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Abstract

Aspect-based-sentiment-analysis (ABSA) is a fine-grained sentiment evaluation task, which
analyzes the emotional polarity of the evaluation aspects. Generally, the emotional polarity
of an aspect exists in the corresponding opinion expression, whose diversity has great
impact on model’s performance. To mitigate this problem, we propose a novel and simple
counterfactual data augmentation method to generate opinion expressions with reversed
sentiment polarity. In particular, the integrated gradients are calculated to locate and mask
the opinion expression. Then, a prompt combined with the reverse expression polarity is
added to the original text, and a Pre-trained language model (PLM), T5, is finally was
employed to predict the masks. The experimental results shows the proposed counterfactual
data augmentation method performs better than current augmentation methods on three
ABSA datasets, i.e. Laptop, Restaurant, and MAMS.
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1. Introduction

Traditional sentiment analysis tasks consider sentences or documents as the object to an-
alyze their sentiment polarity. However, a sentence may contain multiple aspects with
different emotional polarities (Xu et al., 2019; Song et al., 2019; Wang et al., 2020; Zhao
et al., 2020). This bring much difficulty for the more fine-grained sentiment analysis.

Pre-trained language models (PLMs) that were trained on massive data in an unsuper-
vised manner, possess great natural language understanding ability and have been fine-tuned
to solve various downstream tasks effectively, e.g. sentiment analysis, textual entailment,
text summarization, question answering, etc. In practice, the samples are generally con-
catenated with the aspect words as the input of PLMs, and the parameters of PLMs can
be freezed or tuned during training (Song et al., 2019). Recently, due to the requirement of
few computing resources during fine-tuning and good performance in solving downstream
tasks, some new fine-tuned methods, e.g. Prefix tuning (Li and Liang, 2021), P-tuning (Liu
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et al., 2022), LoRA (Hu et al., 2021) etc., which add some external structures while freezing
the parameters of PLMs, have drawn widespread attention.

Aspect-based-sentiment-analysis (ABSA) can be roughly divided into two subtasks: (1)
Extracting the evaluation objects from the text. (2) Judgement of the emotional polarity
of the objects. Since a sentence might contain multiple aspects and the opinion expressions
may exist implicitly in the text, it is hard to identify all the opinion expressions accurately.
Meanwhile, the sample diversity in ABSA tasks is usually insufficient, and this further
affects the performance of the fine-tuned models.

Being the simplest method, data augmentation which helps to improve the diversity
of training samples, can thus be used to alleviate the above issues. Data augmentation
methods can be roughly divided into two categories: the modification of existing samples
and the generation of new samples (Anaby-Tavor et al., 2019; Kumar et al., 2020), where the
modification methods can be further divided into noising (Wei and Zou, 2019), thesauruses
(Zhang et al., 2015), machine translation (Sennrich et al., 2015) and language models (Wu
et al., 2019; Jiao et al., 2019).

Due to the ability to consider context semantics and alleviate the ambiguity problem, lan-
guage models are ideal for fine-grained natural language processing (NLP) tasks. However,
language model-based methods have shortcomings in limiting the word level and affecting
the sentence semantics if there are excessive random substitutions. Meanwhile, as it is a
label-preserving method, the modifications are restricted to the same semantic area.

Recently, generative large language models (GLLMs) with billion parameters which are
trained on tera-scale tokens can deal with various downstream tasks by one shot, few shot,
or even zero shot. The performance of GLLMs is even better than the models fine-tuned
on the specific training data of ABSA tasks. However, the high cost of deployment and
the strict governmental policy have made the access to GLLMs difficult. Therefore, it is of
great significance to develop simple, resource-friendly and effective ABSA method.

This paper proposes a novel counterfactual data augmentation method for ABSA task.
The proposed method is a language model-based method and can be mainly divided into
two stages. The integrated gradients is first used to identify the opinion words which
thereafter will be masked. Next, the prompts with reversed polarity are added to the
original sentences and the language model T5 is employed to predict the masks. In this
way, the original aspect polarity is reversed while only modifying a few tokens, and therefore,
the model can obtain stronger generalization ability. The proposed method was tested on
three open datasets, e.g., Restaurant, Laptop and MAMS, and the results show that the
proposed method performs better than several common data augmentation methods.

