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Abstract

Semi-supervised learning (SSL) is a promising approach for training deep classification mod-
els using labeled and unlabeled datasets. However, existing SSL methods rely on a large
unlabeled dataset, which may not always be available in many real-world applications due to
legal constraints (e.g., GDPR). In this paper, we investigate the research question: Can we
train SSL models without real unlabeled datasets? Instead of using real unlabeled datasets,
we propose an SSL method using synthetic datasets generated from generative founda-
tion models trained on datasets containing millions of samples in diverse domains (e.g.,
ImageNet). Our main concepts are identifying synthetic samples that emulate unlabeled
samples from generative foundation models and training classifiers using these synthetic
samples. To achieve this, our method is formulated as an alternating optimization prob-
lem: (i) meta-learning of generative foundation models and (ii) SSL of classifiers using real
labeled and synthetic unlabeled samples. For (i), we propose a meta-learning objective
that optimizes latent variables to generate samples that resemble real labeled samples and
minimize the validation loss. For (ii), we propose a simple unsupervised loss function that
regularizes the feature extractors of classifiers to maximize the performance improvement
obtained from synthetic samples. We confirm that our method outperforms baselines using
generative foundation models on SSL. We also demonstrate that our methods outperform
SSL using real unlabeled datasets in scenarios with extremely small amounts of labeled
datasets. This suggests that synthetic samples have the potential to provide improvement
gains more efficiently than real unlabeled data.
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1. Introduction

Semi-supervised learning (SSL) is a promising approach for training deep neural network
models with a limited amount of labeled data and a large amount of unlabeled data. Recent
studies on SSL have shown that the labeling cost to achieve high-performance models can
be significantly reduced by using the unlabeled dataset to train the models with pseudo-
labeling and consistency regularization (Bachman et al., 2014; Xie et al., 2020; Sohn et al.,
2020). For example, Wang et al. (2023) have reported that their SSL method can achieve
94.22% test accuracy on CIFAR-10 with only one label per class. This indicates that modern
SSL methods can realize practical models with minimal labeling costs. However, whether
labeled or not, large-scale datasets are becoming more challenging to obtain and use for
machine learning models due to privacy regulations (e.g., GDPR in the EU).

© 2023 S. Yamaguchi.
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Figure 1: Comparison of semi-supervised learning (SSL) and generative semi-supervised
learning (gSSL). In gSSL, we use a generative foundation modelGF to compute unsupervised
losses instead of a real unlabeled dataset Du. To this end, we generate synthetic unlabeled
samples by querying GF with information of the labeled dataset D.

To train deep models in a situation where it is challenging to obtain datasets, recent
studies using synthetic datasets from deep generative models have attracted much attention
in the context of proxying real datasets (He et al., 2023; van Breugel et al., 2023). This
approach has been intensively discussed in the community1 and regarded as a promising
method for privacy protection since generative models such as GANs (Goodfellow et al.,
2014) can produce realistic samples while guaranteeing certain differential privacy (Lin
et al., 2021). If the synthetic samples can be used as unlabeled datasets in SSL, we can
train a high-performance model without real unlabeled datasets and privacy risks. Thus, we
investigate a research question: Can we train SSL models with synthetic unlabeled datasets
instead of real ones?

In this paper, we explore a new problem setting called generative semi-supervised learn-
ing (gSSL), where the semi-supervised learners use synthetic unlabeled samples generated
from a generative foundation model instead of real unlabeled samples (Figure 1). Generative
foundation models are conditional generative models pre-trained on large external datasets
containing millions of samples from diverse domains (e.g., ImageNet). Thanks to recent ad-
vances (Brock et al., 2019; Sauer et al., 2022), generative foundation models can accurately
output synthetic samples in various domains from inputs of latent variables and conditional
labels. Therefore, we can expect the synthetic samples to perform as the unlabeled datasets
in SSL when the training data space overlaps the data space estimated by the generative
foundation models.

