed framework at Wechat
payment platform and exploring how to apply it on graph-structured data.
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