
Proceedings of Machine Learning Research 222, 2023 ACML 2023

A Partially Observable Monte Carlo Planning Algorithm
Based on Path Modification

Qingya Wang wqy17nju@163.com

Feng Liu∗ fengliu@nju.edu.cn

Bin Luo luobin@nju.edu.cn

National Key Laboratory for Novel Software Technology

Software Institute, Nanjing University, Nanjing, China

Editors: Berrin Yanıkoğlu and Wray Buntine

Abstract

Balancing exploration and exploitation has long been recognized as an important theme
in the online planning algorithms for POMDP problems. Explorative actions on one hand
prevent the planning from falling into the suboptimal dilemma, while hindering the con-
vergence of the planning procedure on the other hand. Therefore, it is meaningful to
maintain the exploration as well as taking a step forward towards exploitation. Note that
there is a deviation between the action selection criteria in the planning procedure and
in the execution procedure, which inspires us to build a bridge between these two criteria
to accelerate the convergence. A Partially Observable Monte Carlo Planning algorithm
based on Path Modification (POMCP-PM) is presented in the paper, which modifies the
backtracing paths by considering the two criteria simultaneously when updating the values
of parent nodes. The algorithm is general as the Upper Confidence Bound Apply to Tree
(UCT) algorithm used to select actions can be easily replaced by other criteria. Experi-
mental results demonstrate that POMCP-PM outperforms POMCP with varying numbers
of simulations on several scenarios with different scales.

Keywords: POMDP; POMCP-PM; Value Updating

1. Introduction

The Partially Observable Markov Decision Processes (POMDPs) provide a general model
for planning problems under uncertainty. However, solving the planning problems based
on POMDPs exactly has been shown to be PSPACE-complete over finite horizons and
undecidable over infinite horizons Papadimitriou and Tsitsiklis (1987); Madani et al. (1999).
To alleviate the “curse of history” and the “curse of dimensionality” for POMDPs, many
approximate algorithms have emerged over the past few decades. Point-based methods
Pineau et al. (2003); Smith and Simmons (2004) greatly reduce the computational cost of
solving POMDPs by planning on a set of representative belief points instead of the whole
belief space. However, these algorithms still belong to offline settings in which the agent
plans for all possible situations prior to execution. To further concentrate the computational
resources and extend the application of POMDPs, online algorithms Ross et al. (2008)
interleave planning with execution and only plan for current situations. Among online

∗ Corresponding author.

© 2023 Q. Wang, F. Liu & B. Luo.

Wang Liu Luo

algorithms, Monte Carlo planning based ones can adapt to environmental changes without
extra computation and are in widespread use. In Monte Carlo planning based algorithms,
exploration and exploitation seem to be in a dilemma, and how to balance them well has
long been a research hot spot.

Partially Observable Monte Carlo Planning (POMCP) Silver and Veness (2010) is one
of the most popular online algorithms based on Monte Carlo Tree Search (MCTS) Browne
et al. (2012). To balance exploration and exploitation, POMCP adopts the UCT algorithm
Kocsis and Szepesvári (2006) to select actions, which takes both the value functions and the
uncertainty into account. DESPOT Somani et al. (2013) constructs a determinized sparse
partially observable tree which contains all the action branches to be more accurate, but
limits its application in problems with large action space. SP-MCTS Schadd et al. (2008);
Schadd (2011) modifies the UCT algorithm by adding a third term which represents the
“possible deviation” of the node. POMCP-RAVE Liu et al. (2015) shares needed knowledge
among actions and augments the action value in the UCT algorithm with All Moves As
First (AMAF) heuristic method Helmbold and Parker-Wood (2009). Some recent researches
Mern et al. (2021b); Mern et al. (2021a); Lim et al. (2021) design heuristic action selection
strategies when the UCT algorithm is invalid in specific problems.