In gSSL, there are important challenges according to the following two concrete research
questions: (i) How do we find optimal synthetic samples from the generative foundation
models for SSL? and (ii) How do we train models with synthetic samples that do not belong to
the training class categories? For (i), since generative foundation models do not necessarily
have the same class categories in the training datasets, we need to find synthetic samples
from the generative models related to training datasets. Furthermore, it is essential to find

1. NeurIPS Synthetic Data Workshop (https://www.syntheticdata4ml.vanderschaar-lab.com/)
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synthetic samples that can improve the classifier performance through the unsupervised
loss of SSL. For (ii), even if we can find helpful synthetic samples from the generative
foundation models, it is not obvious how these samples can be optimally used to maximize
the performance of the classifiers. This is because the synthetic samples are matched to
training datasets with respect to the domain (data space), not the class label spaces. Since
existing SSL methods assume that unlabeled samples belong to the training class categories,
the mismatch between real and synthetic samples in the class label spaces can be detrimental
to SSL models.

To address these two challenges, we propose a method calledmeta-pseudo semi-supervised
learning (MP-SSL). MP-SSL consists of two techniques corresponding to the two research
questions: (i) latent meta-optimization (LMO) and (ii) synthetic consistency regularization
(SCR). In LMO, we optimize latent variables that are input to generative foundation models
to find synthetic samples that resemble unlabeled training data. To find optimal synthetic
samples for SSL models, LMO meta-optimizes the parameters to minimize the validation
losses of the target classifier. Furthermore, LMO also minimizes the gaps in the feature
spaces between real and synthetic samples to align the domain gap and make the synthetic
samples perform as unlabeled data. SRC is a novel unsupervised loss term without the use
of pseudo training labels. Unlike existing SSL methods depending on real unlabeled data
and the pseudo training labels, the SCR loss is designed as a feature regularization term.
This design choice is to avoid the negative effects of the synthetic samples caused by the
mismatch of the class label spaces. Specifically, SCR penalizes the feature extractors by
maximizing the similarity between variations of a synthetic sample, which is inspired by
consistency regularization (Bachman et al., 2014; Xie et al., 2020; Sohn et al., 2020). Since
SRC is independent of the relationship between training and foundation label spaces, it can
leverage the valuable information contained in synthetic unlabeled data to train the model
without negative effects. The training objective of MP-SSL is formalized as an alternating
optimization problem of updating latent variables and updating training models through
SSL with SCR.

To evaluate the effectiveness of MP-SSL, we conduct the experiments on multiple datasets
by comparing MP-SSL with competitors, including P-SSL (Yamaguchi et al., 2022). We also
compare MP-SSL with SSL methods using real unlabeled datasets. The results show that
MP-SSL outperforms the real SSL methods when the labeled datasets are small. This sug-
gests that synthetic samples can promote more effective learning than real unlabeled sam-
ples, especially in cases where the number of labels is extremely small. We believe this work
will be the baseline for developing a new research area, generative semi-supervised learning.

Our contributions are summarized as follows.

• We propose a new problem setting of SSL called generative semi-supervised learning
(gSSL), where the unlabeled samples are provided by generative foundation models
instead of real unlabeled datasets.

• We introduce a training method for gSSL called MP-SSL, which finds optimal syn-
thetic samples performing as unlabeled data through meta-optimizing latent variables
and trains a classifier with a feature regularization with the synthetic samples.

• We confirm that MP-SSL can outperform simple baselines of the gSSL setting and
outperform SSL methods with real unlabeled datasets in small amounts of labels.
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2. Preliminary

2.1. Problem Setting

We consider a classification problem in which we train a neural network model fθ : X → Y
on a labeled dataset D = {(xi, yi) ∈ X × Y}Ni=1, where X and Y are the input and output
label spaces, respectively. In this setting, we can use a generative foundation model GF :
ZF × YF → XF, where ZF is the latent space, YF is the foundation label space, and XF

is the output sample space. We assume that GF is pre-trained on a large-scale dataset
(e.g., ImageNet) and the output sample space XF contains a subset X ′ related to X , i.e.,
XF ⊃ X ′ ≈ X . An input latent variable z ∈ ZF is sampled from a standard Gaussian
distribution N (0, I). fθ is defined by a composition of a feature extractor gψ and a classifier
hω, i.e., fθ = hω ◦ gψ and θ = [ψ, ω]. To validate fθ, we can use a small validation dataset

Dval = {(xival, yival) ∈ X × Y}
Nval
i=1 , which has no intersection with D (i.e., D ∩Dval = ∅).

