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Abstract

With the advancement of deep learning techniques, image restoration (IR) performance
has improved significantly. However, these techniques often come with high computational
costs, which pose challenges in meeting the processing latency requirements of resource-
constrained hardware in edge computer vision systems. To address this issue, we propose
a simple binarization technique and an efficient training strategy called Gentle Approxi-
mation Method (GAM) to extend the application of binary neural networks (BNNs) to
various IR tasks, including low-light image enhancement, deraining, denoising, and super-
resolution. Our results demonstrate the effectiveness of our method in binarizing full-
precision deep neural networks. By binarizing these networks, we achieve a significant
reduction in computational and memory demands while maintaining satisfactory perfor-
mance. For instance, in the denoising task, the FLOPs can be reduced to only 3% of the
original network while preserving most of the performance.

Keywords: Binary Neural Network; Image Restoration;

1. Introduction

Image restoration (IR) addresses the challenge of recovering clean latent images from de-
graded observations, which is a significant problem in image processing, understanding, and
representation. IR has widespread applications in fields like medical imaging, astronomy,
and microscop. Over the past century, IR has received considerable attention due to its
impact on subsequent computer vision tasks such as classification and detection. In recent
decades, deep neural networks (DNNs) have revolutionized computer vision tasks, includ-
ing IR, by replacing traditional methods.Su et al. (2022) However, the computational and
memory demands of DNN-based IR algorithms pose challenges for edge computer vision
systems and resource-limited devices.

Considerable methods have been proposed to address this problem, including compact
models, tensor decomposition, data quantization, and network sparsificationDeng et al.
(2020). Among these, Binary Neural Networks (BNNs)Courbariaux et al. (2016) and Binary
Complex Neural Networks (BCNNs)Li et al. (2021) have emerged as promising solutions
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(a) input (b) Zero_DCE++ (c) Zero_DCE++(BNN) (d) Zero_DCE++(BCNN)

Figure 1: An example of performance from float point network and binarized networks.
Zero-DCE++Guo et al. (2020) is a low-light enhancement network. The bina-
rized networks have similar effect with the original network with more than 85%
reduction in computation and more than 83% in model size.

for resource-limited edge devices. These approaches effectively reduce memory and access
requirements by replacing arithmetic operations with bit-wise operations.

BNN and BCNN aim to represent activation and weight using one or two bits, replac-
ing floating-point multiply-accumulate operations (MAdds) with xnor and popcnt oper-
ationsRastegari et al. (2016). While BNN has achieved success in various semantic-level
tasks such as classification, recognition, and segmentationBethge et al. (2021); Liu et al.
(2020); Sun et al. (2018); Wang et al. (2020); Zhuang et al. (2019), its application in image
restoration (IR) tasks, apart from super-resolution (SR) neural networksMa et al. (2019);
Xin et al. (2020); Jiang et al. (2021); Huang et al. (2021); Nie et al. (2022); Xia B (2022),
remains relatively unexplored.

This work proposes a simple and universal strategy for binarizing IR neural networks,
involving architecture modification and a novel training strategy called the Gentle Approx-
imation Method (GAM). We consolidate and abstract methods from prior studies to derive
a universal approach for architecture modification. In GAM, we depart from conventional
techniques and use floating-point numbers to simulate the distribution in BNN and BCNN
during training, ensuring optimal gradient descent. Our work achieves universal binariza-
tion of IR neural networks, yielding remarkable results in four tasks. Notably, we introduce
binarization in low-light enhancement and rain removal networks for the first time. Fig-
ure 1 provides a comparison between the floating-point and binarized networks in low-light
enhancement, demonstrating resource savings with similar performance.

This work makes the following contributions. First, it achieves universal binarization
of IR neural networks, demonstrating the significant potential of BNN and BCNN in IR
applications through experiments on four different tasks. Second, it proposes a simple and
universal binarization technique that transforms full-precision IR networks into standard
BNN or BCNN architectures. Finally, it introduces an efficient training strategy called the
Gentle Approximation Method (GAM) to address the issue of non-convergence in traditional
training strategies without introducing additional loss functions or parameters.
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2. Related Work

2.1. Image Restoration Neural Network

IR encompasses tasks like super-resolution, deblurring, denoising, deraining, dehazing, and
more, aiming to enhance image qualitySu et al. (2022). Traditional methods, such as
maximum likelihood or Bayesian algorithms, were commonly used in the pre-deep learning
era. However, deep learning methods have surpassed these approaches in performance and
ease of implementation, particularly with the use of high-level hardware resources.

