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Abstract

In Multi-label Learning (MLL), kernel methods and deep neural networks (DNNs) are two
typical families of approaches. Recent theory discovers an interesting connection between
infinitely wide DNNs and neural tangent kernel (NTK) based methods. Further, recent
work has shown the promising performance of NTK-based methods in small-data single-
labeled tasks. Then, a natural question arises: can infinitely wide DNNs help small-data
multi-label learning? To answer this question, in this paper, we present to utilize infinitely
wide DNNs for the MLL task. Specifically, we propose an NTK-based kernel method for
MLL, which aims to minimize Hamming and ranking loss simultaneously. Moreover, to
efficiently train the model, we use the Nyström method, which has rarely been used in
MLL. Further, we give rigorous theoretical analyses on learning guarantees of the proposed
algorithm w.r.t. these two measures. Finally, empirical results on small-scale datasets
illustrate its superior performance along with efficiency over several related baselines.

Keywords: Multi-label Learning; Infinitely Wide Neural Network; Neural Tangent Kernel.

1. Introduction
Multi-label Learning (MLL) (or Multi-label Classification, MLC) (Tsoumakas and Katakis,
2006) finds applications in various areas, such as computer vision (Boutell et al., 2004),
natural language processing (Zhang and Zhou, 2006), and bioinformatics (Elisseeff et al.,
2001). Different from typical (single-labeled) classification tasks, each example can be
assigned with multiple labels simultaneously in MLL, making it more challenging. Besides,
to evaluate its performance, many MLL-specific measures (Zhang and Zhou, 2014) have
been developed from diverse aspects, such as Hamming Loss (HL), Ranking Loss (RL), etc.
To solve the MLL task, various algorithms (Zhang and Zhou, 2014; Wu and Zhu, 2020)
have been proposed to optimize one or few specific measures. Among them, there are two
typical families of approaches based on the choice of the hypothesis space (i.e., the set of
input-output mapping functions).
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The first family of approaches in MLL is based on kernel methods (Schölkopf and Smola,
2002; Cai et al., 2022), where the hypothesis space is the associated reproducing kernel
Hilbert space (RKHS). Among them, BR-SVM (Boutell et al., 2004) and Rank-SVM (Elis-
seeff et al., 2001) are two typical methods, which aim to optimize HL and RL, respectively.
Despite kernel methods being well understood in theory, their empirical performance highly
depends on the type of kernel functions. However, most of these kernel methods in MLL use
prefixed Gaussian or linear kernel functions and utilize classical training algorithms, which
involve the kernel matrix and might lack scalability, especially in large-scale settings.

The second family of approaches in MLL is based on neural networks (NNs), which
can learn abstract representations from data and have shown promise in many large-scale
applications. Among them, BP-MLL (Zhang and Zhou, 2006) is one classical NN-based
method, which uses the backpropagation learning algorithm to optimize the RL. Recently,
deep neural networks (DNNs) have achieved promising performance in various application
fields of MLL, such as computer vision (Li et al., 2017; Wu et al., 2020b), and natural
language processing (Liu et al., 2017; Chang et al., 2020). However, such methods are often
treated as a black box and have not yet been understood deeply in theory.

Remarkably, recent theory (Jacot et al., 2018) discovers an interesting connection be-
tween kernel methods and neural networks. Specifically, for infinitely wide NNs with random
initialization, gradient descent with infinitesimally small learning rates (i.e., gradient flow)
equivalently optimizes the prediction function of kernel methods in the RKHS induced by
the neural tangent kernel (NTK). For example, the prediction of infinitely wide NNs with ℓ2
loss under the gradient flow and random initialization is equivalent to the kernel regression
prediction. The NTK with the specific architecture of NNs can be viewed as a new powerful
kernel function, which can be used in kernel methods. Further, recent work (Arora et al.,
2020) has empirically shown its superior performance to Gaussian kernel methods for small-
data single-labeled tasks. However, the existing work mainly focuses on single-labeled tasks,
while leaving the MLL setting largely under-explored. Then, a natural question arises here:

Can infinitely wide deep NNs help small-data multi-label learning?

To answer the above question, in this paper, we aim to utilize the infinitely wide DNNs
to solve small-data MLL tasks. This not only can help understand existing methods that
connect kernel methods and NNs, but also might make the NTK-based method a good
candidate in practice. Specifically, we propose a novel NTK-based kernel method called
MLC-NTK, which aims to optimize HL and RL simultaneously. For MLC-NTK, if the
Tikhonov regularization is discarded, its prediction is equivalent to the output function
of the corresponding infinitely wide NN under gradient flow and random initialization.
Moreover, to efficiently train the kernel model, we use the Nyström method, which has
rarely been used in MLL to our knowledge (Mehrkanoon and Suykens, 2016). Further, we
give formal theoretical analyses about the learning guarantees of the proposed method w.r.t.
these two measures. Finally, experimental results on small-scale datasets demonstrate the
superior performance and efficiency of MLC-NTK in comparison with the related baselines.
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2. Related Work
2.1. Multi-label Learning
MLL has been widely studied in recent years, and many approaches have been proposed.
According to the taxonomy (Zhang and Zhou, 2014), they can be mainly divided into two
categories: problem transformation and algorithm adaptation approaches.

