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Abstract

As an essential means of copyright protection, the deep learning-based robust watermarking
method is being studied extensively. Its framework consists of three main parts: the
encoder, the noise layer and the decoder. But practically all of the schemes are directed
at the encoder rather than the decoder. And the whole network is structured by shallow
Convolutional Neural Networks (CNNs) for primary feature extraction, while CNNs capture
local information and do not model non-local information in watermarked images well. To
solve this problem, we consider the use of Transformer networks with a spatially self-
attention mechanism. We propose to construct a novel decoder network by combining
Transformer and CNNs, which can not only enriches local feature information but also
enhances the ability to explore global representations. Meanwhile, to embed secret messages
more perfectly, we design a multi-scale attentional feature fusion module to achieve an
efficient aggregation of cover image features and secret message features, resulting in the
encoded images with rich hybrid features. In addition, perceptual loss is introduced to
better evaluate the visual quality of the watermarked images. Extensive experimental
results show that our proposed method achieves better results in terms of imperceptibility
and robustness compared with existing State-Of-The-Art (SOTA) methods.

Keywords: Robust blind watermarking; Hybrid network of CNN-Transformer; Atten-
tional feature fusion; Perceptual loss

1. Introduction

Digital watermarking technology Van Schyndel et al. (1994). has become a significant
study direction in the field of multimedia information security as multimedia technology
has advanced. For image blind watermarking Hamidi et al. (2018); Ko et al. (2020), as
its security depends on the content of the image, secret information must be embedded in
the cover image in an invisible way to obtain the secret image. Even if the secret image
is attacked, the secret information can be extracted from the secret image, which requires
that the image must have a certain degree of robustness and imperceptibility. With the rise
of deep learning, Convolutional Neural Networks (CNNs) have achieved great success in
computer vision tasks, and some researchers use CNNs in the field of watermarking Kandi
et al. (2017); Mun et al. (2017, 2019). However, in recent years, researchers have tended to
focus on improving the encoder while ignoring the decoder’s potential for advancement Zhu
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et al. (2018); Liu et al. (2019); Ahmadi et al. (2020); Jia et al. (2021); Fang et al. (2022);
Lu et al. (2022); Ma et al. (2022). For example, the first end-to-end trainable deep net-
work HiDDeN was proposed in Zhu et al. (2018), where the encoder of HiDDeN merges
the secret message replicated on space with the image features of the cover processed by
convolution, ensuring that the complete secret message is obtained at any spatial location
at the next layer of convolutional processing. A novel Two-stage Separable Deep Learn-
ing (TSDL) watermarking framework is designed in Liu et al. (2019), which can obtain
a powerful encoder. The encoder uses a redundant multi-level feature encoding network
as a framework to obtain robust watermarking. Ahmadi et al. (2020) proposed a frame-
work to support operation in different domains such as the DCT domain and used a fully
convolutional neural network with residual structure as an encoder to improve network per-
formance. In MBRS Jia et al. (2021), a secret message processor is proposed to improve
the performance of the encoder, and a significant number of SE blocks are introduced to the
encoder to increase feature extraction and make it easier for the network to comprehend
the preprocessed features. However, the decoders in these works Zhu et al. (2018); Liu
et al. (2019); Ahmadi et al. (2020); Jia et al. (2021) only adopt the shallow design based on
CNNs, ignoring the contribution of decoders to the model. In the decoder, the CNN-based
architecture has a good ability to process two-dimensional feature information. However,
the inherent characteristics of convolution operation, namely the independence of the local
acceptance domain and input information, hinder the ability of the model to model non-
local information. Moreover, CNNs cannot obtain the overall information of the image at
the primary layer of the network and thus cannot learn the two-dimensional distribution of
images better. So how can enhance the ability of the model to handle global information?