2.2. Semi-supervised Learning

Given a labeled dataset D and an unlabeled dataset Du = {xi ∈ X}Nu
i=1, SSL to train fθ is

formulated as the following minimization problem.

min
θ
L(θ) + λuLu(θ), (1)

L(θ) = 1
N

∑
(x,y)∈D ℓ(fθ(x), y) (2)

Lu(θ) = 1
Nu

∑
xu∈Du

ℓu(fθ(xu)) (3)

where ℓ is a supervised loss for a labeled sample (e.g., cross-entropy loss), ℓu is an unsu-
pervised loss for an unlabeled sample xu, and λu is a hyperparameter for balancing L and
Lu. SSL assumes a large amount of unlabeled data (i.e., N ≪ Nu). This assumption has
long been justified on the premise that the difficulty of the dataset creation is centered on
labeling, and the collection of unlabeled data can be easily done (Chapelle et al., 2006).
However, unlabeled data are often unavailable due to privacy concerns. Starting with the
EU’s GDPR, privacy protection legislation has been developed globally, and creating large-
scale datasets requires satisfying the privacy policy under the law. This paper explores an
alternative SSL approach without collecting large-scale unlabeled datasets.

2.3. Generative Semi-supervised Learning

Generative semi-supervised learning (gSSL) is a variant of SSL where Du is prohibited from
being accessed and the unlabeled data xu is provided by a generative foundation model GF

by

xu = GF(z, ŷF), (4)

where ŷF is an estimated foundation label produced by gSSL algorithm. The gSSL algo-
rithms have been rarely studied except for a prior work by Yamaguchi et al. (2022). In
a transfer learning setting where the target and source architectures are not consistent,
Yamaguchi et al. (2022) have proposed a method called pseudo semi-supervised learning
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Figure 2: Overview of MP-SSL. We first generate a transformed latent variable ẑ and a
pseudo foundation label yF through conditional mapper Mϕ and label converter Iξ. Then,
we produce a pseudo unsupervised sample x̂u = GF(ẑ, ŷF) for semi-supervised learning (SSL)
of fθ. To find the optimal ẑ and yF, we update Mϕ and Iξ by latent meta-optimization
(LMO, Eq. (6)). In the training of fθ, we use the loss of synthetic consistency regularization
(SCR, Eq. (13)) instead of existing SSL loss terms.

(P-SSL). Although P-SSL is focused on transfer learning, we consider it a simple baseline
of gSSL. P-SSL trains fθ by using Eq. (1) and estimates a foundation label ŷF as

ŷF = fθF(x), (5)

where fθF is a classifier pre-trained on a foundation dataset (e.g., an ImageNet pre-trained
classifier). That is, P-SSL interprets the training sample x as the conditional sample of
an interpolated class in YF through the output of fθF . This assumes the existence of fθF
and y ∈ Y can be semantically approximated by the soft foundation labels, i.e., yi ∈ Y ≈
fθF(xi) ∈ YF. However, the synthetic samples by Eq. (5) do not always contribute to the
performance of fθ because the above assumption does not necessarily hold, and the synthetic
samples are not directly optimized to improve fθ. In fact, Yamaguchi et al. (2022) have
reported that the performance gain by P-SSL is limited when the training datasets are
not well approximated by Eq. (5). To stably improve the performance of fθ, we present a
meta-learning based SSL approach, which does not require the label assumptions.

3. Proposed Method

In this section, we describe our proposed method called MP-SSL. MP-SSL is composed
of (i) latent meta-optimization (LMO) and (ii) synthetic consistency regularization (SCR).
LMO finds synthetic samples performing as unlabeled data in SSL through meta-optimizing
input latent variables and foundation class labels. SCR penalizes a feature extractor by
maximizing the similarity between variations of a synthetic sample. MP-SSL alternately
updates the parameters for sampling synthetic unlabeled data by LMO and training model
fθ by SRC. The overview of MP-SSL is illustrated in Figure 2.
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3.1. Latent Meta-Optimization (LMO)

The goal of LMO is to find a synthetic sample that approximates unlabeled data and
contributes to the performance of fθ through SSL. To extract unlabeled samples from GF,
we optimize the parameters ϕ and ξ that generate the latent variables ẑ ∈ ZF and foundation
class label ŷF ∈ YF, respectively. That is, we search for an optimal pair of (ẑ, ŷF) through
this optimization process. In conditional generative models, the latent variables control
overall characteristics without class categories (e.g., size of object and style), and the class
labels determine the category of the synthetic samples (Odena et al., 2017; Brock et al.,
2019). Searching (ẑ, ŷF) can be more reasonable than directly optimizing whole parameters
of GF on D because the latter suffers from overfitting and the low-performance of fθ due
to the low-quality samples (Karras et al., 2020). For the optimization, we use specialized
architectures called conditional mapper Mϕ : ZF×Y → ZF and label converter Iξ : Y → YF.
Through optimizing Mϕ and Iξ, we seek a synthetic sample x̂u = GΦ(Mϕ(zF, y), I(y)). To
this end, we formalize the optimization problem of LMO as follows.