Two main baseline models for IR neural networks are Convolutional Neural Network
(CNN) and Generative Adversarial Network (GAN)Su et al. (2022). HI-Net achieves
high-performance denoising, deblurring, and deraining using instance normalization and
CNNChen et al. (2021). g-UNet is a dehazing network based on U-Net and residual blocks,
commonly used structures in CNNSong et al. (2022). GANs have gained popularity in
IR tasks for generating realistic images with fine texture. PULSE focuses on facial super-
resolution with a scale-factor of up to 64×Menon et al. (2020). DeblurGANv2 strikes a
balance between performance and computational efficiency using Feature Dynamic Net-
worksKupyn et al. (2019).

Although GANs offer high capacity and compatibility, they come with larger and deeper
networks and training challenges. The dynamic characteristics of some GANs demand
higher hardware requirements, even during inference. Therefore, this work primarily focuses
on binarizing IR tasks based on CNNs.

2.2. Binary Neural Network

BNN, introduced in Courbariaux et al. (2016), represents weights and activations using
1-bit values. It offers reduced computational complexity and hardware-friendly characteris-
tics while maintaining considerable accuracy compared to full-precision networks. Various
methods have been proposed to enhance BNN’s performance and address training chal-
lenges. One method focuses on reducing information loss during binarization by introducing
additional parameters, as seen in XNOR-NetRastegari et al. (2016), Dorefa-NetZhou et al.
(2016), ABC-NetLin et al. (2017), Bi-RealLiu et al. (2018), IR-NetQin et al. (2020), and
Bi-NealNie et al. (2022). Bi-Neal demonstrates the generality of this approach across vari-
ous tasks and successful hardware implementation. Another method involves modifying the
network’s structure, as demonstrated by Group-NetZhuang et al. (2019), MeliusNetBethge
et al. (2021), and ReActNetLiu et al. (2020). Notably, MeliusNet and ReActNet even
outperform full-precision networks.

An extension of BNN worth mentioning is the Binary Complex Neural Network (BCNN)Li
et al. (2021). BCNN incorporates complex representations and operations to enhance net-
work capabilities. Complex networks have shown improved accuracy compared to real-
number networks of the same sizeTrabelsi et al. (2017), primarily due to the utilization of
phase information. To exploit the advantages of complex numbers and demonstrate the
universality of our proposed method, we conducted experiments on binarizing IR neural
networks using binary complex numbers.

Recent research has focused on developing specialized training strategies for BNNs to
improve training and enhance performance. The conventional method, introduced in Cour-
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bariaux et al. (2016), approximates the gradient of the Sign function while keeping real-
valued weights during training using Clip(−1, x, 1). Other studies have built upon this
method by modifying the gradient approximation for the Sign functionLiu et al. (2018);
Gong et al. (2019); Qin et al. (2020); Ma et al. (2019); Huang et al. (2021). These meth-
ods utilize binary weights and activations during forward propagation, except for Ma et al.
(2019), which focuses on binarizing weights only. However, our experiments have revealed
challenges when applying these methods to binarize IR neural networks, particularly for
BCNNs. Hence, we propose a novel training strategy, named the Gentle Approximation
Method (GAM), which will be detailed in Section 3.2. Another approach to address train-
ing difficulties involves introducing redundant parametersLiu et al. (2018); Ma et al. (2019);
Xin et al. (2020), although most of these parameters can be absorbed by normalization lay-
ers. Bi-NealNie et al. (2022) provides a comprehensive overview in this area. Therefore,
normalization plays a crucial role in our proposed method.