The core idea of problem transformation approaches is to transform MLL to current
well-studied learning tasks, such as binary classification (e.g., Binary Relevance (Boutell
et al., 2004)) and multi-class classification (e.g., RAKEL (Tsoumakas et al., 2011)).

The main idea of algorithm adaptation approaches lies in adjusting existing learn-
ing methods to adapt to MLL directly, such as K-nearest neighbor method (e.g., ML-
KNN (Zhang and Zhou, 2007)), neural network-based method (e.g., BP-MLL (Zhang and
Zhou, 2006), LLSL (Hsieh et al., 2018)), and kernel-based method (e.g., Rank-SVM (Elis-
seeff et al., 2001), CPNL (Wu et al., 2018), mlODM (Tan et al., 2020), RBRL (Wu et al.,
2020a)), etc. Although various methods based on different base models might share similar
loss functions, they construct different hypothesis spaces, which may result in different ex-
pressive power and generalization performance. Thus, it is essential to explore the powerful
and effective hypothesis space to improve performance.

We mention that the combination of surrogate HL and RL terms with the least squared
hinge base loss has been partially used in prior work (Wu et al., 2020a), which utilizes
the RBF or linear kernel and classical training algorithms without formal generalization
analyses. In comparison, in this paper, we provide a more general form of the base loss
and consider the NTK kernel with rigorous theoretical analyses. Besides, we employ the
Nyström method which is more efficient to train the kernel model.
2.2. Neural Tangent Kernel
Previous work (Lee et al., 2018) has found the connection between the kernel methods and
infinitely wide neural networks (NNs). However, these kernels correspond to NNs where
only the last layer is trained. Recently, Jacot et al. (2018) remarkably proposed the neural
tangent kernel (NTK), which is different from previous kernels. Specifically, NTK corre-
sponds to NNs where all the layers are trained, which can have more expressive power. Since
NTK is induced from a specific NN architecture, different architectures of NNs can induce
different neural tangent kernels, such as convolutional neural tangent kernel (CNTK) (Arora
et al., 2019), and graph neural tangent kernel (GNTK) (Du et al., 2019), which have shown
good performance in respective fields. Moreover, Arora et al. (2020) utilized the NTK for
binary or multi-class classification, which has shown surprising superiority empirically.

3. Preliminaries
Notations. Let bold-face letters denote vectors, matrices, or tensors. For a matrix A,
ai, a

j and aij denote its i-th row, j-th column, and (i, j)-th element respectively. For a
function g(·) : R → R and A ∈ Rm×n, define g(A) : Rm×n → Rm×n, where g(A)ij = g(aij).
Tr(·) denotes the trace operator for a square matrix. Let ◦ and ⊗ denote the Hadamard
(element-wise) product and tensor product respectively. 1 denotes the vector with ones.
[[π]] returns 1 when the proposition π holds, or 0 otherwise. [n] denotes the set {1, 2, ..., n}.
Problem Setting. Given a multi-label dataset D = {(xi,yi)}ni=1 which is i.i.d. sampled
from a distribution P , where xi ∈ Rd is the input, d is the feature dimension, yi ∈ {−1,+1}c
is the corresponding label vector, c is the number of potential labels, and n is the number
of data points. Besides, yij = 1(or −1) indicates the j-th label is relevant (or irrelevant)
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with xi . The task of MLL is to learn a multi-label classifier H : Rd → {−1,+1}c. A typical
approach is often to first learn a score function f = [f1, . . . , fc] : Rd → Rc, and then get the
classifier via a thresholding function, where we set it as sign(·) in this paper.
Evaluation Measure. Here we mainly consider two evaluation measures, i.e., Hamming
Loss (HL) and Ranking Loss (RL), which can be defined for each example (xi,yi), as follows:

HL : L
0/1
h (f(xi),yi) =

1

c

c∑
j=1

[[sgn(fj(xi)) ̸= yij ]], (1)

RL : L0/1
r (f(xi),yi) =

1

|Y +
i ||Y −

i |
∑

(p,q)∈Y +
i ×Y −

i

[[fp(xi) ≤ fq(xi)]], (2)

where Y +
i (or Y −

i ) denotes the index set of relevant (or irrelevant) labels for xi.