min
ϕ,ξ
Lval(θ∗) + λgapLgap(ϕ, ξ) (6)

Lval(θ∗) = E(xval,yval)∈Dval
ℓ(fθ∗(xval), yval) (7)

Lgap(ϕ, ξ) = Ex∈D∥gψ(x)− gψ(x̂u = GF(Mϕ(z, y), Iξ(y)))∥22 (8)

s.t. θ∗ = arg min
θ

L(θ) + λLu(θ, ϕ, ξ), (9)

where Lval is for seeking samples to improve fθ and Lgap is for satisfying that x̂u ap-
proximates training data x as unlabeled samples. This meta-optimization problem can be
solved by stochastic gradient descent by extending the prior meta-learning method such as
MAML (Finn et al., 2017). In the rest of this subsection, we describe the design of the
conditional mapper and label converter.

Conditional Mapper Mϕ. The role of Mϕ is to find optimal latent variables producing
useful unlabeled samples for SSL through GF. Our idea is to transform the concatenation
input latent variable z and training class label y into a new latent variable ẑ. This is based
on an expectation that partitioning the problem for each class will make searching latent
variables easier; we confirm that using y yields more performance gain in Sec. 4.5.2. Mϕ

outputs the estimated latent variable ẑ by

ẑ =Mϕ(z, y) = MLPϕ(Concat(z,EMBϕ(y))), (10)

where EMBϕ : Y → RdY is an embedding layer for y, Concat(·) is a concatenation operation
of two vectors, and MLPϕ : RdZF

+dY → ZF = RdZF is a multi-layer perception yielding a
new latent variable.

Label Converter Iξ. Iξ estimates a foundation label ŷF corresponding to a training class
label y. To estimate a foundation label, a prior work (Yamaguchi et al., 2022) utilizes a
pre-trained classifier on foundation datasets. This approach is simple, but the pre-trained
classifiers are not necessarily given, and the estimation of foundation soft labels depends
on the performance of the pre-trained classifiers. Thus, if high-performance pre-trained
classifiers are unavailable, it is hard to estimate a foundation label correctly. Instead of the
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Algorithm 1 MP-SSL

Require: Training dataset D, validation dataset Dval classifier fθ, generative foundation model GF,
conditional mapper Mϕ, label converter Iξ, training batchsize B, validation batchsize Bval, step
size η and ξ, hyperparameter λ

Ensure: Trained classifier fθ
1: while not converged do
2: {(xi, yi)}Bi=1 ∼ D
3: {zi}Bi=1 ∼ N (0, I)
4: // Updating ϕ and ξ by LMO
5: {(xival, yival)}Bval

i=1 ∼ D
6: {x̂iu}Bi=1 = {GF(Mϕ(z

i, yi), Iξ(y
i)}Bi=1

7: θ′ ← θ − η∇θ(
1
B

∑B
i=1 ℓ(fθ(x

i), yi) + λ
B

∑B
i=1 ℓSCR(x̂

i
u;ψ))

8: ϕ← ϕ− ξ∇ϕ(
1

Bval
ℓ(fθ′(xval), yval) + ∥ 1

B

∑B
i=1 fθ(x

i)− 1
B

∑B
i=1 fθ(x̂

i
u)∥22)

9: // Updating θ with SCR
10: {x̂iu}Bi=1 = {GΦ(Fϕ(z

i), yip)}Bi=1

11: θ ← θ − η∇θ(
1
B

∑B
i=1 ℓ(fθ(x

i), yi) + λ
B

∑B
i=1 ℓSCR(x̂

i
u;ψ))

12: end while

pre-trained classifiers, we utilize the Gumbel-softmax (Jang et al., 2017) trick for sampling
ŷF through the parameter ξ updated by LMO:

ŷF = arg max
i

Iξ(y), (11)

Iξ(y)[i] =
exp ((log(EMBξ[i])+g[i])/τ)∑|YF|

j=1 exp ((log(EMBξ[j])+g[j])/τ)
, (12)

where EMBξ : Y → RdY is an embedding layer for y, g[i] = − log(− log(ui ∼ Uniform(0, 1))),
τ is a temperature parameter. This formulation has several advantages: (a) it can be
trained by backpropagation since it is fully differentiable, (b) the output x̂u is expected to
be unbiased due to randomness given by g, and (c) the number of foundation classes of
interest can be adjustable according to the training data by the temperature parameters.
We confirm these advantages through comparison to the other variants of Iξ in Sec. 4.5.3.