Recently, many researchers have introduced the Transformer Vaswani et al. (2017) into
vision tasks. The difference between CNNs and Transformer is that traditional CNNs can
only capture local information when processing sequential data, while the self-attention
mechanism in Transformer can calculate global dependencies to better capture global rep-
resentations. One problem with using Transformer directly for visual tasks, however, is that
Transformer is not good at solving pixel-level tasks. Therefore, to make Transformer more
suitable for visual tasks, many researchers have improved Transformer architecture to be
suitable for image classification Dosovitskiy et al. (2021); Liu et al. (2021), segmentation
Xie et al. (2021); Lee et al. (2022); Cao et al. (2022), image restoration Li et al. (2023);
Liang et al. (2021), multi-task learning Ye and Xu (2022); Qu et al. (2022), target detection
Zhu et al. (2019); Carion et al. (2020), image generation Jiang et al. (2021), image fusion
Zhao et al. (2023), and other fields. However, to our knowledge, the Transformer has not
been applied to the deep learning-based image watermarking technology at present. Almost
all watermarking schemes use CNNs as the backbone network for feature extraction, but
CNNs pay too much attention to local information and cannot capture long-distance feature
dependency in watermarked images.

Therefore, to investigate a better watermarking model, we attempt to construct a novel
decoder by combining Transformer and CNNs to complement each other’s strengths, en-
hance the extraction of global representation and local information, and improve the ro-
bustness and imperceptibility of watermarking. Inspired by the work of Dai et al. (2021),
we consider that linear methods like addition and concatenation neither fuse features well
nor are context-conscious. Therefore, we designed a Multi-scale Attention Feature Fusion
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Module (MA-FFN) and combined it with the iterative architecture iAFF Dai et al. (2021)
for the final fusion of the cover image and secret messages, to obtain encoded images with
rich context information. To be specific, combined with Transformer and CNNs as deep
feature extraction modules, self-attention mechanism and convolution operation are used
to enhance hybrid representation learning, a cascade multi-scale attentional fusion module
is adopted to further improve feature aggregation ability, and perceptual loss is introduced
to improve the visual quality of watermarked images. We conducted comprehensive ex-
periments, and our model achieved better results compared to other deep learning-based
models.

In summary, the main contributions of this paper are as follows:

• We propose a multi-branch decoder network combining CNNs and Transformer with
stronger decoding and feature analysis capabilities by exploiting the inductive biasing
capability of CNNs and the global feature processing capability of Transformer.

• We propose a Multi-scale Attentional Feature Fusion Module (MA-FFN) that ag-
gregates multi-scale feature contexts, allowing local and non-local pixels to interact
effectively and greatly enhancing the robustness of encoded images.

• We improved the low-level loss function and added additional high-level perceptual
loss to enhance the visual quality of the images. And we conducted a preliminary
study on perceptual loss.

• To the best of our knowledge, our model is the first to combine CNNs and Transformer
in the deep learning-based image watermarking works.

2. Related Works

2.1. Vision Transformer

The great potential of Transformer Vaswani et al. (2017) in Natural Language Processing
(NLP) has led researchers to explore its use in computer vision. ViT Dosovitskiy et al.
(2021) is the pioneering work of Transformer in the field of computer vision and has achieved
better results than the existing CNNs algorithm in image classification. But ViT directly
used the standard Transformer used in NLP, so it is not suitable for pixel-level visual
tasks. To address this problem, Liu et al. (2021) developed a layered Shift Windows
(Swin) Transformer, which can better process images by applying a layered structure similar
to that of CNNs. Since then, the Swin Transformer has been used as a general-purpose
vision backbone network architecture, setting performance records on a variety of vision
tasks Cao et al. (2022); Liang et al. (2021); Fan et al. (2022); Bhattacharjee et al. (2022).
Cao et al. (2022) proposed a U-shaped network, Swin-Unet, for image segmentation tasks.
Bhattacharjee et al. (2022) proposed a multi-task learning framework based on the Swin
Transformer. Fan et al. (2022) proposed SUNet, an image denoising model using the
Swin Transformer layer as the basic block. All these Swin Transformer-based methods have
demonstrated excellent performance, even surpassing CNN-based methods. Motivated by
the success of Swin Transformer, we investigated how to design a powerful watermarking
model by Swin Transformer to further improve the performance of image watermarking
tasks.
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2.2. Hybrid model combining CNNs and Transformer