4. Methodology
In this section, we first introduce the infinitely wide NN model for MLL and derive its
corresponding kernel model with NTK. Then, to improve its generalization performance,
we add the Tikhonov regularization into the learning objective. Finally, we propose an
efficient optimization algorithm to solve the kernel model.
4.1. Infinitely Wide Neural Network
Formally, we define a multilayer fully-connected neural network. For convenience, let
g(0)(x) = x and d0 = d. It can be defined recursively as follows

f (h)(x) = W(h)g(h−1)(x), g(h)(x) =

√
cσ
dh

σ(f (h)(x)), ∀h ∈ [L], (3)

where f (h)(x) =
[
f
(h)
1 (x), . . . , f

(h)
dh

(x)
]
, g(h)(x) =

[
g
(h)
1 (x), . . . , g

(h)
dh

(x)
]
, W(h) ∈ Rdh×dh−1 ,

σ : R → R is the pointwise activation function, and cσ = (Ex∼N (0,1)[σ(x)
2])−1 is the scaling

factor. Here we use the ReLU activation function, i.e., σ(x) = max(0, x). The last layer of
the neural network is

f(x,θ) = f (L+1)(x) = W(L+1)g(L)(x), (4)

where f(x,θ) = [f1(x,θ), . . . , fc(x,θ)], W
(L+1) ∈ Rc×dL , and θ ≡ vec (W(1), ...,W(L+1))

denotes all the parameters of the network. Here, all the parameters are i.i.d. initialized as
N (0, 1).

For MLL, we minimize the following objective function, which aims to optimize the HL
and RL simultaneously:

C(θ) =
1

n

n∑
i=1

ℓ(f(xi,θ),yi) =
1

n

n∑
i=1

(
Lh(f(xi,θ),yi) + λLr(f(xi,θ),yi)

)
, (5)

where λ is a tradeoff hyper-parameter and

Lh(f(xi,θ),yi) =
1

c

c∑
j=1

ℓbase(yijfj(xi,θ)), (6)

Lr(f(xi,θ),yi) =
1

|Y +
i ||Y −

i |
∑

(p,q)∈Y +
i ×Y −

i

ℓbase(fp(xi,θ)− fq(xi,θ)). (7)
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whereℓbase denotes the base (convex) surrogate loss (e.g., the hinge and logistic loss). In
experiments, we adopt the logistic(-like) loss, i.e., ℓbase(yf(x)) = log(1+ exp(−yf(x))) and
ℓbase(fp(x) − fq(x)) = log(1 + exp(fq(x) − fp(x))), due to its widespread use in neural
networks.
Calculation of NTK. When the hidden widths go into infinity (i.e., dh → ∞, ∀h ∈ [L]),

each coordinate of the h-layer output (i.e., f
(h)
j (x), ∀j ∈ [dh]) tends into i.i.d centered

Gaussian Processes with the covariance Σ(h), where Σ(h) is defined recursively as follows.
For arbitrary two data points x and x′, we have

Σ(0)(x,x′) = x⊤x′, Λ(h)(x,x′) =

(
Σ(h−1)(x,x) Σ(h−1)(x,x′)

Σ(h−1)(x′,x) Σ(h−1)(x′,x′)

)
∈ R2×2,

Σ(h)(x,x′) = cσE(u,v)∼N (0,Λ(h))[σ(u)σ(v)].

Besides, we define a derivative covariance

Σ̇(h)(x,x′) = cσE(u,v)∼N (0,Λ(h))[σ̇(u)σ̇(v)], (8)

where σ̇(·) denotes the derivative function of σ(·).
Finally, the neural tangent kernel (NTK) is as follows:

κ(x,x′) ≜
〈∂fj(x,θ)

∂θ
,
∂fj(x

′,θ)

∂θ

〉
=

L+1∑
h=1

〈∂fj(x,θ)
∂W(h)

,
∂fj(x

′,θ)

∂W(h)

〉
=

L+1∑
h=1

(
Σ(h−1)(x,x′) ·

L+1∏
h′=h

Σ̇(h′)(x,x′)
)
,

(9)

where κ : Rd × Rd → R is the scalar-based kernel and we set Σ̇(L+1)(x,x′) = 1 and
kernel matrix K = [κ(xi,xj)] ∈ Rn×n for convenience. We refer readers to Arora et al.
(2019) for the derivation details. Besides, if we fix the first L′ layers and only train the
remaining (L + 1 − L′) layers, it is easy to verify that the resulting NTK is κ(x,x′) =∑L+1

h=L′+1

(
Σ(h−1)(x,x′) ·

∏L+1
h′=h Σ̇

(h′)(x,x′)
)
. Similarly to Arora et al. (2020), we also view

L′ as a hyper-parameter of the NTK classifier, which is tuned in our experiments.
Equivalence between infinitely wide NN and kernel method with NTK.1

Proposition 1 Consider minimizing C(θ) in Eq.(5) by gradient descent with infinitesi-

mally small learning rate (i.e., gradient flow): dθ(t)
dt = −∇C(θ(t)). Let F(t) = [f(x1,θ(t));

. . . ; f(xn,θ(t))] ∈ Rn×c be network outputs on all xi’s at time t. When the hidden widths
d1, ..., dL −→ ∞, then F(t) follows the following evolution:

dF(t)

dt
= − 1

n
K · ∂ℓ(t)

∂F(t)
, (10)

where K ∈ Rn×n is the NTK kernel matrix and

∂ℓ(t)

∂F(t)
≜

[
∂ℓ(f(x1,θ(t)),y1)

∂f(x1,θ(t))
; . . . ;

∂ℓ(f(xn,θ(t)),yn)

∂f(xn,θ(t))

]
∈ Rn×c.