3.2. Synthetic Consistency Regularization

Although synthetic samples generated fromGF through LMO can contain useful information
for training fθ, it is hard to expect that they are exactly categorized to the training space Y
because the training and foundation label spaces are not the same, i.e., Y ̸= YF. Therefore,
training with the synthetic samples via unsupervised losses using pseudo training labels in
Y (e.g., FixMatch (Sohn et al., 2020)) might confuse fθ due to the label space mismatch. To
avoid the negative effect and maximize the gain from the synthetic samples, we introduce
a simple unsupervised loss called synthetic consistency regularization (SCR). In contrast
to existing pseudo-label based SSL methods, SCR is computed on the feature extractor gψ
of fθ. That is, we regularize gψ by synthetic samples instead of the classifier head hω. To
regularize gψ, we design SCR based on consistency regularization (Bachman et al., 2014;
Xie et al., 2020; Sohn et al., 2020), which minimizes the gap between the outputs of two
variants of samples that are transformed by different data augmentations. Concretely, we
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formalize the loss function of SCR as follows.

ℓSCR(x̂u;ψ) = 1− gψ(Tw(x̂u)) · gψ(Ts(x̂u))
∥gψ(Tw(x̂u))∥∥gψ(Ts(x̂u))∥

, (13)

where Tw(·) and Ts(·) are a weak augmentation (e.g., flip and crop) and a strong augmenta-
tion (e.g., RandAugment (Cubuk et al., 2020)). As the measurement of the gap, we choose
cosine distance; we empirically found that this formulation achieves the best results when
comparing with L2, L1, and smooth L1 distance as shown in Sec. 4.5.4. By applying SCR
to gψ, we expect that gψ learns robust feature representations that are useful for classifying
real samples by hω.

Finally, we show the overall procedure of MP-SSL using LMO and SCR in Algorithm 1.

4. Experiments

This section evaluates our MP-SSL through experiments on multiple image classification
datasets. We mainly aim to answer three research questions with the experiments: (1)
Can MP-SSL improve the baselines without real unlabeled datasets? (2) What can training
models learn through MP-SSL? (3) Is the MP-SSL design reasonable? We compare MP-SSL
with baselines with synthetic samples, e.g., P-SSL (Yamaguchi et al., 2022), and baselines
with real samples e.g., FreeMatch (Wang et al., 2023) in Sec. 4.2 and 4.3. Furthermore,
we provide a detailed analysis of MP-SSL, such as the visualization of synthetic samples
(Sec. 4.4) and detailed ablation studies of MP-SSL (Sec. 4.5).

4.1. Setting

Baselines. We compare our method with the following baselines in the gSSL setting.
Base Model: training fθ with only D. Näıve gSSL: training fθ with D and GF, where
a synthetic sample x̂u is generated from uniformly sampled z and yF, then we train fθ by
an existing SSL method with the real and synthetic samples. P-SSL (Yamaguchi et al.,
2022): training fθ with D and GF with sampling yF by Eq. (5) and existing SSL methods
updating hω. We also test SSL methods using a real unlabeled dataset Du to assess the
practicality of the gSSL setting; We refer this setting to oracle SSL because they can access
Du that is prohibited in gSSL. As the oracle SSL methods, We used three representative
SSL methods: UDA (Xie et al., 2020), FixMatch (Sohn et al., 2020), and FreeMatch (Wang
et al., 2023).