Many studies have focused on binarizing classification networks, while other computer
vision applications such as segmentationZhuang et al. (2019), detectionSun et al. (2018);
Wang et al. (2020), and matchingNie et al. (2022) have also been explored. However,
the binarization of low-level computer vision tasks, particularly super-resolution (SR), has
received limited attention. Ma et al. Ma et al. (2019) initially attempted to binarize weights
only. BAMXin et al. (2020) introduced additional parameters and a new loss function,
along with a specialized model for binary super-resolution networks. IBTMJiang et al.
(2021) eliminated batch normalization and replaced ReLU with PReLU. Bi-NealNie et al.
(2022) achieved state-of-the-art performance with a 1.5× increase in the number of channels.
BBRUXia B (2022) extensively transformed IR networks into BNNs but focused on networks
with three functionalities: super-resolution, JPEG compression, and image denoising.

The exploration of binarizing IR neural networks remains limited. This work presents a
novel and efficient binarization technique specifically designed for IR neural networks. The
proposed technique not only extends to super-resolution but also encompasses low-light
enhancement, denoising, and deraining tasks.

3. Methodology

There are two significant challenges associated with binarizing IR neural networks. Firstly,
binarization inevitably reduces the representation capacity of hidden layers, which conflicts
with the abundant information present in the outputs of IR tasks. Secondly, training 1-bit
CNN models steadily poses a difficult problem, and this holds true for binarizing IR tasks
as well.

To address these challenges, this study proposes a straightforward binarization technique
primarily utilizing convolutional operations (Sec. 3.1). Additionally, a universal training
strategy, known as the Gentle Approximation Method (GAM, Sec. 3.2), is introduced to
facilitate the smooth optimization of the modified networks.

3.1. Binarization Methods

To portray the general architecture of a binarized IR neural network, this study introduces
two methods of binarization along with two compensations for information loss. Typically,
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Figure 2: Complex input generation blockTrabelsi et al. (2017).

pooling layers and fully-connected layers are not present in IR neural networks; therefore,
designing binarization methods for these layers was not considered.

Basic Binarization. The objective of network binarization is to represent both weights
and activations using 1-bit values. In this study, we adopt the common practice of binarizing
convolution layers, which can be expressed as follows:

xb = Sign(xf ) =

{
−1, if xf < 0

+1, otherwise
(1)

where xf denotes the float point activation or weight and xb indicates the corresponding
binary value. This approach significantly reduces the computational complexity of the con-
volution operation, particularly for hardware implementations, as the xnor and popcount

operation replace multiplication and addition, as demonstrated in prior worksRastegari
et al. (2016).

Complex Binarization. To convert a full-precision network into a binary complex
network, we adopt the methods proposed in BCNNLi et al. (2021). An additional block is
inserted before the first layer to generate the imaginary part of the input (Fig. 2). When
binarizing these complex numbers, we employ quadrant binarization, as illustrated below:

xb = Sign(xr + ixi) = Sign(xr) + iSign(xi) = (xr)b + i(xi)b (2)

where xb is the binarized input complex activation or weight, while xr and xi correspond to
the real and imaginary parts, respectively. This approach decouples the real and imaginary
parts, enabling them to be treated separately, similar to ordinary binary numbers.

Thus far, we have employed the vanilla binarization method, as many variations of
BNNs can be effectively summarized by normalization layers, which will be elaborated in
subsequent sections.

Nomalization. In this method, a normalization layer is incorporated immediately after
each binary convolutional layer. Normalization techniques, such as Batch Normalization
(BN)Ioffe and Szegedy (2015), are commonly employed in neural etworks. The BN operation
can be defined as follows:

BN(x) = γj
x− µj√
σ2
j + ϵ

+ βj (3)

where x indicates the input data. µj , σj indicate average value and standard devia-
tion in j-th channel respectively while γj and βj are trainable parameters. These four
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parameters(µj , σj , γj , βj) are obtained during training and remain constant in inference.
Generally, normalization serves as an implicit regularization method and aids in promoting
effective generalization of the network.

Converging 1-bit CNNs without Batch Normalization (BN)Courbariaux et al. (2016) is
challenging. Some studies have introduced redundant parameters to facilitate the training
process and enhance network performance, but these parameters can be absorbed by BNNie
et al. (2022). Consequently, models incorporating such parameters are mathematically
equivalent to models without them, but with modified BN parameters. In this work, we
posit that alternative training strategies can yield similar effects as redundant parameters,
which will be elaborated in Section 3.2.