In fact, the online planning procedure can be further divided into two stages, which are
the growing stage and the updating stage. The above algorithms all focus on finding a better
action selection criterion in the growing stage, while ignoring the abundant information
which can be utilized in the updating stage. To make full use of the information contained
in current search tree, we find a new backtracing path to update the values of parent
nodes in the updating stage and then propose an algorithm called Partially Observable
Monte Carlo Planning based on Path Modification (POMCP-PM). The algorithm highlights
the deviation between the action selection criteria in the planning procedure and in the
execution procedure and divides the action nodes in the search tree into four categories
based on their corresponding action selection criteria. The importance of each category
determines its weight in the backtracing path during the updating stage. Instead of looking
for another way to select actions, POMCP-PM provides a new perspective on balancing
exploration and exploitation. Experimental results indicate that POMCP-PM shows better
performance than POMCP under three scenarios with different scales. Furthermore, the
new backtracing path raised in POMCP-PM does not conflict with the aforementioned
algorithms, thus can be applied to a variety of online Monte Carlo planning algorithms.

The paper is organized as follows: Section 2 provides background references, Section 3
analyzes the importance of belief nodes, Section 4 presents the POMCP-PM algorithm, Sec-
tion 5 shows the performance of the proposed algorithm over three scenarios with different
scales. Finally, Section 6 concludes this paper and discusses our future work.

2. Background

2.1. POMDP Model

The POMDP model can be described by a 7-tuple (S,A,O, T, Z,R, γ) Kaelbling et al.
(1998), where S is the state set, A is the action set, and O is the observation set. The
state-transition model T (s′|s, a) and the reward function R(s, a) specify the probability
distribution of successor state s′ and immediate reward r received after taking action a at

Backtracing Path Modification

state s. The observation model Z(o|s′, a) gives the probability distribution of observation o
received in successor state s′ after action a has been taken. γ ∈ [0, 1) is the discount factor.

In partially observable settings, the agent is not able to know the real state. Instead,
it receives observations from the environment and then selects the next action according to
the history sequence {a0, o1, a1, o2, . . . , at−1, ot} Smallwood and Sondik (1973). However,
it is of high complexity to maintain such history sequences. To simplify the model, belief
state b is introduced to take the place of the history sequence, b is defined as

bt(s) = P (st = s|ot, at−1, . . . , o1, a0). (1)

The value set of b is defined as the belief space B. The belief state b allows the use of
dynamic planning techniques for fully observable Markov Decision Processes. Initially, the
probability distribution of the state in POMDP is b0, then the following belief state b can
be computed incrementally according to the Bayesian formula

boa(s
′) =

∑
s b(s)T (s, a, s

′)Z(s′, a, o)∑
s b(s)

∑
s′ T (s, a, s

′)Z(s′, a, o)
. (2)

The value function of belief state b is defined as the expectation of cumulative discounted
reward. The policy in POMDP is a mapping from beliefs to actions: π(b) → a. Given a
policy π, the value function of belief state b is represented as follows

Vπ(b) = E

[
T−1∑
k=t

γk−tR (bk, π(bk)) |π, bt = b

]
, (3)

the action-value function is defined as follows

Qπ(b, a) = R(b, a) + γ
∑
o∈O

p(o | b, a)Vπ(b
o
a). (4)

The goal of solving POMDP is to find the optimal policy π∗ which optimizes the value
function. The optimal value function satisfies the following equation

V ∗(b) = max
a∈A

{
R(b, a) + γ

∑
o∈O

p(o|b, a)V ∗(boa)

}
, (5)

the optimal action-value function satisfies

Q∗(b, a) = R(b, a) + γ
∑
o∈O

p(o|b, a)V ∗(boa), (6)

and the optimal policy is
π∗(b) = argmax

a∈A
Q∗(b, a). (7)

Wang Liu Luo

Algorithm 1 PLAN

1: procedure PLAN(b)
2: for i ∈ 1 : n do
3: s← sample from b
4: SIMULATE(s, b, dmax)
5: return argmaxaQ(b, a)

2.2. POMCP Algorithm

Monte Carlo method has a long history within numerical algorithms and has also been
successfully applied to reinforcement learning in recent years. It works by taking random
samples in the decision space and computing over the samples based on probability and
statistical theory. POMCP is a widely used online algorithm following the framework of
Monte Carlo planning, which is a combination of Monte Carlo sampling and tree search.
The PLAN procedure is shown in Algorithm 1.

