
Appendix for “Can Infinitely Wide Deep Nets Help Small-data
Multi-label Learning?”

A Proof of Proposition 1
Proposition 1. Consider minimizing C(θ) in Eq.(3) by gradient descent with infinitesimally small learning rate (i.e.,
gradient flow): dθ(t)

dt = −∇C(θ(t)). Let F(t) = [f(x1,θ(t)); ...; f(xn,θ(t))] ∈ Rn×c be network outputs on all xi’s at
time t. When the hidden widths d1, ..., dL −→ ∞, then F(t) follows the following evolution:

dF(t)

dt
= − 1

n
K · ∂ℓ(t)

∂F(t)
, (1)

where K ∈ Rn×n is the NTK kernel matrix and ∂ℓ(t)
∂F(t) ≜

[
∂ℓ(f(x1,θ(t)),y1)

∂f(x1,θ(t))
; ...; ∂ℓ(f(xn,θ(t)),yn)

∂f(xn,θ(t))

]
∈ Rn×c.

Proof. First, when discarding the infinity width assumption, we can get the dynamics of F(t) w.r.t. a matrix-based kernel
matrix Θ(L)(θ) ∈ Rnc×nc, where its corresponding matrix-based kernel function is K : Rd × Rd → Rc×c. Besides, the
kernel matrix Θ(L)(θ) depends on the parameters θ and varies during training.

Second, when adding the infinity width assumption, based on the Theorem 1 and 2 in [4], we can get the deterministic
kernel matrix Θ(L) = K ⊗ Ic, where Ic ∈ Rc×c is the identity matrix. The kernel matrix Θ(L) doesn’t vary during
training and always equals the state in the random initialization. Besides, the matrix-based kernel is separable and can be
equivalently transformed into the corresponding scalar-based kernel [1], which is used here.

B Derivation of the gradient ∇gi(W)

Here, we take the logistic base loss function for example, which is used in our experiments.
Define

gi(W) =
1

c

c∑
j=1

log(1 + exp(−yij⟨wj , z(xi)⟩) +
τ

2
∥W∥2F + ḡi(W), (2)

where

ḡi(W) =
λ

|Y +
i ||Y −

i |
∑

p∈Y +
i

∑
q∈Y −

i

log(1 + exp(⟨wq −wp, z(xi)⟩). (3)

Then, the gradient of gi(W) w.r.t. W is as follows:

∇gi(W) =
1

c
x⊤
i

( 1

1+ exp(−yi ◦ (z(xi)W))
◦ exp(−yi ◦ (z(xi)W))

)
+ τW +∇ḡi(W), (4)

where ∇ḡi(W) =
[

∂ḡi
∂w1 , ...,

∂ḡi
∂wc

]
and for j ∈ [c],

∂ḡi
∂wj

=
λ

|Y +
i ||Y −

i |

{
[[j ∈ Y +

i ]]
∑

q∈Y −
i

−z(xi)

1 + exp(⟨wj −wq, z(xi)⟩)
+ [[j ∈ Y −

i ]]
∑

p∈Y +
i

z(xi)

1 + exp(⟨wp −wj , z(xi)⟩)

}
. (5)

C Proofs for the generalization analyses
Technically, we provide the generalization analyses based on Rademacher complexity [2] and the recent vector-contraction
inequality [5], following recent work [6].
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First, we define the surrogate expected loss w.r.t. Hamming Loss (HL) and Ranking Loss (RL) as follows.

Rh(f) = E
(x,y)∼P

[
Lh(f(x),yi)

]
, Rr(f) = E

(x,y)∼P

[
Lr(f(x),yi)

]
. (6)

Then, we give the following for the subsequent analyses.