In CNNs, the convolution operation is good at extracting local features but has limitations
in capturing global feature representation. In contrast, the self-attention mechanism and
multilayer perceptron architecture in Transformer can reflect complex spatial transforma-
tions and long-distance feature dependencies to achieve a global feature representation while
ignoring the details of local features. Therefore, some researchers have proposed combining
CNNs with Transformer to improve the learning capability of the network for features. The
combination methods are mainly divided into structural concatenation and feature fusion.
Structure concatenation refers to forming a new network structure through a reasonable
combination of CNNs and Transformer modules. Mehta and Rastegari (2021) embedded
Transformer as a convolutional layer into the convolutional neural network, enabling the
interaction of local and global information. Yuan et al. (2021) combined the Feed-Forward
Network (FFN) with the convolutional module to extract local information. Guo et al.
(2022) combined the traditional convolution and the Transformer to form a CMT module
for hierarchical extraction of local and global features. Feature fusion refers to the integra-
tion of CNNs features and Transformer features at the feature level. Some works Chen
et al. (2022); Peng et al. (2021) employed a parallel architecture of CNNs-branches and
Transformer-branches, and use bridging modules to fuse local features and global represen-
tations interactively. All of these hybrid structures obtained a performance comparable to
that of CNNs.

3. Proposed Method

In this section, we first describe the overall pipeline and the hybrid structure used for
image watermarking. Then, we present the details of the multi-branch decoder network,
which consists of three main key branches: CNNs branch, Transformer branch, and Identity
branch. Next, we describe the specific architecture of the proposed multi-scale attentional
feature fusion module. Finally, we introduce the perceptual loss function Zhang et al.
(2018).

3.1. Overall Pipeline

In this paper, based on the research of MBRS Jia et al. (2021), a new watermarking model
is designed that is more excellent and secure. The overall architecture of the model is shown
in Figure 1. For the message processor and noise layer, we adopt the same network structure
as in MBRS.

The encoder first receives the RGB cover image Ico of size 3 ×H ×W and performs a
feature extraction operation on it through one 3×3 convolutional layer and four Squeeze-
and-Excitation (SE) blocks Hu et al. (2018) to obtain an intermediate feature vector
Iinter∈RC×H×W . Then, the Men obtained after the message processor is fed together with
Iinter into the iterative attentional feature fusion module (iAFF-Pro) to integrate the fea-
tures. After that, the tensor obtained after iAFF-Pro and the cover image are concatenated
into a new tensor by skip connection and fed into a 1×1 convolutional layer to recover to the
number of original channels, finally generating an encoded image Ien of shape 3 ×H ×W .
The decoder recovers the embedded secret message M

′
of length L from the noised image Ico
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through three-branch architecture. Finally, for the feature downsampling and upsampling
operations, we apply pixel-unshuffle and pixel-shuffle to prevent checkerboard artifacts in
the watermarked image.
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Figure 1: Overall model architecture.The encoder integrates the cover image features and
the message features through the iAFF-Pro module. The noise layer changes the
type of noise according to MBRS method. The decoder recovers the secret mes-
sage from the noised image through the multi-branch architecture. The adversary
discriminator is trained to distinguish whether an image is encoded or not.

3.2. Multi-branch decoder

In MBRS, the authors designed a decoder network with CNNs combined with the attention
mechanism as the main architecture to perform better learning of image features in the
extraction phase. However, the network focuses more on local features of the image and
fails to capture the overall attributes of the image, such as color features, texture features,
and shape features, which results in the watermark information in the image under attack
not being easily extracted in its entirety and is not conducive to the protection of images.