In POMCP, to estimate local reachable belief space, there is a PLAN procedure which
involves n simulations before each execution. A Monte Carlo search tree is constructed to
record the results of simulations. In the search tree, the action level interleaves with the
observation level. A new leaf node will be added to the Monte Carlo tree and the value
functions of nodes along the simulation path will be updated once a simulation terminates.
Each simulation starts with state s sampled from current belief node b according to the
probability distribution and ends with terminal states or the maximum depth dmax. The
detailed POMCP SIMULATE procedure is shown in Algorithm 2.

The POMCP SIMULATE procedure terminates when d equals to zero, which means
that the maximum depth dmax is reached. Otherwise, the action a to be simulated is
selected by the UCT algorithm, then the observation o, the immediate reward r and the
successor state s′ will be generated by the black-box function G(s, a) according to the
POMDP model. h represents the history sequence corresponding to the current belief node

Algorithm 2 POMCP SIMULATE

1: procedure POMCP SIMULATE(s, h, d)
2: if d = 0 then
3: return 0
4: a← argmaxa∈C(h)

{
Q(ha) + c

√
log[N(h)]
N(ha)

}
5: s′, o, r ← G(s, a)
6: M(hao)←M(hao) + 1
7: if M(hao) = 1 then
8: return r + γROLLOUT(s′, hao, d− 1)
9: total← r + γPOMCP SIMULATE(s′, hao, d− 1)

10: N(h)← N(h) + 1
11: N(ha)← N(ha) + 1

12: Q(ha)← Q(ha) +
total−Q(ha)

N(ha)
13: return total

Backtracing Path Modification

b, ha corresponds to the history sequence when action a has been taken from the current
belief node b, and hao corresponds to the history sequence when action a has been taken
and observation o has been received from the current belief node b. M(hao) records the
occurrence number of hao. If M(hao) = 1, which means the first time that some action
or observation occurs, then a new action or observation node will be added to the search
tree, otherwise the existing node will be reused. By performing a rollout using a baseline
policy, the value of the new added leaf node can be obtained. Other nodes will call the
POMCP SIMULATE procedure recursively to get the values of child nodes and then update
their own value functions using values of child nodes and immediate rewards. Then one is
added to both the counts of h denoted as N(h) and the counts of ha denoted as N(ha).
Q(ha) denotes the action-value function, which records the expected value function of ha.

3. Analysis of the Importance of Belief Nodes

3.1. Action Sampling Strategies

In the planning procedure, in order to balance exploration and exploitation, POMCP selects
actions to be simulated through the UCT Algorithm. We call the action selection criterion
as behavior policy, and the policy is represented as follow

aplan = argmax
a

{
Q(b, a) + c

√
log [N(b)]

N(b, a)

}
. (8)

The first term of this formula represents the action value function of the current node,
which means the exploitation of existing results. The second term reflects the relative
relationship between the total visited times of the belief point and the visited times of a
given action. If the relative visited times of the action is low, then the value of the second
term will be large. It means that the uncertainty of the action value function is high and
more explorations should be conducted on this action. The coefficient c is responsible for
keeping the balance between exploration and exploitation. The larger the coefficient c is,
the more it inclines to exploration. POMCP uses the behavior policy to select actions
to be simulated, combined with the observations generated by the black box function, to
construct more promising subtrees in the growing stage of the tree search method.