The main contributions of this paper are as follows:
(1) We proposed a two-stage data augmentation method composed of opinion corruption

and diverse opinion generation.
(2) The proposed counterfactual data augmentation method is simple and easy to imple-

ment in the production environment, and can be combined with other baseline models to
further improve the results of ABSA tasks.

The reminder of this paper is arranged as follows. Section 2 introduces the related
works. Section 3 presents the proposed counterfactual data augmentation method. The
experimental results and conclusion are given in Section 4 and Section 5 respectively.
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2. Related Work

2.1. ABSA

Since the introduction of BERT (Devlin et al., 2018), PLMs based on the Transformer
architecture (Vaswani et al., 2017) has transformed the paradigm of NLP. These models
are now dominating downstream tasks including ABSA tasks owing to their strong natural
language understanding capability. For example, BERT-SPC (Song et al., 2019) leverages
PLMs to incorporate both the text and the aspect into the model input, and thus allowing
effective modeling of the relationships between aspects and opinion expressions. Furtherly,
adversarial training (Karimi et al., 2021), layer aggregation (Karimi et al., 2020) and domain
adaption (Rietzler et al., 2019) were integrated to improve the performance.

As a fine-grained NLP task, it is important to incorporate syntactic information into
ABSA. This can guide the model to focus on the relevant parts of the aspects, which in
turn can help to solve the opinion identification problem more effectively. AdaRNN (Dong
et al., 2014) transformed the dependency tree, starting from the aspect words, into a recur-
sive structure which was modeled with Recursive Neutral Network (RNN). As dependency
information are not entirely accurate and needs to be corrected for accurate target iden-
tification, He et al. (2018) incorporated syntactic information with attention mechanism.
Zhang et al. (2019) then applied proximity weight on both position and dependency, Wang
et al. (2020) then reshaped and pruned the original dependency tree. Yet the derived de-
pendency tree can only represent external criteria, conflicting with the knowledge of the
fine-tuned PLMs. Dai et al. (2021) proposed a distance-based method which derivied the
dependency trees from fine-tuned PLMs.

Another challenge is the multi-aspect problem, where features of different aspects would
affect each other. Liang et al. (2021); Wang et al. (2022) employed contrastive training
objects to tackle the challenge. Yang and Li (2021) designed a local sentiment aggregation
method that can facilitate mutual learning among aspects, enabling the discovery of implicit
expressions.

In addition, with the development of GLLM, auto-regressive models have been applied
for ABSA tasks. For example, Mao et al. (2021) converted ABSA to a text-to-text task,
marking the required emotional elements in the original sentence and using it as the target
sequence for the generative model to learn the mapping relationship. Scaria et al. (2023)
directly used the instruction-tuning based model and achieved good results.

2.2. Data Augmentation

Data augmentation refers to the modification and expansion of the original data, there-
fore introducing more samples and increasing the diversity of the training set. Modification
means to modify the elements in the sentence without destroying the original sentence struc-
ture and label. EDA (Wei and Zou, 2019) is a simple modification method consisting of
synonym replacement, random deletion and insertion. CBERT (Wu et al., 2019) proposed a
mask and predict mechanism where the words were masked randomly and then predicted by
BERT. BackTranslation (Sennrich et al., 2015) that can get high-quality, richly diverse sam-
ples by translating back and forth, also draw widespread attention. However, the flip side
of the coin is that modifications are restricted to the same semantics as a label-preserving
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method. Expansion means creating new data by generation methods and sampling from
it. It is a more flexible way and can be designed for different task descriptions. LAMBDA
(Anaby-Tavor et al., 2019) transforms the classification dataset into a seq2seq dataset and
fine-tuned it on GPT-2, then generates new sentences with specific labels. However, such
process requires extensive computing resources.