To solve this problem, we designed a multi-level decoder network combining CNNs and
Transformer, as shown in Figure 2, which adopts a three-branch architecture: CNNs branch,
Transformer branch, and Identity branch.

CNNs Branch: The CNNs branch uses SE blocks with the attention mechanism to
learn the data in the channel dimension, to better assign the features in a ranked manner,
and to obtain the importance of each channel in the feature map. The CNNs branch consists
of two convolutional layers and five SE blocks; the structure of the SE block is shown in
Figure 2(a), which consists of two main parts, Squeeze and Excitation, respectively. The
Fsq in the figure is the Squeeze operation, which globally pools the input feature map to
obtain a single channel feature map. The Fex in the figure corresponds to the Excitation
operation, which is the computation of two fully connected layers on the output of the
Squeeze operation to obtain a weight vector with the same number of channels as the
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Figure 2: The architecture of proposed multi-branch decoder network. (a) The architecture
of SE block; (b) two successive Swin Transformer Blocks. The up-sampling and
down-sampling blocks consist of several pixel-shuffle and pixel-unshuffle opera-
tions respectively.

original input. Finally, through Fscale the original input is multiplied by the weight vector
to obtain the enhanced feature map.

Transformer Branch: First, the initial feature extraction is performed by a feature
extraction block consisting of convolutional layers to retain some inductive bias properties of
the convolution. Then, the feature is partitioned into non-overlapping patches through the
patch partition module, and further linear embedding layers are applied to project them
to arbitrary dimensions. Finally, it is sent into the Transformer block for global feature
collation. To improve performance, we use Swin Transformer Liu et al. (2021) as the main
Transformer block, which uses a hierarchical Transformer computed with shifted windows.
By limiting the computation of self-attention to non-overlapping local windows and allowing
connections between non-adjacent windows, it is allowed to make watermarked images retain
richer information. The specific architecture of the Swin Transformer Layer is shown in
Figure 2(b). Each Swin Transformer Layer consists of two consecutive Swin Transformer
blocks. Since after the feature transformation by applying the Swin Transformer block, the
feature size will be halved and the channel doubled by each patch merging operation, several
upsampling operations are adopted to restore the original feature size for fusion with other
branches.

Identity Branch: The Identity branch is similar to the residual structure of ResNet
He et al. (2016), which adds skip connections to the network so that the network can learn
the residual function and better fit the data.
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After the three-branch network, we fuse the resulting feature maps and then send them
to the downsampling network. Finally, through the reshaping operation, we get the finally
decoded secret message M

′
.

3.3. Multi-scale attentional feature fusion module

In order to better embed watermarks into the cover image, we propose a Multi-scale Atten-
tional Feature Fusion Module (MA-FFM). To be specific, we design the MA-FFM through
two main paths: the local path and the global path. As shown in Figure 3(a), given an
input tensor X∈RC×H×W , it is fed into the two paths to fuse local features and global
representations at different scales in an interactive manner.

For the local path, we choose deep-wise convolution to encode information on spatially
close pixel locations, using 3×3 and 5×5 depth-wise convolution to enhance the extraction
of multi-scale local information, respectively. After the first deep convolution layer, the
initial contextual feature information is cross-aggregated. Then, the 3×3 and 5×5 depth-
wise convolution layers are fed again respectively for a second feature fusion in the channel
dimension to enrich the contextual feature information. The contextual features L(X) of
the local path are computed by the following structure:

X
′
l = f conv

1×1 (X) (1)

Xc3
l = ω(β(fdwc

3×3(X
′
l )));X

c5
l = ω(β(fdwc

5×5(X
′
l ))) (2)

Xc33
l = ω(β(fdwc

3×3 [Xc3
l , Xc5

l ]));Xc55
l = ω(β(fdwc

5×5 [Xc3
l , Xc5

l ])) (3)

L(X) = f conv
1×1 [Xc33

l , Xc55
l ] (4)

where f conv
1×1 represents 1×1 convolution, fdwc

3×3 and fdwc
5×5 represents 3×3 and 5×5 depth-wise

convolution, ω(·) is a ReLU activation, and [·] is the channel-wise concatenation.
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Figure 3: (a)The architecture of MA-FFM; (b)The architecture of iAFF-Pro.