1. Note that, the subsequent proposition follows the asymptotic analysis w.r.t. the widths in Jacot et al.
(2018) rather than the non-asymptotic one in Arora et al. (2019).



Wu Zhu

Remark 2 This proposition can be viewed as a corollary of prior theoretical results (i.e.,
Theorem 1 and 2 in (Jacot et al., 2018)), where the loss function is assumed to be convex with
another mild condition, and the general matrix-based kernel is considered. In contrast, it can
be easily checked that our loss satisfies these conditions, and here we consider the separable
matrix-based kernel that can be equivalently transformed into the corresponding scalar-based
kernel (Alvarez et al., 2012). For completeness, we add the proof in Appendix A.

Note that the above dynamics in Eq.(10) is identical to the one of the following kernel
methods w.r.t. NTK under gradient flow:

min
fκ

1

n

n∑
i=1

ℓ(fκ(xi),yi), (11)

where fκ(·) = [fκ
1 (·), fκ

2 (·), ..., fκ
c (·)], and ∀j ∈ [c], fκ

j (·) ∈ H, in which H denotes the
RKHS induced by the NTK kernel function κ. In other words, for infinitely wide NNs
under gradient flow and random initialization, the output function of NNs is equivalent to
the prediction function of kernel methods w.r.t. NTK under gradient flow. Thus, we can
transform the optimization of NNs into that of kernel methods w.r.t. NTK. Besides, we
can also get the output of NNs in prediction by the prediction of kernel methods.
4.2. Kernel Method w.r.t. NTK
Therefore, we now focus on the corresponding kernel method in Eq.(11) w.r.t. NTK. Sub-
stituting ℓ with Lh and Lr based on Eq.(5), we can get

min
fκ

1

n

n∑
i=1

(
Lh(f

κ(xi),yi) + λLr(f
κ(xi),yi)

)
. (12)

For kernel methods, their generalization performance can be improved by endowing regu-
larization constraints, which we will give formal analyses in the following section. Thus, we
add the Tikhonov regularization as follows

min
fκ

1

n

n∑
i=1

(
Lh(f

κ(xi),yi) + λLr(f
κ(xi),yi)

)
+

τ

2

c∑
j=1

∥fκ
j ∥2H, (13)

where τ is a tradeoff hyper-parameter and ∥f∥H denotes its norm in the Hilbert space H.
The above convex optimization problem is hard to handle since it is infinite-dimensional.

Consequently, we give a representer theorem, which is shown in Theorem 3, to equivalently
transform the original problem to a finite-dimensional convex minimization problem.

Theorem 3 (The Representer Theorem) Assume that fκ
j (·) ∈ H,∀j ∈ [c], where H is

the RKHS induced by the kernel function κ. If f̄κ is an optimal solution of Eq.(13), then it
admits the following linear representer form

f̄κ
j (·) =

n∑
i=1

αijκ(·,xi), ∀j ∈ [c], (14)

where f̄κ(·) =
[
f̄κ
1 (·), ..., f̄κ

c (·)
]
and αij ∈ R,∀i ∈ [n], j ∈ [c].
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Remark 4 The proof of the theorem shares the same spirit of the classical representer
theorem (Schölkopf and Smola, 2002).2 Here we omit it for brevity.

Based on Theorem 3 and the property of H, i.e., κ(xi,xj) = ⟨κ(·,xi), κ(·,xj)⟩H, where ⟨·, ·⟩H
is the inner product in H, we can equivalently transform the original optimization problem
Eq.(13) to the following optimization problem (by substituting the base loss for Lh and Lr),
denoted by the learning algorithm A for convenience:

A : min
A

1

nc

n∑
i=1

c∑
j=1

ℓbase(yij⟨Ki,α
j⟩) + τ

2
Tr(A⊤KA)

+
λ

n

n∑
i=1

1

|Y +
i ||Y −

i |
∑

(p,q)∈Y +
i ×Y −

i

ℓbase(⟨Ki,α
p −αq⟩)),

(15)

where A = [αij ] ∈ Rn×c, and αj ∈ Rn for j ∈ [c].
4.3. Optimization
For kernel methods, one potential limitation is their high computational costs, which is
at least quadratic w.r.t. the number of training instances, due to the involvement of the
kernel matrix during training. To this end, one common approach is to approximate the
kernel model by a linear model, which explicitly constructs a feature space to approxi-
mate the kernel function. Random Fourier Features (Rahimi and Recht, 2008) and the
Nyström method (Williams and Seeger, 2001) are two popular methods for such approx-
imation. While recent work Han et al. (2021) focuses on the random feature method to
approximate the NTK, Nyström method usually has better performance theoretically and
empirically (Yang et al., 2012) than Random Fourier Features. Hence, to efficiently train
the NTK model in Eq.(15), we use the Nyström method, which is rarely used in MLL to our
knowledge, and then learn the linear model by a recent fast stochastic variance reduction
algorithm SVRG-BB (Tan et al., 2016).