Theorem C.1 (The base theorem [6]). Assume the loss function L : Rc × {−1,+1}c → R+ is µ-Lipschitz continuous
w.r.t. the first argument and bounded by M . Then, for any δ > 0, with probability at least 1− δ over the draw of an i.i.d.
sample S of size n, the following generalization bound holds for all f ∈ F:

R(f) ≤ R̂S(f) + 2
√
2µR̂S(F) + 3M

√
log 2

δ

2n
. (7)

Lemma C.1 (The Rademacher complexity of the kernel-based hypothesis set). Consider the hypothesis set F = {x 7→
[⟨fκ

1 ,Φ(x)⟩, ..., ⟨fκ
c ,Φ(x)⟩] :

∑c
j=1 ∥fκ

j ∥2H ≤ Λ}, which can be equivalently transformed into the following form F =

{x 7→ W⊤ϕ(x) : W = (w1, . . . ,wc)
⊤, ∥W∥H,2 ≤ Λ}, R̂S(F), where ∥W∥ denotes ∥W∥H,2 for convenience. Then,

R̂S(F) can be bounded bellow:

R̂S(F) ≤
√

cmax{Kii}Λ2

n
. (8)

Proof. For the kernel-based hypothesis set F = {x 7→ W⊤ϕ(x) : W = (w1, . . . ,wc)
⊤, ∥W∥ ≤ Λ}, the following

inequalities about R̂S(F) hold:

R̂S(F) =
1

n
Eϵ

[
sup

∥W∥≤Λ

n∑
i=1

c∑
j=1

ϵij⟨wj , ϕ(xi)⟩
]

=
1

n
Eϵ

[
sup

∥W∥≤Λ

c∑
j=1

⟨wj ,

n∑
i=1

ϵijϕ(xi)⟩
]

=
1

n
Eϵ

[
sup

∥W∥≤Λ

⟨W,Xϵ⟩
]

(Xϵ = [

n∑
i=1

ϵi1ϕ(xi), . . . ,

n∑
i=1

ϵicϕ(xi)])

≤ 1

n
Eϵ

[
sup

∥W∥≤Λ

∥W∥ ∥Xϵ∥
]

(Cauchy-Schwarz Inequality)

=
Λ

n
Eϵ

[ c∑
j=1

∥
n∑

i=1

ϵijϕ(xi)∥2
]1/2

=
Λ

n
Eϵ

[ c∑
j=1

n∑
p=1

n∑
q=1

ϵpjϵqj⟨ϕ(xp), ϕ(xq)⟩
]1/2

=
Λ

n
Eϵ

[ c∑
j=1

n∑
i=1

⟨ϕ(xi), ϕ(xi)⟩
]1/2

(∀p ̸= q,E[ϵpjϵqj ] = E[ϵpj ]E[ϵqj ] = 0 and E[ϵijϵij ] = 1)

=
Λ
√

c Tr(K)

n
(κ(xi,xi) = ⟨ϕ(xi), ϕ(xi)⟩,K = [κ(xi,xj)] is the kernel matrix)

≤
√

cmax{Kii}Λ2

n
.

(9)

Lemma C.2 (The property of the surrogate loss function [6]). Assume that the base loss function ℓ(u) is ρ-Lipschitz
continuous and bounded by B. Then, the surrogate Hamming Loss Lh is ρ√

c
-Lipschitz, and the surrogate Ranking Loss Lr

is ρ-Lipschitz w.r.t. the first argument. Besides, they are all bounded by B.

C.1 Proof of Theorem 5
Theorem 5 (Learning guarantee w.r.t. the Hamming Loss). Consider the hypothesis space Fh = {f ∈ F : R̂r

S(f) ≤ Λ1}
and the loss function Lh. Besides, Assumption 1 holds. Then, for any δ > 0, the following holds for any f ∈ Fh with
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probability at least 1− δ

Rh
0/1(f) ≤ R̂h

S(f) + 2ρ

√
2

c
R̂S(Fh) + 3B

√
log 2

δ

2n
, (10)

where the empirical Rademacher complexity satisfies

R̂S(Fh) ≤ R̂S(F) ≤
√

cmax{Kii}Λ2

n
. (11)

Proof. Since L = Lh, we can get its Lipschitz constant (i.e. ρ√
c
) and bounded value (i.e. B) from Lemma C.2. Then,

applying Theorem C.1 and the inequality Rh
0/1(sgn ◦ f) ≤ Rh(f), we can Eq.(10). Besides, it can be easily verified that

R̂S(Fh) ≤ R̂S(F). Then, based on Lemma C.1, we can get Eq.(11).