For the global path, we first compress the spatial information by taking the input feature
map through global averaging pooling to obtain a feature map that summarizes the rich
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spatial information of the image. The global averaging pooling operation forces the corre-
spondence between the cover image and the secret message, which makes the encoded image
more robust against geometric attacks. And then we use two 1×1 convolution layers. One
is to process the characteristic channel information to strengthen the correlation between
channels. The other is used to extend the channels to add them to the feature map on the
left after cross-fusion. This step is the highlight of this module, aiming to integrate local
details and global information of different levels for the first time, improve feature reuse
rates, and effectively enrich features of different levels. Finally, 1×1 convolution is used to
extend the channel to the original input dimension for the final aggregation between the
local information and the global information.

After getting the local channel context L(X) and the global channel context G(X), the
refined features X

′∈RC×H×W obtained by MA-FFM are denoted as follows:

X
′

= X ⊗ σ(L(X) ⊕G(X)) (5)

where σ is the Sigmoid function, ⊕ represents the broadcasting addition and ⊗ represents
the element-wise multiplication.

Dai et al. (2021) demonstrated that the initial integration problem of feature mapping
can be alleviated by adding another level of attention. We address the initial integration
problem by using a combination of MA-FFM and their iterative architecture iAFF. We call
it iAFF-Pro. The structure of the iAFF-Pro is shown in Figure 3(b).

In general, MA-FFM controls the flow of information at each level of the pipeline, so
that each level can focus on details that complement the other levels. By fusing these
different levels of feature information it is possible to better capture information about
multi-layered features from the original image and to interact across channels. The feature
fusion operation further enhances the representational power of the CNN and thus embeds
the secret message more seamlessly into the cover image.

3.4. Loss function

In the field of deep learning-based watermarking, researchers usually use Mean Square
Error (MSE) as a loss function to measure the quality of watermarked images, but MSE
only reflects the degree of difference at the pixel level of an image and cannot explain
many nuances of human perception, much less the difference between image structures.
What we really want is a ”perceptual distance” that can measure the similarity between
the encoded image and the cover image. By reducing this distance so that the human eye
cannot distinguish the differences between two images. Thus, we add the perceptual loss
LPIPS Zhang et al. (2018) to the total loss Lm of MBRS to improve the perceptual quality
and make the watermarked images look more natural and visually better.

The perceptual loss LL is calculated as:

LL = d(x, x0) =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (ŷlhw − ŷl0hw)∥22 (6)

where x is the cover image, x0 is the encoded image, ŷlhw and ŷl0hw are the features of
the cover and encoded images at layer l, wl is the cosine distance, and Hl and Wl are the
height and width of the feature map at layer l.
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The total loss function is:

LTotal = Lm + λLLL (7)

where λL is weight factor. For the choice of λL, please see the Results and Analysis
section for details.

4. Experiments

4.1. Implementation Details

Our proposed model is implemented by PyTorch. In the training phase, we use a mini-batch
of size 4, with 100 epochs trained for each noise. We use the Adam Kingma and Ba (2014)
optimizer with a learning rate of 1e-3. The strength factor S is all set to 1 during training
and is given different values during testing. For the parameters of the loss function, we
choose λL= 1.2, the same parameters in Lm as in MBRS Jia et al. (2021).

We randomly selected 10,000 images from the COCO dataset Lin et al. (2014) as
the training set. And 5000 images were randomly selected from the validation set as the
validation set and 5000 images as the test set. Each image was processed to a size of 128 ×
128 before training. The secret message is composed of a random 0 and 1 of length 64 bits.