Furthermore, normalization plays a crucial role in binarizing IR neural networks as
it effectively shifts the mean activation to zero channel-wise. This shift is essential for
improving information entropyQin et al. (2020), wherein higher entropy indicates a greater
amount of retained information after binarization. ReActNet also highlights the significance
of activation shifting in 1-bit CNNs, and they achieve this through a combination of basic
activation functions and BN (see Eq. 4). While Qin et al. (2020) normalize weights to
achieve this objective, the use of traditional normalization layers is a more straightforward
implementation approach.

Moreover, FINNUmuroglu et al. (2017) demonstrates that by combining BN with the
Sign function, the MAdd operation can be replaced with a simple comparison, as illustrated
below:

Sign(BN(x)) = Sign(γ
x− µ√
σ2 + ϵ

+ β) =

{
−1, if τ < 0

+1, otherwise
(4)

where τ = µ − β
√
σ2 + ϵ/γ, represents the threshold used in comparison. This finding

indicates that BN is hardware-friendly for 1-bit CNNs. However, in certain IR tasks, al-
ternative normalization techniques may be more suitable, such as Instance Normalization
(IN)Ulyanov et al. (2016). While IN cannot be simplified during inference, the computa-
tional overhead it incurs is acceptable (see Sec. 4.2).

Applying normalization to complex-valued activations can be challengingTrabelsi et al.
(2017). Fortunately, BCNNLi et al. (2021) has demonstrated that Complex Gaussian Batch
Normalization(CGBN) is more effective in stabilizing the training process and reducing
computation. Therefore, we adopt a similar method to normalize complex activations,
treating the real and imaginary parts of the complex numbers separately, as illustrated
below:

x̂c = γc(
xr − µr√
2σ2

r + ϵ
+ i

xi − µi√
2σ2

i + ϵ
) + βc (5)

where the subscript c, r, i indicate complex value, real value and imaginary value respec-
tively.

Close Loop. The architectures of IR neural networks exhibit rich diversity, but a
significant majority of them feature a closed-loop structure. In our method, we introduce a
closed loop to those networks that lack it. The closed loop plays a crucial role in binarizing
IR neural networks by mitigating information degradation. Let an represent a pixel in the
feature map of the n-th layer with cn channels. The value of an is obtained through the
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Figure 3: A graphical illustration of the network in different stages using GAM. Clip is
short for Clip(−1, x, 1). Wf indicates the float-point weights and Wb indicates
the bianry weights. The solid lines indicate the flow of forward propagation
and the dotted lines indicate the gradient flow to weight of convolution during
backward propagation. The close loop is omitted for simplicity.

following process:
an = BN(Conv(a′n−1;w

′
n−1)) (6)

where a′n−1 and w′
n−1 represent binarized activations and weights in (n−1)-th layer respec-

tively. BN can be regarded as an affine transformation that does not alter the number of
possible values for an. Thus, the number of possible values is determined by the convolution
operation, as expressed by:

Num(ajn) = cn−1k
2 + 1 (7)

where Num() represents the number of possible values for ajn, which corresponds to the j-th
channel, and k denotes the kernel size. It is important to note that this representation ca-
pacity is significantly lower than that of floating-point numbers. However, as demonstrated
in Liu et al. (2018), a simple shortcut can enhance the representational capability.

Hence, in the case of certain IR networks lacking a closed loop structure, additional ar-
chitectural modifications are required. In Section 4.4, we will demonstrate the effectiveness
of incorporating a closed loop when binarizing a plain CNN for IR tasks.

3.2. Gentle Approximation Method

The training of 1-bit CNNs presents two challenges: the non-differentiability of the Sign
function and the requirement for larger gradients to update the weights’ signs. These
challenges are traditionally addressed using the method proposed in Courbariaux et al.
(2016), which involves approximating the gradient of the Sign function using the Straight
Through Estimator (STE) and preserving the real values of weights during training, as
illustrated in Eq. 8.

∂l

∂xr
=

∂l

∂xb
1|xr|≤1 (8)
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Figure 4: (a) different activation functions; (b) derivatives of functions in (a) respectively.