Specifically, the Nyström method approximates the full kernel matrix by a low-rank
matrix. First, it samples m instances, denoted by x̂1, ..., x̂m, and gets the best rank-r ap-
proximation Cr of C = [κ(x̂i, x̂j)] ∈ Rm×m, i.e., Cr =

∑r
i=1 σiviv

⊤
i , where C has the Sin-

gular Value Decomposition (SVD) C = VDV⊤, V = [v1, ...,vm], and D = diag(σ1, ..., σm).

Then, the approximate rank-r kernel matrix is constructed by K̂ = BC†
rB⊤ ≈ K, where

B = [κ(xi, x̂j)] = [b1; ...;bn] ∈ Rn×m, andC†
r is the pseudo inverse ofCr. Thus, the approx-

imate kernel function of two data points becomes κ̂(xi,xj) = biVrD
−1/2
r (bjVrD

−1/2
r )⊤ =

[κ(xi, x̂1), ..., κ(xi, x̂m)]VrD
−1/2
r ([κ(xj , x̂1), ..., κ(xj , x̂m)]VrD

−1/2
r )⊤, whereVr = [v1, ...,vr],

and Dr = diag(σ1, ..., σr). Therefore, a data point x can be represented by z(x) =

D
−1/2
r V⊤

r [κ(x, x̂1), ..., κ(x, x̂m)]⊤. Hence, the kernel model has been transformed into the

2. Note that, the classical representer theorem (Schölkopf and Smola, 2002) (i.e., Theorem 4.2 in Sec. 4.2,
Page 90) handles the scalar output case while our theorem handles the vector output case which allows
coupling between the output (i.e. the ranking loss).
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linear model by solving the following optimization problem:

min
W∈Rm×c

1

nc

n∑
i=1

c∑
j=1

ℓbase(−yij⟨wj , z(xi)⟩) +
τ

2
∥W∥2F+

λ

n

n∑
i=1

1

|Y +
i ||Y −

i |
∑

(p,q)∈Y +
i ×Y −

i

{ℓbase(⟨wq −wp, z(xi)⟩)} .
(16)

Then, we aim to solve the above problem by stochastic gradient algorithms. While stochastic
gradient descent (SGD) methods have been widely used in machine learning, they have a
low convergence rate using diminishing step size, which results in a large variance for the
gradient estimation. To this end, many methods, such as SVRG (Johnson and Zhang, 2013)
adopt the variance reduction technique to accelerate the convergence. More specifically,
SVRG keeps a snapshot that is updated after the internal loop, where the constant step
size can be used and the linear convergence rate is guaranteed. However, in practice,
the step size is hard to estimate, which usually needs time-consuming fine-tuning. Thus,
more recently, SVRG-BB (Tan et al., 2016) incorporates the Barzilai-Borwein (BB) method
(Barzilai and Borwein, 1988) into the SVRG to automatically compute step sizes. Hence, we
use the SVRG-BB to train the linear model in Eq.(16), which is summarized in Algorithm 1.
Specifically, for convenience, we denote Eq.(16) by minW

1
n

∑n
i=1 gi(W), where ∇gi(W)

denotes the gradient of gi(W) w.r.t. W. (See Appendix B for detailed proofs).

Algorithm 1 SVRG-BB to train the linear model in Eq.(16)

Input: update frequency m̄, initial point W̃0, initial step size η0
Output: W∗ ∈ Rm×c

1: for s = 0, 1, ... do
2: Gs =

1
n

∑n
i=1∇gi(W̃s)

3: if s > 0 then
4: ηs =

1
m∥W̃s − W̃s−1∥2F /Tr((W̃s − W̃s−1)

⊤(Gs −Gs−1))
5: end if
6: W0 = W̃s

7: for t = 0, 1, ..., m̄− 1 do
8: Randomly pick it ∈ [n]

9: Wt+1 = Wt − ηs(∇git(Wt)−∇git(W̃s) +Gs)
10: end for
11: W̃s+1 = Wm̄

12: end for
13: return W∗ = W̃s+1

5. Theoretical Analyses
Here we give theoretical analyses of the algorithm A and the effect of Nyström method.
5.1. Generalization Analysis
Here we analyze the learning guarantees of the learning algorithm A (i.e., Eq.(15)) w.r.t.
the measures of HL and RL, following recent work (Wu and Zhu, 2020), which is technically
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based on Rademacher complexity (Bartlett and Mendelson, 2002) and the vector-contraction
inequality (Maurer, 2016).

Let Φ : X → H be a feature mapping associated with the kernel function κ and define
the hypothesis space as

F =

x 7→ [⟨fκ
1 ,Φ(x)⟩, . . . , ⟨fκ

c ,Φ(x)⟩] :
c∑

j=1

∥∥fκ
j

∥∥2
H ≤ Λ

 . (17)

For any f ∈ F , the true (0/1) expected and surrogate empirical risk w.r.t. the HL measure
can be defined as follows, respectively:

Rh
0/1(f) = E

(x,y)∼P

[
L
0/1
h (f(xi),yi)

]
, R̂h

S(f) =
1

n

n∑
i=1

Lh(f(xi),yi).