In the execution procedure, the agent adopts action selection criterion that directly
selects the action corresponding to the maximum action value, which is different from the
one in the planning procedure. We call the action selection criterion as target policy, and
the policy is represented as follow

aact = argmax
a

Q(b, a). (9)

For a given belief node, the behavior policy and the target policy may point to the
same action or two different actions. According to this feature, action nodes in the search
tree can be divided into four categories. The action nodes in four categories correspond to
different levels of importance in the planning procedure.

Wang Liu Luo

3.2. Importance of Belief Nodes

In the Monte Carlo search tree, action nodes can be divided into the following four categories
according to their importance, where actions in the first two categories are contained in the
simulation trajectories and those in the last two categories are not.

The first category of action nodes is related to both the behavior policy and the target
policy. As the nodes correspond to the target policy, their action value functions are the
largest ones. In the updating stage, the belief values will be updated to be the maximum
of the action values, which is consistent with the criterion of the target policy. As action
nodes in the first category also correspond to the behavior policy, the action values of these
nodes possibly have high uncertainty. Exploring these nodes and their subtrees can help
determine their values more accurately, providing more information for the parent nodes.
Therefore, nodes in this category own the highest level of importance.

The second category of action nodes is related to the behavior policy rather than the
target policy, which is the main source of the deviation between the policy in planning
procedure and the policy in execution procedure. The values of these action nodes are
not the largest ones and the actions corresponding to them are explorative. Therefore, in
many cases, only low rewards can the agent obtain after taking these actions. However, the
explorative actions can help update the potential substrees, bringing significant value to
overcome the suboptimal dilemma and obtain the global optimal policy, thus own a certain
degree of importance.

The third category of action nodes is related to the target policy rather than the behavior
policy. On the contrary to the action nodes in the second category, the values of these action
nodes are the largest with low uncertainty, thus it is not so meaningful to explore it again
within the limited planning time. But for the update of the parent nodes, these action
nodes can provide important information about the current optimal action value functions.
Therefore, this category of action nodes has a certain degree of importance as well.

Other nodes in the Monte Carlo search tree can be included into the fourth category, and
they are related to neither the behavior policy nor the target policy. This category of action
nodes accounts for the largest proportion, but with extremely low importance. Due to their
small value functions and low uncertainty, there is no necessity for further exploration.
Ignoring the information contained in this category of action nodes is beneficial to the
efficiency of the planning algorithm.

3.3. Modification via Importance Level

This paper focuses on the inconsistency of action selection criteria between the planning
procedure and the execution procedure, which is similar to the off-policy methods in re-
inforcement learning. Nearly all the off-policy methods in reinforcement learning adopt
a technique called Importance Sampling Sutton and Barto (1998), which is often used to
estimate expected values from one distribution while sampling from another. Inspired by
the idea of importance sampling, this paper designs a specific online planning algorithm
for POMDPs after considering the characteristics of Monte Carlo planning under partially
observable settings.

Backtracing Path Modification

To explain the principle of the algorithm, first we introduce the concept of importance
sampling. Starting from the initial state st, under the target policy πact, the occurrence
probability of state-action subsequence at, st+1, at+1, · · · , sT is

P (at, st+1, at+1, · · · , sT | st, at:T−1 ∼ πact)

=
T−1∏
k=t

πact(ak | sk)P (sk+1 | sk, ak).
(10)

Under the behavior policy πplan, the occurrence probability of state-action subsequence
at, st+1, at+1, · · · , sT is

P (at, st+1, at+1, · · · , sT | st, at:T−1 ∼ πplan)

=
T−1∏
k=t

πplan(ak | sk)P (sk+1 | sk, ak).
(11)

The importance coefficient can be represented as

ρt:T−1 =

∏T−1
k=t πact(ak | sk)P (sk+1 | sk, ak)∏T−1
k=t πplan(ak | sk)P (sk+1 | sk, ak)

=

T−1∏
k=t

πact(ak | sk)
πplan(ak | sk)

.