C.2 Proof of Theorem 6
Theorem 6 (Learning guarantee w.r.t. the Ranking Loss). Consider the hypothesis space Fr = {f ∈ F : R̂h

S(f) ≤ Λ2}
and the loss function Lr. Besides, Assumption 1 holds. Then, for any δ > 0, the following holds for any f ∈ Fr with
probability at least 1− δ

Rr
0/1(f) ≤ R̂r

S(f) + 2
√
2ρR̂S(Fr) + 3B

√
log 2

δ

2n
, (12)

where the empirical Rademacher complexity satisfies

R̂S(Fr) ≤ R̂S(F) ≤
√

cmax{Kii}Λ2

n
. (13)

Proof. Since L = Lr, we can get its Lipschitz constant (i.e. ρ) and bounded value (i.e. B) from Lemma C.2. Then,
applying Theorem C.1 and the inequality Rh

0/1(sgn ◦ f) ≤ Rh(f), we can Eq.(12). Besides, it can be easily verifed that

R̂S(Fh) ≤ R̂S(F). Then, based on Lemma C.1, we can get Eq.(13).

D Additional experimental results

D.1 Results w.r.t. other measures
The experimental results w.r.t. the measures of Subset Accuracy, instance-F1, Coverage, and Average Precision are
summarized in Table 1, 2, 3 and 4, respectively.

Table 1: Experimental results of benchmark approaches (meanstd) w.r.t. Subset Accuracy (↑) on all datasets. Best results
are highlighted in bold.

Dataset Rank-SVM BP-MLL BR-SVM CPNL MLFE MLC-RBF MLC-NTK

flags 0.0730.025 0.1070.015 0.1320.041 0.1560.053 0.1510.041 0.1440.035 0.1530.031
birds 0.1480.018 0.1210.019 0.2140.028 0.2140.026 0.1700.018 0.2060.024 0.2340.025

emotions 0.2910.025 0.2680.039 0.3130.015 0.3240.035 0.2910.035 0.3240.025 0.3100.027
image 0.4510.018 0.2170.024 0.4820.018 0.5330.017 0.4630.015 0.5390.008 0.5630.021

scene 0.5630.018 0.5870.019 0.6550.009 0.6990.014 0.6170.009 0.7130.010 0.7350.009

yeast 0.1560.012 0.1110.007 0.1900.009 0.1790.006 0.1720.014 0.1760.007 0.2020.009

enron 0.1190.033 0.0990.008 0.1280.013 0.1280.006 0.1240.014 0.1000.009 0.1420.010

business 0.4540.085 0.3590.003 0.5650.010 0.5570.008 0.5380.006 0.5420.010 0.5690.008

D.2 Computational costs
The computational costs of the six algorithms on benchmark datasets are illustrated in Fig. 1. Note that the CPU time is
plotted in the log scale in Figure 1. Besides, BR-SVM is implemented that based on the efficient LibSVM library [3] and
thus is more efficient than the others implemented by the original Matlab code. For the last datasets, we use the linear
kernel for CPNL, where it has more efficient implementation that is tailored for the linear model. In comparison, for the
first six datasets, Rank-SVM and CPNL involves the kernel matrix in training. In this case, we can observe that when the
number of the dataset becomes relatively larger (i.e., Image, scene, and yeast), our method MLC-NTK (with Nyström
method) is more efficient than these two. Note that in experiments we set m = r = n in the Nyström method for high
performance although it can reduce r (and m) to accelerate the efficiency.

3



Table 2: Experimental results of benchmark approaches (meanstd) w.r.t. instance-F1 (↑) on all datasets. Best results are
highlighted in bold.