Similarly, we can define its counterparts (i.e., Rr
0/1(f) and R̂r

S(f)) for the RL measure.
First, we give the common mild assumption for the subsequent analysis.

Assumption 1 The base loss ℓbase(·) is ρ-Lipschitz continuous and bounded by B.3

Then, we analyze the learning guarantee of A w.r.t. the Hamming Loss (HL) as follows.

Theorem 5 (Learning guarantee w.r.t. HL measure; full proof in Appendix C.1)
Consider the hypothesis space Fh = {f ∈ F : R̂r

S(f) ≤ Λ1} and the loss function Lh defined
in Eq.(6). Besides, Assumption 1 holds. Then, for any δ > 0, the following generalization
bound holds for any f ∈ Fh with probability at least 1− δ:

Rh
0/1(f) ≤ R̂h

S(f) + 2ρ

√
2

c
R̂S(Fh) + 3B

√
log 2

δ

2n
, (18)

where the empirical Rademacher complexity satisfies

R̂S(Fh) ≤ R̂S(F) ≤
√

cmax{Kii}Λ2

n
. (19)

From the above theorem, we can observe that A has an error bound of O
(

1√
n

)
w.r.t. the HL

measure. To minimize the right side of InEq.(18) for a tight bound, we can add the Tikhonov
regularization (i.e.,

∑c
j=1 ∥fκ

j ∥2H) in the objective function to improve the generalization.
Further, we can see that it might improve the generalization w.r.t. the HL measure by
adding the minimization of the ranking risk term in the objective function, where this term
can be viewed as a data-dependent regularizer to constrain the model complexity.

Similarly, we analyze the learning guarantee of A w.r.t. the RL measure in the following.

Theorem 6 (Learning guarantee w.r.t. RL measure; full proof in Appendix C.2)
Consider the hypothesis space Fr = {f ∈ F : R̂h

S(f) ≤ Λ2} and the loss function Lr defined

3. Note that the widely-used hinge and logistic loss are both 1-Lipschitz continuous.
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in Eq.(7). Besides, Assumption 1 holds. Then, for any δ > 0, the following generalization
bound holds for any f ∈ Fr with probability at least 1− δ:

Rr
0/1(f) ≤ R̂r

S(f) + 2
√
2ρR̂S(Fr) + 3B

√
log 2

δ

2n
, (20)

where the empirical Rademacher complexity satisfies

R̂S(Fr) ≤ R̂S(F) ≤
√

cmax{Kii}Λ2

n
. (21)

From the above theorem, we can observe that A has an error bound of O(
√

c
n) w.r.t. the

RL measure. Similarly, it also justifies that the Tikhonov regularization can improve its
generalization, and it might improve the performance w.r.t. the RL by adding the Hamming
risk term in the learning objective function, where it can also be viewed as a data-dependent
regularizer to constrain the model complexity.

In summary, our above analyses explain why we design such a learning objective func-
tion in Eq.(13). Moreover, we want to highlight these bounds can enjoy good theoretical
guarantees from kernel methods while existing neural network-based methods cannot have
such guarantees to our knowledge.
Comparison with prior work (Wu and Zhu, 2020). Although our theoretical anal-
yses mainly follow the prior work (Wu and Zhu, 2020), there is a major difference in the
considered hypothesis space. While they consider the hypothesis space F , we consider the
hypothesis space Fh (or Fr) in Theorem 5 (or 6), which can be smaller than F .
Limitations. Here we want to discuss the limitations of our analyses. First, our above
generalization analyses hold for any kernel function, including NTK and RBF kernel. Thus,
we cannot theoretically tell the performance superiority between them. To the best of
our knowledge, this problem (a.k.a., the kernel choice problem) is largely open for kernel
methods (Muandet et al., 2017). Second, we do not characterize the detailed relationships
(or factors) between the empirical Rademacher complexity R̂S(Fh) (or R̂S(Fr)) and R̂S(F)
because it is highly non-trivial to our knowledge.
5.2. Effect of Nyström method
For the Nyström method, there are many theoretical works (Drineas et al., 2005; Cortes
et al., 2010; Jin et al., 2013; Derezinski et al., 2020) to analyze its performance mainly from
two perspectives: the approximation error w.r.t. the kernel matrix and the generalization
w.r.t. the approximate hypothesis.

For the approximation error, classical results (Drineas et al., 2005) show that the follow-
ing bound holds generally (for uniform sampling used in this paper) with high probability:4

∥K− K̂∥2 ≤ σr+1 +O

(
Tr(K)√

m

)
. (22)

For the generalization analysis of Nyström methods, we find that it is usually problem-
specific w.r.t. learning algorithms. Further, it is highly non-trivial to analyze our algorithm,

4. Note that, Tr(K) can be empirically large for NTK and we can use its normalized kernel version almost
without performance degradation. Besides, this bound can be improved w.r.t. m under additional
assumptions on the kernel matrix (Jin et al., 2013).
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and we leave it as future work. Notably, when setting r = m = n, we can precisely get
K̂ = K without any loss on both approximation and generalization (Mohri et al., 2018).5

6. Experiments
For experiments, the main purpose is to test whether the infinitely wide DNNs can help
small-data multi-label learning, rather than to illustrate the superiority of our methods
over the state-of-the-art approaches (Bogatinovski et al., 2022). Thus, in the following, we
choose the widely-used small-scale MLL datasets and related baselines to our method.
6.1. Experimental Setups
Datasets. We use 8 widely-used small-scale multi-label datasets.6 They cover varieties of
domains and sizes, which are summarized in Table 1. For each dataset, we randomly split
60% for training, the remaining 40% for testing, and do ten repeats.