There are also some proprietary augmentation methods for ABSA task. Chen et al.
(2022) extended unsupervised data augmentation methods to span-level. Zhang et al. (2022)
introduced datasets from sentiment analysis and merged them using pseudo-labels. Based
on supervised attention, Liang et al. (2021) extracted crucial information and utilized it to
generate augmented data. Wang et al. (2022) applied contrastive learning to distinguish
different polarities, where negative samples are generated by T5 fine-tuned with Prompt
Tuning. Hsu et al. (2021) introduced a two-stage method composed of selective perturbed
masking and label-preserving token replacement.

2.3. Interpretability

Interpretability refers to the extent to which a person can comprehend the rationale behind
a decision. There are two mainstreaming solutions for interpretability: attention mecha-
nism (Bahdanau et al., 2014) based methods and saliency methods. Notwithstanding that
attention brings transparency to the model by attention weights between two input units,
someone believe that it is not sufficiently interpretable. Pruthi et al. (2019) proposed a
deceptive self-attention method which help explain the interaction of information in trans-
former. Jain and Wallace (2019) discovered that the adversarial attention weights lead to
the same prediction as the original ones. Serrano and Smith (2019) found that model did
not recognize the most important expressions by intermediate representation erasure. To
argue this, Wiegreffe and Pinter (2019) believed that attention can be used as explanation
in some scenarios, and verified through experiments.

Saliency methods can be further divided into erasure-based and gradient-based methods.
Zeiler and Fergus (2014); Li et al. (2016) pointed out the importance of input units by
erasing them at the input level and dimension level. Li et al. (2015) used the absolute
value of the gradient to measure the sensitivity of the input to the label in the ABSA task,
while Denil et al. (2014) used the product of the gradient and the input as a measure.
Sundararajan et al. (2017) first proposed three axioms, namely sensitivity, implementation
invariance and completeness.

3. Method

This section presents the details of the proposed counterfactual data augment method for
ABSA.

3.1. Framework

As shown in Fig.1, the proposed counterfactual data augmentation method for ABSA is
mainly composed of two steps, i.e. opinion corruption and opinion generation. The opinion
corruption step is designed to identify and mask the most important tokens to the target
label. As for the opinion generation step, the designed prompt is added to the masked
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Figure 1: Framework of the proposed counterfactual data augmentation framework.

sentences and the masked tokens will be predicted by T5. Finally, the added prompt is
removed from the new sentence and the new label is obtained by a post process.

3.2. Opinion corruption

To identify the associated opinion words of the given aspect, a quantitative analysis of
opinion words is implemented by integrated gradients as described in Sundararajan et al.
(2017).

Assuming the original dataset, training set and test set are D, Dtrain, Dtest respectively.
xi, Ai, yi represent a training sample, the aspects and the corresponding label respectively.
The aspects may contain k aspects Ai = {ai0, ..., aik}.

The first step is to train a classifier Mbase in advance to calculate integrated gradients.
Since the existence of data imbalance problem, the balanced cross entropy(BCE) thereby
is introduced in the loss function. Suppose in one batch, the numbers of three labels are
n0, n1, n2, and the standard cross entropy loss is L(M(x), y), so the BCE can be described
by equation 1:

Lbalanced =

2∑
i=0

(1 − ni∑
i ni

)L(M(x), y) (1)
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Then the contribution of each token in xi = {r0, r1, ..., a0, ..., rl, [SEP ], a0} to the label
yi is calculated. ri denotes token, a0 denotes aspect.