Dataset Rank-SVM BP-MLL BR-SVM CPNL MLFE MLC-RBF MLC-NTK

flags 0.7030.017 0.7170.004 0.7000.017 0.6970.031 0.6880.011 0.7030.017 0.7110.018
birds 0.3380.023 0.4250.014 0.4690.017 0.4760.031 0.4000.029 0.4170.030 0.4680.024

emotions 0.6450.020 0.6550.034 0.6200.020 0.6840.019 0.6210.021 0.6560.022 0.6560.026
image 0.6310.016 0.5230.026 0.6230.014 0.6980.012 0.5930.014 0.6820.010 0.7000.013

scene 0.6640.015 0.7300.011 0.7170.010 0.8020.009 0.6850.010 0.7830.006 0.7950.009
yeast 0.6320.007 0.6140.015 0.6230.006 0.6300.007 0.6070.011 0.6140.007 0.6290.005
enron 0.5630.026 0.5660.006 0.5290.010 0.5850.007 0.5380.012 0.4910.007 0.5660.008

business 0.7340.036 0.7220.001 0.7630.005 0.7700.006 0.7650.005 0.7390.006 0.7700.005

Table 3: Experimental results of benchmark approaches (meanstd) w.r.t. Coverage (↓) on all datasets. Best results are
highlighted in bold.

Dataset Rank-SVM BP-MLL BR-SVM CPNL MLFE MLC-RBF MLC-NTK

flags 0.5250.035 0.5510.010 0.5480.019 0.5580.021 0.5610.019 0.5310.021 0.5250.022

birds 0.2560.014 0.2850.008 0.2620.011 0.2540.019 0.2760.024 0.2580.011 0.2350.021

emotions 0.2940.011 0.3100.014 0.3860.017 0.2770.010 0.2820.013 0.2790.008 0.2750.010

image 0.1710.008 0.2100.005 0.2270.008 0.1570.006 0.1650.006 0.1610.004 0.1570.007

scene 0.0680.004 0.0850.001 0.1190.004 0.0640.002 0.0670.003 0.0650.002 0.0610.004

yeast 0.4460.006 0.4800.010 0.6270.007 0.4450.006 0.4520.006 0.4410.006 0.4330.005

enron 0.2350.021 0.2420.001 0.5800.012 0.2320.006 0.2280.010 0.2450.005 0.2070.009

business 0.0680.005 0.0920.005 0.3380.009 0.0650.002 0.0820.004 0.0690.003 0.0630.002

Table 4: Experimental results of benchmark approaches (meanstd) w.r.t. Average Precision (↑) on all datasets. Best results
are highlighted in bold.

Dataset Rank-SVM BP-MLL BR-SVM CPNL MLFE MLC-RBF MLC-NTK

flags 0.8210.014 0.8160.002 0.8080.016 0.8030.022 0.8030.012 0.8240.019 0.8240.015

birds 0.6350.015 0.5910.015 0.6370.016 0.6500.020 0.6340.028 0.6190.016 0.6560.023

emotions 0.8080.010 0.7860.018 0.7600.015 0.8280.010 0.8220.012 0.8270.010 0.8300.018

image 0.8230.010 0.7620.013 0.7720.011 0.8390.007 0.8260.008 0.8320.007 0.8410.007

scene 0.8820.008 0.8570.005 0.8340.006 0.8930.006 0.8850.005 0.8850.004 0.8930.006

yeast 0.7550.005 0.7320.022 0.6800.007 0.7750.009 0.7690.008 0.7700.008 0.7800.005

enron 0.6720.025 0.6740.005 0.4820.010 0.7020.010 0.7050.008 0.6630.005 0.7140.006

business 0.8600.036 0.8650.002 0.7420.005 0.8910.005 0.8850.004 0.8780.004 0.8930.004
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Figure 1: Computational costs of the six algorithms on benchmark datasets.
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D.3 Sensitivity analysis w.r.t. the hyper-parameters τ and λ

In this section, we give the sensitivity analysis w.r.t. the hyper-parameters τ and λ, which are illustrated in Fig. 2 and 3
respectively. We can observe that the hyper-parameter τ is more sensitive to λ because we argue that τ has more power to
control the model complexity than λ.
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Figure 2: Sensitivity analysis w.r.t. the hyper-parameter τ . Hal is the abbreviation of Hamming Loss, and so on.
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Figure 3: Sensitivity analysis w.r.t. the hyper-parameter λ. Hal is the abbreviation of Hamming Loss, and so on.
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