Table 1: Statistics of the benchmark multi-label datasets. “Card” represents the average
relevant labels per instance, and “Den” normalizes the “Card” by the label number.

Dataset #Instance #Feature #Label Card Den Domain

flags 194 19 7 3.392 0.485 image
birds 351 260 19 1.863 0.098 audio
emotions 593 72 6 1.869 0.311 music
image 2000 294 5 1.240 0.248 image
scene 2407 294 6 1.074 0.179 image
yeast 2417 103 14 4.237 0.303 biology
enron 1702 1001 53 3.378 0.064 text
business 5000 438 30 1.588 0.053 text

Compared Methods. Here we compare our method MLC-NTK with the following base-
line methods, which includes a NN-based method BP-MLL (Zhang and Zhou, 2006), three
kernel-based methods (i.e., Rank-SVM (Elisseeff et al., 2001), BR-SVM (Boutell et al.,
2004) and CPNL (Wu et al., 2018)) and a recent method MLFE (Zhang et al., 2018).
Besides, we involve a method MLC-RBF which replaces the NTK kernel in Eq.(13) with
the Gaussian (i.e., RBF) kernel. For the last two datasets (i.e., enron and business), we
use the linear kernel for the related baselines because the linear kernel has better perfor-
mance than the RBF kernel as shown in Wu et al. (2018). For the other datasets, all the
kernel-based baselines employ the RBF kernel, where the hyper-parameter γ is searched
in {10−4, 10−3..., 104} ∗ 1

d . For other hyper-parameters of all the baselines, the setting and
search space are used as suggestions of the original literature. For MLC-NTK, the hyper-
parameter L and L′ are searched in {1, 2, ..., 5} and {0, 1, ..., L− 1} respectively. Besides, τ
and λ are tuned in {10−3, 10−2..., 103}. Furthermore, all the hyper-parameters are selected
by 5-fold cross-validation on the training data.
Evaluation Measures. For an overall and fair evaluation, we employ six widely-used
measures, including three classification-based metrics (i.e., Hamming Loss, Subset Accuracy,
and instance-F1 ), and three ranking-based measures (i.e., Ranking Loss, Coverage and
Average Precision). Please refer to Zhang and Zhou (2014) for their detailed definitions.
5. Indeed, in our experiments, we adopt this setting for high performance while still enjoy efficiency over

other baselines.
6. The datasets can be downloaded from http://mulan.sourceforge.net/datasets-MLL.html and http:

//palm.seu.edu.cn/zhangml/. Note that here we choose these small-scale datasets because not only
they are widely used in MLL (Zhang and Zhou, 2014), but also prior work (Arora et al., 2020) has shown
the effectiveness of the NTK for single-labeled tasks in low-data settings.

 http://mulan.sourceforge.net/datasets-MLL.html
http://palm.seu.edu.cn/zhangml/
http://palm.seu.edu.cn/zhangml/
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Table 2: Experimental results of approaches (meanstd) w.r.t. HL (↓) on all datasets. ↓ (↑)
indicates the smaller (larger) the better. Best results are highlighted in bold.

Dataset Rank-SVM BP-MLL BR-SVM CPNL MLFE MLC-RBF MLC-NTK

flags 0.2860.017 0.2840.006 0.2700.009 0.2670.027 0.2700.010 0.2630.016 0.2550.018

birds 0.0840.003 0.1070.003 0.0850.003 0.0850.007 0.0810.005 0.0910.005 0.0830.003
emotions 0.1890.008 0.2180.015 0.1830.009 0.1830.009 0.1860.009 0.1850.011 0.1830.012

image 0.1610.005 0.2450.008 0.1560.006 0.1500.006 0.1560.007 0.1520.005 0.1430.006

scene 0.0920.005 0.1020.007 0.0770.002 0.0770.003 0.0830.003 0.0800.002 0.0740.002

yeast 0.2030.004 0.2330.011 0.1880.003 0.1920.004 0.1940.004 0.1920.004 0.1870.003

enron 0.0510.003 0.0570.002 0.0520.001 0.0490.001 0.0460.001 0.0490.001 0.0460.001

business 0.0300.004 0.0360.000 0.0260.001 0.0250.001 0.0250.001 0.0280.001 0.0250.001

Table 3: Experimental results of approaches (meanstd) w.r.t. RL (↓) on all datasets.