However, the application of traditional training methods to train binarized IR neural
networks often results in poor performance or even non-convergence, particularly for BC-
NNs. In addition, considering the finer information contained in the activations and outputs
of IR tasks, we propose a new strategy called the Gentle Approximation Method (GAM) to
train binarized IR neural networks. Our approach aims to closely approximate the distri-
bution of the full precision activation to that of the 1-bit CNN. The entire training process
is divided into four stages, where each stage utilizes the model obtained from the previous
stage as a pre-trained model. Within each stage, once the trained model is able to generate
the desired results, it can be employed as the pretrained model for the subsequent stage.
This method can be easily extended to train any 1-bit CNN without introducing additional
loss functions or parameters.

Stage 1: Training Full-precision Network. In Bi-RealLiu et al. (2018), the network
is initialized with activation functions replaced by Hardtanh(x). As the architecture of the
binarized IR network undergoes modifications, a similar initialization approach is employed
for training the network, but Tanh(x) is used instead, as illustrated in Fig. 3(a). It can
be observed that compared to Hardtanh(x), Tanh(x) exhibits a gentler slope and a wider
range of non-zero derivatives(Fig. 4). This characteristic facilitates a looser condition and
a more accurate direction for network training, thereby laying the foundation for stage 2.

Stage 2: Binarizing Weight. The only difference between stage 1 and stage 2 lies in
the binarization of weights (Fig. 3(b)). To compute derivatives, Clip(−1, x, 1) is utilized.
The weights are binarized first because they are less sensitive to quantizationZhou et al.
(2016); Gong et al. (2019). During inference, multiplication becomes dispensable with
binary weights, allowing the model obtained in this stage to be used for inference in certain
cases.

Stage 3: Gently Binarizing Activation. Since activations carry more information
and are highly sensitive to binarizationGong et al. (2019), we have observed that directly
binarizing activations after stage 2 results in a decrease in network performance or even
non-convergence, based on our empirical study. Therefore, we propose a new activation
function called Soft Binary (SB), defined as follows:

SB(x) = Tanh(10x) (9)

This function closely resembles Sign (Fig. 4(a)), while exhibiting a significantly wider
range of non-zero derivatives(Fig. 4(b)), approximately ranging from [−1.6, 1.6]. This ex-
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Table 1: The comparison between float-point model, BNN and BCNN for Zero-DCE++.
PSNR/SSIM #params model size FLOPs BOPs

Float-Point 15.68/0.512 10,561 41.25KB 1.23G -
BNN 14.28/0.499 10,625 6.75KB 111.38M 1.12G
BCNN 14.31/0.501 7,037 6.30KB 150.50M 1.36G

tended range allows for finer adjustments during the training process. The model obtained
in this stage can even be used for inference in 1-bit CNN with minimal performance decay,
when compared to the model obtained in stage 4.

Stage 4: Training Binarized Network. This stage serves as a fine-tuning step for
the network. The training method follows the approach proposed in Courbariaux et al.
(2016), where both the weights and activations are binarized.

4. Experiments

To demonstrate the versatility of our method, this section employs four different CNNs for
various IR tasks. Among them, two networks have not been binarized previously. Both
plain binarization and complex binarization techniques are applied to these networks, uti-
lizing the GAM for training. Following convention, the first and last convolution layers or
blocks remain in floating-point format. For BCNN, a complex input generation block is
added as described in Section 3.1. To ensure a fair comparison, during complex binariza-
tion, half of the channels in the floating-point network are maintained as real-valued, while
the remaining channels are represented as imaginary binary numbers. Unlike some other
binarization strategiesLi et al. (2021); Nie et al. (2022), we keep all hyperparameters, weight
initialization, and optimization algorithms consistent with the original network. The weight
initialization in complex binarization follows the approach proposed in Li et al. (2021), and
the number of training epochs may vary, allowing ample room for further improvement.

In terms of efficiency of our methods, both performance and resource saved will be
considered. For performance evaluation, we select at least one objective benchmark and
compare the results obtained from full-precision networks, BNNs, and BCNNs, using the
same training and test sets. Regarding resource utilization, we calculate memory usage and
computational complexity. Since hardware implementations can vary in real-world scenar-
ios, we separately calculate the floating-point operations (FLOPs) and binary operations
(BOPs).All the networks are implemented by Pytorch and trained on a NVIDIA 2080Ti
GPU.