(12)

In the importance sampling method, if the probability of sampling the action ak ac-
cording to the target policy is greater than that of sampling the action according to the
behavior policy, it indicates that the probability of this action being selected in the execu-
tion procedure is greater than the probability of being sampled in the planning procedure,
so the importance of the action node is underestimated in the planning procedure and the
value function should be amplified and vice versa. If the probability of sampling according
to the target policy is equal to that of sampling according to the behavior policy, then the
value function remains unchanged.

However, in the POMCP algorithm, both the behavior policy and the target policy are
deterministic rather than stochastic, which is different from the general form of importance
sampling mentioned above. The probability of sampling the action at at belief b and time t
under the behavior policy is denoted as πplan(at | bt), and the probability under the target
policy is denoted as πact(at | bt). As the actions sampled according to the UCT algorithm
are deterministic, the probability of the selected action being sampled at belief bt is always
one hundred percent, which satisfies πplan(at | bt) ≡ 1. If the action is also of maximum
value at belief bt, which means πact(at | bt) = 1, then the corresponding term of this belief
node in the importance coefficient is 1. If the action is not the one who has the maximum
value at belief bt, but an explorative action obtained by considering the action value function
and the number of visits simultaneously, then πact(at | bt) = 0 and the corresponding term
of the belief node in the importance coefficient is 0. Therefore, it can be seen that in
the deterministic policy settings, the backtracing termination is easy to occur when the
importance sampling method is directly applied.

Wang Liu Luo

In order to extend the idea of importance sampling to the POMCP algorithm, it is
necessary to design an approach that takes both the efficiency and the effect into account.
In a planning trajectory, all the actions are sampled via the UCT algorithm. Among these
actions, some also have the maximum action values, so they have the highest importance
which is assigned as 1. Other actions in the trajectory are not the optimal and their
importance levels are assigned as imp. In order to match the action value functions in
scale, we assign (1 − imp) to the actions not sampled but with the maximum values as a
supplement. Then the value of the parent node will be updated as the weighted sum of the
maximum action value and the value of the action node selected by the UCT algorithm,
where the weight is based on the importance level. Regardless of whether the actions
sampled by two criteria coincide or not, the above analysis is always valid.

4. POMCP-PM Algorithm

4.1. Details of POMCP-PM Algorithm

This paper proposes a new Partially Observable Monte Carlo Planning algorithm based on
Path Modification (POMCP-PM), which selects important nodes across multiple paths to
update the values of belief nodes during the updating stage rather than simply selecting
nodes in the exploring path. The detailed PM SIMULATE procedure is shown in Algorithm
3, where C(h) means the number of child nodes under the history sequence h, imp represents
the importance of the sampled action and imp ∈ [0, 1].

Algorithm 3 PM SIMULATE

1: procedure PM SIMULATE(s, h, d)
2: if d = 0 then
3: return 0
4: aUCB ← argmaxa∈C(h)

{
Q(ha) + c

√
log[N(h)]
N(ha)

}
5: amaxQ ← aUCB

6: if C(h) = |A| then
7: amaxQ ← argmaxa∈C(h)Q(ha)
8: s′, o, r ← G(s, aUCB)
9: M(haUCBo)←M(haUCBo) + 1

10: if M(haUCBo) = 1 then
11: return r + γROLLOUT(s′, haUCBo, d− 1)
12: total← r + γPM SIMULATE(s′, haUCBo, d− 1)
13: N(h)← N(h) + 1
14: N(haUCB)← N(haUCB) + 1

15: Q(haUCB)← Q(haUCB) +
total−Q(haUCB

)

N(haUCB
)

16: return imp · total + (1− imp) ·Q(hamaxQ)

4.2. Algorithm Analysis

In the updating stage of the planning procedure in POMCP-PM, the return value is set to
be imp · total + (1 − imp) · Q(hamaxQ), which is the weighted sum of the value functions

Backtracing Path Modification

of the sampled action and the optimal action. When imp is set to one, the algorithm is
equivalent to POMCP.