Dataset Rank-SVM BP-MLL BR-SVM CPNL MLFE MLC-RBF MLC-NTK

flags 0.2000.023 0.2130.003 0.2250.016 0.2320.033 0.2370.014 0.1990.021 0.1980.017

birds 0.1640.012 0.1880.016 0.1670.011 0.1570.012 0.1730.022 0.1660.009 0.1440.018

emotions 0.1550.009 0.1750.015 0.2460.015 0.1390.010 0.1420.011 0.1390.008 0.1360.014

image 0.1430.008 0.1950.005 0.2200.012 0.1320.006 0.1420.007 0.1340.006 0.1280.006

scene 0.0650.005 0.0840.002 0.1280.006 0.0590.003 0.0630.003 0.0600.003 0.0570.004

yeast 0.1700.005 0.1960.013 0.3080.008 0.1580.006 0.1660.005 0.1610.005 0.1540.004

enron 0.0810.008 0.0860.002 0.2980.007 0.0780.003 0.0760.004 0.0890.002 0.0690.003

business 0.0340.005 0.0480.092 0.2050.005 0.0300.002 0.0410.002 0.0350.001 0.0290.001

6.2. Results
The experimental results w.r.t. the measures of Hamming and Ranking Loss are summarized
in Table 2 and 3, respectively (see Appendix D.1 for other measures). Besides, Table 4
summarizes the average rank of compared methods over each measure.

Table 4: Average ranks of the compared approaches on all datasets in terms of each metric
and all the metrics.

Metric Rank-SVM BP-MLL BR-SVM CPNL MLFE MLC-RBF MLC-NTK

Hamming Loss 5.63 6.88 3.38 2.38 3.25 3.75 1.13
Subset Accuracy 6.00 6.75 3.00 2.25 4.63 3.38 1.50

instance-F1 4.63 4.25 4.75 1.88 5.75 4.13 2.00
Ranking Loss 4.13 5.75 6.50 2.63 4.50 3.38 1.00

Coverage 3.75 5.88 6.38 2.63 4.63 3.50 1.00
Average Precision 4.75 5.63 6.13 2.50 3.88 3.63 1.00

Overall 4.81 5.85 5.02 2.38 4.44 3.63 1.27

Comparison with other kernel methods. Comparing MLC-NTK and MLC-RBF, we
can conclude that the NTK kernel can be more effective than the RBF kernel for low-
data settings. As mentioned in our theoretical parts, it’s largely open to explain why
this phenomenon happens in theory. We hypothesize that this is because the NTK kernel
might have more flexible expressive power while keeping suitable model complexity than
the RBF kernel. This also indicates the choice importance of the hypothesis space. Besides,
comparing MLC-RBF and BR-SVM (or Rank-SVM), we can find that MLC-RBF performs
better w.r.t. Hamming (or Ranking) loss, which supports our theoretical analyses that these
two losses can be viewed as the data-dependent regularizer for each other.7

Comparison with NN-based methods. Comparing Rank-SVM and BP-MLL w.r.t.
Ranking loss (since both aim to optimize this measure), we can find that Rank-SVM per-

7. Note that, although BR-SVM and Rank-SVM share the hinge base loss while MLC-RBF empirically
adopts the logistic base loss, these two base losses have little effect on performance empirically.
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forms better than BP-MLL in all datasets. This arises the generalization question about
neural networks for low-data settings, which needs more to explore to explain why. Besides,
MLC-NTK performs better than BP-MLL.

We also notice that CPNL performs better than MLC-NTK w.r.t. instance-F1 (see
Table 2 in Appendix D.1), which is probably because CPNL involves a cost-sensitive loss
that might be suitable for the F-score measure. We also find that MLC-NTK achieved
promising performance w.r.t. Subset Accuracy (SA) (see Table 1 in Appendix D.1). This
is because recent theoretical work (Wu and Zhu, 2020) has shown when optimizing HL on
datasets with small label space, it can achieve promising performance w.r.t. SA.

In summary, MLC-NTK has achieved promising performance over related baselines for
low-data settings, which indicates the NTK kernel might be a good candidate for kernel
methods in MLL. Furthermore, we also empirically find our method trains faster than other
kernel methods (see Appendix D.2 for details). Besides, we also provide the sensitivity
analysis w.r.t. the hyper-parameter τ and λ (see Appendix D.3 for details).

7. Conclusion and Discussion
To answer the question of whether infinitely wide DNNs can help small-data multi-label
learning, here we propose to utilize the NTK kernel to solve the MLL task. Specifically, we
aim to minimize the Hamming and Ranking Loss based on the NTK kernel, which derives
from the infinitely wide NN. Then, the Nyström method and a fast stochastic algorithm
are used for efficiently training the model. Further, we give theoretical analyses about
the learning guarantees of the proposed algorithm w.r.t. these two measures. Experimental
results on small-scale datasets illustrate the effectiveness and efficiency of our method, which
indicates that NTK-based methods can be a good choice in small-data multi-label learning.

Theoretically, it is interesting to explore why the NTK kernel usually performs better
than the RBF kernel in low-data settings. Experimentally, we focus on low-data settings,
while leaving large-scale settings for future work. Besides, the NTK and our analyses can
be extended to other tasks, such as multi-dimensional classification (Jia and Zhang, 2022).
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