Specifically, the integrated gradients are the path integral of gradient from a baseline xi0
to the input xi. Here, we replace all tokens except ones in aspects set with [PAD] as the
baseline. Then, the integrated gradients can be represented as equation 3.

xi0 = {[PAD], [PAD], ..., a0, ..., [PAD], [SEP ], a0} (2)

ig(xi) = (xi − xi0) ×
∫ 1

α=0

∂M(xi0 + α(xi − xi0))

∂xi
dα (3)

where ig(xi) is the attribution of each token in xi to the label yi.
In practice, it is not possible to calculate the consecutive integrals, and thereby we obtain

the integrated gradients by a linear interpolation operation. The interpolated sample xi is
as shown in equation 4.

xi = {xi0, xi1, ..., aiS , xi} (4)

xij = xi0 + j
xi − xi0

S
(5)

where S is the interpolation number.
The input {xi, yi} is then passed into the model Mbase, and a forward and a backward

operation are performed to obtain the attribution of each token as shown in following
equation.

attr(xi) = Normemb(
∑
j

grad(xij)) (6)

Here, the large value of attr(xi) indicates the higher contribution of xi, and vice versa.
Next, the tokens with higher value than the threshold thrcon are masked and the continu-

ous masks will be merged, where thrcon = topK(attr(xi, f loor( len(attr(xi))
3 ))). For instance,

in a raw training sentence “Maximum sound isn’t nearly as loud as it should be [SEP] Max-
imum sound”, the aspect words are “Maximum sound”. The tokens satisfied the threshold
are “isn”, “nearly”, “as”, “loud”, “be”, so the masked sample is “Maximum sound ⟨mask⟩
’t ⟨mask⟩ as it should ⟨mask⟩”.

3.3. Opinion generation

In opinion generation step, the artificial prompts are first added to the obtained corrupted
samples. Compared with the soft prompts, hard prompts methods require no fine-tuning
making them more efficient and interpretable.

Assuming the masked sample and it’s corresponding label are x́i and ýi, the new sample
with added prompts and the new label are x̃i and ỹi respectively. Consider the above
example, the original label negative. Therefore, we should add a positive or neutral prompt,
for example “Maximum sound ⟨mask⟩ ’t ⟨mask⟩ as it should ⟨mask⟩, which is great!”.

Then, the new sample is passed into T5 model to predict the mask tokens and the
generation sample xi = T5(x̃i) is obtained. Moreover, by removing the added prompt
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patterni in xi, we can acquire the final generated sample x̂i. In the above example, the
final augmented sample is “Maximum sound quality ’thumping’ as it should be”.

However, the sentiment polarities of counterfactual samples may be shifted from ýi,
thereby needing assistance from baseline model Mbase to determine the final label as follows:

ỹi =

{
ỹi if argmax(Mbase(x̂i)) = ỹi and max(Mbase(x̂i)) > thrcon

argmax(Mbase(x̂i)) else

(7)
where thrcon is the probability threshold. It should note that we add several homogeneous
for each reversed label and choose the label with maximum probability fluctuation compared
with original sample as the final label. Finally, the augmented data are merged with the
original training set.

4. Experiment

4.1. Experimental Settings

4.1.1. Datasets

The proposed counterfactual data augmentation method was tested on three common
datasets, i.e., SemEval 2014 Restaurant, Laptop (Pontiki et al., 2014) and MAMS (Jiang
et al., 2019). The statistics of the datasets are shown in Table 1. Following previous research
(Wang et al., 2022; Hsu et al., 2021), we adopt accuracy and Macro-F1 as the metrics to
evaluate the performance. Note that the original datasets do not include validation set.

Table 1: The statistics of the datasets.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Laptop 994 341 870 128 464 169
Restaurant 2164 728 807 196 637 196

MAMS 3379 400 2763 329 5039 607

4.1.2. Comparison experiment settings

First, we compare the proposed counterfactual data augmentation method with other data
augmentation methods as shown in the following.

• EDA (Wei and Zou, 2019): A simple augmentation method including random inser-
tion, deletion, replacement.

• BackTranslation (Sennrich et al., 2015): Translate the text into another language
by machine translation models and then translate it back into the original language.
Here, the experimental samples are translated into Chinese which are then translated
back to English.
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• C3DA (Wang et al., 2022): A cross-channel data augmentation method aiming to
generation negative samples for contrastive learning.

• Senti-SPM (Hsu et al., 2021): A method composed of selective perturbed masking
(SPM) and label-preserving token replacement.

In addition, the BCE was chosen as the loss function of ABSA to be consistent with
C3DA, and the foundation model is Roberta-base.