4.2. Metrics

We use PSNR and SSIM to measure the quality of the encoded image. In general, the higher
the PSNR, the better the image quality; the closer the value of SSIM is to 1, the smaller
the difference between the encoded image and the cover image. Robustness is measured
using the Bit Error Rate (BER), which indicates the probability that the number of wrong
bits of information in the secret message recovered from the decoder accounts for the total
number of bits; the lower the BER, the higher the extraction accuracy.

4.3. Baselines

Our baseline for comparison is HiDDeN Zhu et al. (2018), TSDL Liu et al. (2019) and
MBRS Jia et al. (2021). The reason is that all of these works are watermarking algorithms
with CNN as the main architecture and MBRS as the SOTA method. The strength factor
S is a parameter to adjust robustness and image quality. For a fair comparison, we set the
length of the embedded secret messages to 64 and the strength factor S to 1 during training
and assigned different values during testing.

5. Results and analysis

5.1. Imperceptibility and robustness

To evaluate the imperceptibility and robustness of the watermarked images, we trained
with seven different noises, including differentiable noise: Crop (p = 0.3), Dropout (p =
0.3), Gaussian Filtering (GF, σ = 2), Gaussian Noise (GN, σ2 = 0.005), Salt and Pepper
noise (SP, D = 0.01), Median Filtering (MF, w = 3) and non-differentiable noise: JPEG
compression (Q = 50). We use PSNR and SSIM to measure the similarity between the
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Figure 4: Image quality for our models trained with the seven types of noise. Top: cover
image Ico; Middle: encoded image Ien; Bottom: noisy image Ino. PSNR and
SSIM reflect the similarity between the original cover image and the encoded
image.
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original cover image and the watermarked image. The PSNR and SSIM values of seven
different watermarked images are shown in Figure 4. We can find that the encoded images
obtained by our model are visually indistinguishable from the cover images and have certain
imperceptibility.

We compared the results of our scheme in this paper with HiDDeN Zhu et al. (2018),
TSDL Liu et al. (2019) and MBRS Jia et al. (2021). The experimental results for differen-
tiable noise are shown in Figure 5, PSNR and SSIM can be over 40 dB and 0.95 respectively,
indicating high image quality. Therefore, the perceptual quality of our scheme for water-
marked images is significantly superior to that of other methods Zhu et al. (2018); Liu et al.
(2019); Jia et al. (2021). In addition, we calculate the BER of the extracted watermark
under different noises conditions to prove the robustness of the proposed method. The data
in Table 1 show that the BER of our method can be reduced by an order of magnitude under
Dropout, GN, and SP compared with the SOTA method Jia et al. (2021). As for JPEG
compression, we compared it with the SOTA method Jia et al. (2021) under the condition
that PSNR = 33.5 dB, and the results in Table 2 show that our model outperforms Jia
et al. (2021) when Q > 50. This indicates that our method has some resistance to JPEG
compression. In summary, the scheme in this paper performs better robustness in general
and does not degrade the image quality.

Table 1: Robustness comparison with other methods. It shows that our model performs
the best of the four methods.

Noise
Crop Dropout GN GF MF SP

(p=0.3) (p=0.3) (σ2=0.005) (σ=2) (w=3) (D=0.01)

HiddeN 30.16% 39.77% 27.90% 4.00% 23.00% 27.30%
TSDL 32.58% 5.91% 22.43% 7.20% 22.64% 10.15%
MBRS 21.15% 0.00188% 0.00141% 0.00281% 0.00266% 0.00203%
Ours 20.95% 0.00078% 0.00047% 0.00188% 0.00219% 0.00078%

Table 2: Robustness against non-differentiable noise compared to Jia et al. (2021). We
made a fair comparison under PSNR = 33.5 for different Q values in JPEG com-
pression.