4.1. Low-Light Image Enhancement

We first binarize the Zero-DCE++ networkGuo et al. (2020), which is specifically designed
for low-light enhancement. Unlike other IR networks, Zero-DCE++ produces a parameter
map as its output. This lightweight network comprises 7 depthwise separable convolutions
with a U-Net-like structure. We utilize the training set provided by the original official
code for training. During our experimentation, we observed that applying the traditional
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(a) low-light input (b) float-point (d) BCNN (e) ground truth(c) BNN

Figure 5: A comparison between original Zero-DCE++ and binarized ones.

training strategy for BNNs may result in non-convergence when training BCNNs for Zero-
DCE++. However, when trained with GAM, the BNN version requires 25 epochs for each
stage, while the BCNN version requires 70 epochs for the first stage and 10 epochs for each
subsequent stage.

Table 1 presents a comparison of performance and efficiency between the floating-point
network and 1-bit CNNs. FLOPs and BOPs are computed based on a 256 × 256 input
image. BOPs encompass the operations of xnor, popcnt, and comparison. The evaluation
is conducted on the Part2 Subset of the SICE datasetCai et al. (2018), ensuring a fair com-
parison with the original work. Although the original network’s performance differs slightly
from the paper, it is evident that the gap between the floating-point and binary versions
is small, and the details of the input images are preserved(see Fig.5). Furthermore, the
floating-point calculation is only approximately one-tenth of the original network, resulting
in a significant reduction in memory usage, making it suitable for edge devices. BCNN
outperforms BNN with slightly increased computation but with better memory efficiency,
indicating its ability to make more effective use of limited information.

4.2. Deraining

We select PeReNetRen et al. (2019) for binarizing the deraining network. PeReNet consists
of 6 different structures, and for simplicity and lightweight implementation, we choose the
smallest network, PRN r. If higher performance is desired, larger networks can be selected
accordingly. PRN r is composed of 6 repeated blocks, with the first and last blocks kept in
full precision and the middle blocks binarized. Both the first and last blocks have identical
structures, as do the remaining blocks. It should be noted that the addition of the new
binary block increases the model memory overhead compared to the original network. The
number of blocks in the intermediate section can be adjusted flexibly based on specific
requirements.

Table 2: The comparison between float-point model, BNN and BCNN for PRN r.
PSNR/SSIM
(Rain100H)

PSNR/SSIM
(Rain100L)

#params model size FLOPs BOPs

Float-Point 27.43/0.874 36.11/0.973 21,123 82.51KB 69.46G -
BNN 25.00/0.852 35.63/0.971 42,147 83.15KB 23.54G 46.27G
BCNN 25.03/0.857 35.91/0.972 44,007 127.22KB 23.76G 46.49G
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(a) heavy rain input (b) float-point(RainH) (d) BCNN(RainH) (e) ground truth(RainH)(c) BNN(RainH)

(f) light rain input (g) float-point(RainL) (j) ground truth(RainL)(h) BNN(RainL) (i) BCNN(RainL)

Figure 6: A comparison between original PRN r and binarized ones in both Rain100H and
Rain100L dataset.

(a) LR input (b) float-point (d) BCNN (e) ground truth(c) BNN

Figure 7: A comparison between original SRResNet and binarized ones.

The comparison is made in Table 2. Two representative datasets are chosen to test
binarized networks. Rain100H is harder to be derained than Rain100LYang et al. (2017).
From the table we can tell while maintaining most of the deraining function, 1-bit CNNs
reduce the FLOPs to about one third of the original. Also, the performance of 1-bit CNN
is closer to float-point in easier task. We empirically found using IN leads to better perfor-
mance than using BN, whose PSNR is 22.05dB for BNN on Rain100H dataset. BCNN still
remain superiority in this task. From fig. 6, we can tell that BCNN is able to handle the
heavy rain better in both heavy and light rain condition. Its performance is very close to
original network for Rain100L dataset.