Second, the results obtained by different baseline methods of ABSA, i.e., ASGCN (Sun
et al., 2019), PWCN (Zhang et al., 2019), RGAT (Wang et al., 2020), SPC (Song et al.,
2019), MLP (Dai et al., 2021), AEN (Song et al., 2019), LCF (Yang et al., 2019), were
compared when using different foundation models, e.g., Bert, Roberta and glove.840B.300d.
Here, the general cross entropy is selected as the loss function of ABSA to make a fair
comparison.

4.1.3. Hyper Parameters

Following previous studies, the batch size is set as 32, the learning rate is 2e-5 for Bert and
Roberta and 1e-3 for glove.840B.300d. Three random seeds was used in all the experiments
and we present the average results.

4.2. Augmentation Comparison Result

To evaluate the effectiveness of the proposed counterfactual data augmentation method, we
compared it with other data augmentation methods and the results are presented in Table
2.

Table 2: Experimental results of ABSA tasks using different data augmentation methods.

Method
Laptop Restaurant MAMS

Acc F1 Acc F1 Acc F1

RoBERTa-SPC 76.91 70.47 84.73 76.15 83.61 82.88
C3DA 81.83 78.46 87.11 81.63 - -
EDA 83.07 80.22 88.21 83.04 84.95 84.49

BackTranslation 82.6 79.13 88.12 82.36 84.73 84.45
Senti-SPM & Seq2Seq 83.7 80.82 88.39 83.05 - -

Counterfactual 83.86 81.39 89.2 84.14 85.33 84.87

From Table 2, it can be seen that data augmentation based methods can obviously im-
prove the accuracy and F1 score on Laptop and Restaurant datasets compared with the
baseline method RoBERTa-SPC, while obtain slight improvement on MAMS datasets that
contain adequate training samples. EDA outperforms BackTranslation on all three datasets.
This may be because EDA causes less damage to the original text as EDA employs ran-
dom replacement, deletion and insertion to introduce diverse opinion expressions, while
BackTranslation may destroy the relationship between emotional expressions and aspect
words.
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It is also can be seen that Senti-SPM&Seq2Seq achieve the best results except our pro-
posed counterfactual data augmentation method. However, Senti-SPM&Seq2Seq just re-
place a few unimportant tokens ignoring some important tokens that containing rich se-
mantics.

As for our proposed counterfactual data augmentation method, it achieves the best re-
sults compared with the other four data augmentation methods. In addition, the proposed
method performs good robustness and generalization as the counterfactual operation enrich
the diversity of the original samples.

Furthermore, the effects of different foundation models, i.e., BERT, RoBERTa and Static
embedings, and different baseline methods, i.e., ASGCN, PWCN, RGAT, SPC, AEN, MLP
and LCF, were evaluated and the results are shown in Table 3.

Table 3: Results of the proposed counterfactual data augmentation method combined with
different foundation models and baseline methods.

Models
Restaurant Laptop
Acc F1 Acc F1

Static Embeddings

ASGCN 80.09 71.01 74.27 69.98
+ Counterfactual 80.77 71.08 74.33 69.72

PWCN 81.10 72.29 75.34 71.21
+ Counterfactual 82.26 74.16 76.02 71.86

RGAT 81.19 71.7 73.09 68.37
+ Counterfactual 82.00 73.16 74.61 69.64

BERT

BERT-SPC 84.02 74.94 76.42 72.06
+ Counterfactual 84.73 78.03 77.59 72.49

RGAT-BERT 85.03 78.01 78.69 74.31
+ Counterfactual 85.21 77.77 79.05 75.36

BERT-MLP 84.33 77.22 77.77 73.39
+ Counterfactual 84.51 77.59 78.14 73.96

AEN-BERT 81.30 71.13 77.43 72.02
+ Counterfactual 81.30 71.73 77.90 72.78

LCF-BERT 85.27 78.81 77.83 73.23
+ Counterfactual 85.40 79.69 78.53 74.59

RoBERTa

RoBERTa-SPC 84.73 76.15 76.91 70.47
+ Counterfactual 86.67 79.73 77.79 72.93
RGAT-RoBERTa 85.3 77.75 77.64 73.9
+ Counterfactual 86.07 79.63 78.68 74.87
RoBERTa-MLP 86.79 79.86 83.86 80.41