Note that if the action selected by the UCT algorithm is the same as the action se-
lected by the maximum function, total and Q(hamaxQ) will share the same expected value,
E[total] = E[Q(hamaxQ)] = e, then E

[
imp · total + (1− imp) ·Q(hamaxQ)

]
= e. It shows

that the expected return value is the same as that in the original algorithm. If the action
selected by the UCT algorithm is different from the action selected by the maximum func-
tion, it means that the sampled action is explorative, which benefits the growth and update
of the subtrees but hinders the parent node from calculating and selecting the optimal value
function, thus has medium importance. In POMCP-PM, the return value can be divided
into two parts. The first one is total times the discount factor imp, which reduces the con-
tribution of the sampled actions to the parent node. The second one is the optimal action
value Q(hamaxQ) times the discount factor (1− imp), added the contribution of the optimal
action to the parent node.

As with POMCP, POMCP-PM also samples actions according to the UCT algorithm in
the planning procedure, which keeps a good balance between exploration and exploitation.
In fact, the UCT algorithm can be replaced with any improved action selection criterion.
Moreover, POMCP-PM reduces the impact of explorative actions during the updating stage,
so that the convergence of the planning procedure can be accelerated.

5. Experiments and Analysis

We compared the simulation results of POMCP-PM and POMCP on three scenarios with
different scales: Tiger, RockSample[7,8] and RockSample[11,11]. The scales of three bench-
mark problems are shown in Table 1, where |S|, |A| and |O| denote the number of states,
actions and observations.

Table 1: Scales of Benchmark Problems

|S| |A| |O|

Tiger 2 3 2

RockSample[7,8] 12545 13 3

RockSample[11,11] 247808 16 3

Tiger is a small-scale POMDP problem with only two states, three actions, and two
observations. In this problem, there is one door on the left and another on the right. A
tiger hides behind one of the doors, marked as state SL and state SR respectively, and the
two states share the same initial probability. At each step, the optional actions for the agent
include opening the left door, opening the right door and listening. If the agent makes a
decision to open one of the doors, then it will score 10 as a reward if there is no tiger behind
the opened door or score -100 as a punishment otherwise. If the agent chooses to listen, it
will score -1 as a punishment and receive the correct information with the probability of

Wang Liu Luo

0.85. Once one of the doors is opened, the problem will be reset. There is no terminal state
for the problem and the episode will terminate once the maximum number of time steps
setted is reached.

RockSample is a POMDP problem about ore mining whose scale can be specified.
RockSample[n, k] represents a map with k rocks whose size is n × n and Figure 1 is an
illustration of RockSample[5, 5]. At each step, the optional actions for the agent include
moving towards four directions, sampling the rock and detecting one of the k rocks, so
there are altogether (k + 5) optional actions. Only when the agent and the rock are in the
same location can the agent sample the rock. It is of high cost to sample a rock but not all
rocks are valuable. If the agent samples the valuable rocks, it will be rewarded, otherwise
it will be punished. Other than sampling, the agent can also choose to detect the value of
a specified rock, and the detection error increases with the distance between the agent and
the rock. When the agent reaches the exit, the episode terminates and the agent receives a
reward.

Figure 1: An illustration of RockSample[5, 5].