4.3. Super-resolution

To compare with previous works, we choose SRResNetLedig et al. (2017), which is also
binarized in Ma et al. (2019), Xin et al. (2020), Huang et al. (2021). We keep the first
convolution layer and the upscale block float-point as is done in previous works. The super-
resolution scale is ×4.

Because the upscale block takes nearly half of the calculation complexity, the reduction
is not as much as other networks, but still 1-bit CNN only need less than a half computation



Wang Zhang Zhang Min

Table 3: The comparison between different binarized SRResNet.
PSNR(Set5) PSNR(Set14) #params model size FLOPs BOPs

Float-Point 31.80 28.25 1,546,752 5.90MB 273.66G -
BNN 30.53 27.59 1,546,752 1.53MB 129.47G 144.00G
BCNN 30.64 27.60 956,958 1.46MB 131.37G 144.06G

Table 4: The comparison between float-point model, BNN and BCNN for SRResNet.

FP BNN Dorefa
BNN

(this work)
BCNN

(this work)
Ma et al.

BNN
(BWN)

BCNN
(BWN)

Set5 31.80 29.33 30.38 30.53 30.64 30.34 30.64 30.66
Set14 28.25 26.72 27.48 27.59 27.60 27.16 27.63 27.62

resource of the original work, and about a quarter of model size, as is shown in Table 3. We
also compare our work with previous work in Table 4. Our plain BNN version has exceeded
the BNN version trained by traditional methods, implying the superiority of GAM. Since
binary weight network (BWN) is a byproduct of our training strategy, we compare these
models with Ma et al.Ma et al. (2019), too. Fig. 7 shows an example from Set5.

4.4. Denoising

For denoising, we choose a typical CNN, FFDNetZhang et al. (2018), to be binarized. This
is a simple network consisted of vanilla convolutional layer, BN and ReLU, making it the
only network added a ResNetHe et al. (2016) connection in this work, in order to form the
close loop. ResNet is a simple yet effective structure for IR tasks, for it is easier to optimize
residual blocks when its input and output are alike. Limited by the experimental resources,
a subset of the original training set, BSD500Martin et al. (2001), is used, as the change in
training set don’t do too much harm to the performance of original network based on our
experiments. The test set is Kodak24Franzen (1999).

Table 5 and table 6 are the performance and resources cost by full-precision network
and 1-bit CNNs. Although gaps exist between the performance of float-point and binary
FFDNet, the cost reduction is huge. The FLOPs and model size is about 3% and 5% of

(a) noisy input (b) float-point (d) BCNN (e) ground truth(c) BNN

Figure 8: A comparison between original SRResNet and binarized ones. σ=25.
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Table 5: The performance comparison between float-point model, BNN and BCNN for
FFDNet. σ indicates the level of noise.

Kodak24

model σ=15 σ=25 σ=35 σ=50 σ=75

PSNR
Float-Point 34.72 32.28 30.75 29.18 27.48

BNN 31.94 29.93 28.66 27.13 24.76
BCNN 32.41 30.23 30.23 27.17 25.06

Table 6: The cost comparison between float-point model, BNN and BCNN for FFDNet.
#params model size FLOPs BOPs

Float-Point 856,608 3.27MB 104.27G -
BNN 856,608 192.82KB 2.84G 101.25G
BCNN 442,458 144.49KB 4.46G 101.28G

the original network, respectively, pushing the compression to the limit and leaving a big
margin for further improvement. Fig. 8 is an example of outputs from different networks.

5. Conclusion

In this paper, we have proposed a universal method for transforming IR neural networks
into BNNs or BCNNs. We have also introduced an efficient and easy-to-implement training
strategy, called GAM, which enables the float point network to mimic the data distribution
in BNNs, without introducing any new parameters or loss functions. Our experiments have
been conducted on various IR tasks, including low-light image enhancement, deraining,
super-resolution, and denoising. The results demonstrate the effectiveness and universality
of our method.

As a work that applies 1-bit CNN to a wide range of IR tasks, our primary focus has
been on demonstrating the feasibility of our method. Therefore, there is ample room for
further improving the performance of these networks. We also advocate for the development
of binary networks specifically designed for IR tasks, which can be dedicated to the training
process while maintaining a simple model and inference process.
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