+ Counterfactual 86.83 81.03 83.86 80.61

It can be seen from Table 3 that whatever the foundation models, the proposed counter-
factual data augmentation method can improve the accuracy and F1 score compared with
baseline methods. Since RoBERTa model was trained on larger scale data and can obtain
better text embedding, combined the proposed counterfactual data augmentation method
with baseline methods acquire the best results. Meanwhile, the results also show that the
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proposed counterfactual data augmentation method can be easily combined with baseline
methods in production.

4.3. Ablation Study

In this section, we further investigate the impact of different masking and prompting strate-
gies on the results as shown in Table 4.

• Ramdom-Mask: Replace the integrated gradients based mask strategy with random
mask.

• Label-Preserve: Add prompt with the same polarity of the original sample during
opinion generation.

Table 4: Results of different mask strategy and prompting method.

Method
Laptop Restaurant MAMS

Acc F1 Acc F1 Acc F1

RoBERTa-SPC 76.91 70.47 84.73 76.15 83.61 82.88
Random-Mask 82.29 79.1 88.04 82.58 85.18 84.85
Label-Preserve 83.7 80.82 88.39 83.05 84.96 84.43
Counterfactual 83.86 81.39 89.2 84.14 85.33 84.87

From Table 4, it can be seen that the proposed counterfactual data augmentation method
which employ an integrated gradient-based mask strategy, performs better than random
mask strategy. It is because that random mask may create samples that retain the same
emotional semantics, and thus not increase the semantic diversity significantly. Since label-
preserve prompting is likely to generate synonyms of original tokens, the semantic diversity
of samples is not enriched. Therefore, it can be found that counterfactual prompting method
obtain better accuracy and F1 score on all three experimental datasets.

4.4. Augmented sample analysis

Here, an analysis of augmented samples by different methods is presented to provide a more
comprehensive comparison as shown in Table 5.

From Table 5, it can be seen that EDA will randomly replaced or deleted some tokens,
may leading the change of emotional semantics. BackTranslation maintain the semantics
of original sample, but may modify the aspect words. Random-Mask just mask some
tokens randomly and thus fail to identify opinion expressions. However, the proposed
counterfactual data augmentation method make the key opinion expression changed while
modify the emotional semantics, and thus increase the diversity of samples.

5. Conclusion

This paper proposed a novel and simple counterfactual data augmentation method for
ABSA. An integrated gradient-based method is used to identify key opinion expressions
which are masked and then will be predicted by T5 to obtain rich opinion expressions. The
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Table 5: Case study. The two cases come from the Restaurant and MAMS datasets respec-
tively. The first one is only a single aspect word, and the second one has three
aspect words, which are enhanced based on ”portions”.

Methods Examples

Source I go back in line like three times on average until I can’t walk
anymore.

EDA like go back in line i three times on average until i cant walk
anymore.

BackTranslation I have to requeue an average of 3 times until I can no longer walk.
Random-Mask I go ( in line like three times) on average until I can ’t walk

anymore.
Counterfactual I walk the line like I did on my first day until I can ’t walk again.

Source The food is right out of heaven, arrive hungry because the por-
tions are huge but not the prices.

EDA the food is right out of heaven arrive hungry come because the
portions are huge merely but not the prices

BackTranslation The food was heaven, arrived hungry as the portions were huge
but not overpriced.

Random-Mask The food were so right out of heaven, arrive hungry because are
portions is just too huge but not the prices.

Counterfactual the food was out of order when we arrive, portions were small
but not at reasonable food and prices.

experiments show that the proposed counterfactual data augmentation method is superior
to other augmentation methods, and achieved good results on public datasets. It is expected
that the proposed counterfactual data augment method will have the opportunity to expand
to other fine-grained NLP tasks in the future.
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