We implemented POMCP-PM based on POMDPs.jl Egorov et al. (2017) in Julia and
all experiments were carried out with a 64-bit Linux operating system, Intel(R) Core(TM)
i7-10700 CPU@2.90GHz processor, and Julia 1.7. In each benchmark problem, the hyper-
parameters (e.g., the maximum steps max steps, the discount factor γ and c in the UCT
algorithm) shared the same values in two algorithms. The numbers of simulations before
each execution was set to different values that increase exponentially. Each episode termi-
nated when the agent met the terminal states or the maximum depth was reached. Table
2, 3 and 4 shows the Average Discounted Rewards (ADRs) in POMCP-PM and POMCP.
To be more intuitive, the results of the experiments are also presented in Figure 2, which
record the changes of ADRs with the number of simulations under the scenarios of Tiger,
RockSample[7, 8] and RockSample[11, 11].

With the growth of the number of simulations, the ADRs corresponding to POMCP-PM
and POMCP both increase. It is obvious that POMCP-PM always outperforms POMCP
with varying numbers of simulations in scenarios with different scales. In Tiger, POMCP-
PM has certain advantage when the number of simulations is small. When the number of
simulations increases to 256, the performance is equivalent to POMCP. As the number of
simulations further increases, both algorithms experience little growth in their performance.

Backtracing Path Modification

Table 2: ADRs for POMCP-PM and POMCP On Tiger

Simulation Times POMCP-PM POMCP

16 −276.680 −290.750

32 −167.883 −180.865

64 −79.944 −91.832

128 −26.034 −30.238

256 −1.264 −3.098

512 1.567 −1.772

1024 4.839 3.994

2048 7.616 5.626

Table 3: ADRs for POMCP-PM and POMCP On RockSample[7, 8]

Simulation Times POMCP-PM POMCP

500 7.505 6.722

1000 8.926 7.322

2000 9.775 7.490

4000 11.464 7.392

8000 11.804 7.589

Table 4: ADRs for POMCP-PM and POMCP On RockSample[11, 11]

Simulation Times POMCP-PM POMCP

1000 4.495 4.146

2000 6.811 4.491

4000 9.504 5.303

8000 10.475 5.440

16000 11.214 5.352

Wang Liu Luo

(a) Results of Tiger. (b) Results of RockSample[7, 8].

(c) Results of RockSample[11, 11].

Figure 2: ADRs Changing with Simulation Times for POMCP-PM and POMCP on Tiger,

RockSample[7, 8] and RockSample[11, 11].

The reason is that Tiger is a small-scale problem and POMCP can also achieve ideal results
given enough simulations. In larger problems RockSample[7, 8] and RockSample[11, 11], as
the number of simulations increases, POMCP-PM shows more and more advantage over
POMCP. Furthermore, POMCP-PM still maintains continuous growth momentum, while
the performance of POMCP keeps nearly the same as before.

6. Conclusion and Future Work

In this paper, we have introduced a new algorithm called POMCP-PM, which proposes an
importance based way to update the values of parent nodes in the updating stage. The
importance of action nodes is evaluated by analyzing the deviation between action selection
criteria in the planning procedure and in the execution procedure and dividing the nodes into
four categories. Different from most existing algorithms, the proposed algorithm improves
the online planning procedure by focusing on the updating stage instead of the growing
stage, providing a new perspective on balancing exploration and exploitation. Moreover, it
is orthogonal to the existing algorithms and can be combined with different action selection

Backtracing Path Modification

criteria to be more general. As shown in the experimental results, POMCP-PM achieves
higher ADRs than POMCP with varying numbers of simulations in scenarios with different
scales, which indicates that the proposed algorithm accelerates the convergence and keeps
a better balance between exploration and exploitation.

In POMCP-PM, the importance of the second and the third categories of action nodes
relies on tuning the hyperparameter imp. Future work will focus on designing an adaptive
method to compare the importance of the two categories and set a proper importance value.

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (Grant No.
62192783, 62376117), the Collaborative Innovation Center of Novel Software Technology
and Industrialization at Nanjing University.

References

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon
Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Compu-
tational Intelligence and AI in games, 4(1):1–43, 2012.