JPEG Q = 10 Q = 30 Q = 50 Q = 70 Q = 90

MBRS 5.79% 0.011% 4.14% 0.00003% 0.94%
Ours 5.84% 0.0017% 0.00% 0.000003% 0.87%

5.2. Ablation studies

In this section, we validate the effectiveness of the proposed method through ablation ex-
periments. Specifically, the effects of the Transformer branch, the iAFF-Pro module and
the perceptual loss are discussed below.
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Table 3: Ablation experiment results of the proposed method. Here, we only show the
experimental results of MF(w=3) for better observation.

Transformer branch iAFF-Pro module LPIPS PSNR SSIM BER

38.59 0.9486 0.31380%
✓ 40.94 0.9729 0.00239%

✓ 39.61 0.9575 0.00281%
✓ 43.73 0.9816 0.00287%

✓ ✓ 41.21 0.9733 0.00218%
✓ ✓ 43.86 0.9825 0.00226%

✓ ✓ 42.12 0.9694 0.00234%
✓✓✓ ✓✓✓ ✓✓✓ 45.37 0.9872 0.00189%

Unlike the existing CNN-based watermarking model, we introduce Transformer blocks
rationally based on CNN and combine them into a new decoder. We also design a multi-scale
attentional feature fusion module (MA-FFM) to achieve efficient fusion of image features
and message features. For better observation, we conducted experiments using MF (w=3).
As can be seen in Table 3, the PSNR value increases by at least 2 dB and the SSIM value
rises by 0.02 after adding the Transformer branch; then the PSNR value increases by at least
3 dB and the SSIM value rises by 0.03 after adding the iAFF-Pro module, and the BER
decreases by two orders of magnitude. In addition, we improved the low-level loss function
and added an additional high-level perceptual loss. As shown in Table 3, the PSNR and
SSIM of the images are significantly improved with the addition of perceptual loss, with the
PSNR value increasing by 5 dB and the SSIM value increasing by 0.04. To conclude, the
combination of the three modules achieves the best performance.

5.3. Research on λL

In order to obtain visually lossless encoded images, we conducted a preliminary study
and analysis of the parameter λL of the perceptual loss LL. Specifically, the effect of the
parameter λL on the BER, PSNR value and SSIM value are discussed below.

We use different noises for training and set different values of λL. After extensive
experiments, we found that the performance of the model was extremely unstable as λL

increased. Therefore, we chose the value of λL to range from 0 to 2 for easy comparison.
For better observation, we only show the experimental results for Dropout (p=0.3). The
corresponding BER, PSNR values and SSIM values are shown in Figure 6. It can be
seen from Figure 6 that either too large or too small a value of λL has some effect on
the results, with the lowest BER and highest PSNR and SSIM values when the λL value is
around 1.2. We conjecture that the reason for this is that adding the appropriate perceptual
metrics leads to the best performance of the model, while the opposite is counterproductive.
Therefore, we finally chose λL = 1.2 for the subsequent experiments.
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Figure 6: The influence of the perceptual loss parameter λL on experimental results.

6. Conclusion

In this paper, we design a multi-branch decoder network structure combining CNN and
Transformer for secret message extraction. Compared with the decoder of pure CNN archi-
tecture, our model has more powerful decoding and feature analysis capabilities. To better
embed secret messages, we developed a multi-scale attentional feature fusion module to ag-
gregate image features and message features. In addition, we add perceptual loss to the loss
function to enhance the deeper understanding of the cover image and the encoded image by
the network, resulting in better perceptual capabilities. Experimental results show that our
approach achieves the best performance in most types of noise compared to state-of-the-art
algorithms. To our knowledge, our model is the first method to use the Transformer in the
watermarking field, which further demonstrates the feasibility of the Transformer in the
field of computer vision. In the future, we will explore Transformer models that are more
suitable for use in the field of image watermarking.
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