Maxim Egorov, Zachary N Sunberg, Edward Balaban, Tim A Wheeler, Jayesh K Gupta,
and Mykel J Kochenderfer. POMDPs.jl: A Framework for Sequential Decision Making
under Uncertainty. The Journal of Machine Learning Research, 18(1):831–835, 2017.

David P. Helmbold and Aleatha Parker-Wood. All-Moves-As-First Heuristics in Monte-
Carlo Go. In Proceedings of the 2009 International Conference on Artificial Intelligence,
pages 605–610, 2009.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and Acting
in Partially Observable Stochastic Domains. Artificial Intelligence, 101(1-2):99–134, 1998.

Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In European
Conference on Machine Learning (ECML), pages 282–293. Springer, 2006.

Michael H. Lim, Claire J. Tomlin, and Zachary N. Sunberg. Voronoi Progressive Widening:
Efficient Online Solvers for Continuous State, Action, and Observation POMDPs. In 60th
IEEE Conference on Decision and Control (CDC), pages 4493–4500, 2021.

P. Liu, C. Jing, and H. Liu. An improved Monte Carlo POMDPs online planning algo-
rithm combined with RAVE heuristic. In IEEE International Conference on Software
Engineering & Service Science, 2015.

Omid Madani, Steve Hanks, and Anne Condon. On the Undecidability of Probabilistic
Planning and Infinite-Horizon Partially Observable Markov Decision Problems. In Pro-
ceedings of the 16th AAAI Conference on Artificial Intelligence, pages 541–548, 1999.

Wang Liu Luo

John Mern, Anil Yildiz, Lawrence Bush, Tapan Mukerji, and Mykel J. Kochenderfer. Im-
proved POMDP Tree Search Planning with Prioritized Action Branching. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, pages 11888–11894. AAAI Press, 2021a.

John Mern, Anil Yildiz, Zachary Sunberg, Tapan Mukerji, and Mykel J. Kochenderfer.
Bayesian Optimized Monte Carlo Planning. In AAAI Conference on Artificial Intelli-
gence. AAAI Press, 2021b.

Christos H Papadimitriou and John N Tsitsiklis. The Complexity of Markov Decision
Processes. Mathematics of Operations Research, 12(3):441–450, 1987.

Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-Based Value Iteration: An Any-
time Algorithm for POMDPs. In International Joint Conference on Artificial Intelligence
(IJCAI), volume 3, pages 1025–1032, 2003.

Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-Draa. Online planning
algorithms for POMDPs. Journal of Artificial Intelligence Research (JAIR), 32:663–704,
2008.

Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap van den Herik, Guillaume Chaslot,
and Jos W. H. M. Uiterwijk. Single-Player Monte-Carlo Tree Search. In Computers and
Games, 6th International Conference (CG), Beijing, China, volume 5131 of Lecture Notes
in Computer Science, pages 1–12, 2008.

Maarten Peter Dirk Schadd. Selective search in games of different complexity. 2011.

David Silver and Joel Veness. Monte-Carlo Planning in Large POMDPs. Advances in
Neural Information Processing Systems (NIPS), 23:2164–2172, 2010.

Richard D. Smallwood and Edward J. Sondik. The Optimal Control of Partially Observable
Markov Processes over a Finite Horizon. Operations Research, 21(5):1071–1088, 1973.

Trey Smith and Reid Simmons. Heuristic Search Value Iteration for POMDPs. In Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pages 520–527, 2004.

Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. DESPOT: Online POMDP Plan-
ning with Regularization. Advances in Neural Information Processing Systems (NIPS),
26:1772–1780, 2013.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998. ISBN 978-0-262-19398-6.

	Introduction
	Background
	POMDP Model
	POMCP Algorithm

	Analysis of the Importance of Belief Nodes
	Action Sampling Strategies
	Importance of Belief Nodes
	Modification via Importance Level

	POMCP-PM Algorithm
	Details of POMCP-PM Algorithm
	Algorithm Analysis

	Experiments and Analysis
	Conclusion and Future Work