Datasets. We used six image datasets for classification tasks: Cars (Krause et al., 2013),
Aircraft (Maji et al., 2013), Birds (Welinder et al., 2010), DTD (Cimpoi et al., 2014),
Flowers (Nilsback and Zisserman, 2008), and Pets (Parkhi et al., 2012). To evaluate both
generative and oracle SSL settings at the same time, we randomly split them into D and
Du (50 : 50, by default), and discarded Du in gSSL and used in oracle SSL. Furthermore,
to evaluate the effect of dataset size, we varied the size of labeled datasets of Cars by
{10, 25, 50, 100}% in volume. Note that we used all of the rest of the unlabeled samples as
Du in this setting. After creating D, we randomly split D into 9 : 1 and used the former as
D and the latter as Dval in the training.
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Table 1: Performance comparison of ResNet-18 classifiers on multiple datasets (Top-1 Acc.
(%)). Underlined scores are the best of the oracle SSL setting (i.e., using real unlabeled
datasets), and Bolded scores are the best among the methods of the generative SSL
(gSSL) setting (i.e., using foundation generative models).

Method / Dataset Aircraft Birds Cars DTD Flower Pets

Base Model 44.05±.59 60.74±.29 71.62±.30 61.56±.56 88.14±.18 84.44±.48

Oracle SSL (D +Du)
UDA (Xie et al., 2020) 44.65±.38 60.22±.03 60.22±.03 70.90±.58 61.90±.10 87.72±.31

FixMatch (Sohn et al., 2020) 47.89±.38 60.58±.84 80.98±.36 61.31±.11 90.08±.48 81.73±.39

FreeMatch (Wang et al., 2023) 49.55±.33 66.09±.16 82.73±.41 63.83±.49 90.07±.27 86.61±.40

Generative SSL (D +GF)
Näıve gSSL (FreeMatch) 46.83±.34 60.95±.29 73.67±.67 59.41±.17 86.41±.25 83.66±.69

P-SSL (Yamaguchi et al., 2022) 45.43±.24 60.54±.25 72.45±.30 60.82±.61 88.20±.15 84.84±.41

MP-SSL (Ours) 49.48±.25 62.86±.23 76.33±.31 62.34±.46 88.44±.51 85.43±.09

Architectures. We used ResNet-18 (He et al., 2016) as fθ and BigGAN for 256 × 256
images (Brock et al., 2019) as GF. Mϕ was composed of a three-layer perceptron with a
leaky-ReLU activation function. We used the ImageNet pre-trained weights of ResNet-18
distributed by PyTorch.2 For BigGAN, we used the ImageNet pre-trained weights provided
by Brock et al. (2019). Note that we used the same GF in the baselines and our method.

Training. We trained fθ by the Nesterov momentum SGD for 200 epochs with a momen-
tum of 0.9 and an initial learning rate of 0.01; we decayed the learning rate by 0.1 at 60,
120, and 160 epochs. We trained Mϕ and Iξ by the Adam optimizer for 200 epochs with
a learning rate of 1.0 × 10−4. We used mini-batch sizes of 64. The input samples were
resized into a resolution of 224× 224; x̂u was resized by differentiable transformations. For
synthetic samples from GF in MP-SSL, the weak transformation Tw was horizontal flip and
random crop, and the strong transformation Ts was RandAugment (Cubuk et al., 2020) by
following Xie et al. (2020); it was implemented with differentiable transformations provided
in Kornia (Riba et al., 2020). We determined the hyperparameter λ by grid search among
[0.1, 1.0] with a step size of 0.1 for each method by Dval. We used λgap of 10. For the
hyperparameters of oracle SSL methods, we followed the default settings of the original
papers (Xie et al., 2020; Sohn et al., 2020; Wang et al., 2023). We selected the final model
by checking the validation accuracy for each epoch. We ran the experiments three times on
a 24-core Intel Xeon CPU with an NVIDIA A100 GPU with 40GB VRAM and recorded
average test accuracies with standard deviations evaluated on the final models.

4.2. Evaluation on Multiple Datasets

First, we evaluate our MP-SSL’s performance by comparing it with the baseline methods
of gSSL and oracle SSL on various training datasets. Table 1 shows the results on six
datasets. Note that we did not use the unlabeled dataset Du in the gSSL setting. Our MP-
SSL achieved the best results among the gSSL methods with a large margin (up to 3pp).
While P-SSL degraded the base model on DTD due to the mismatch between training and
foundation label spaces (Yamaguchi et al., 2022), our MP-SSL succeeded in improving it.

2. https://github.com/pytorch/vision
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Table 2: Performance comparison of ResNet-18 classifiers on the reduced Cars datasets
(Top-1 Acc. (%)). Underlined scores are the best of the oracle SSL setting (i.e., using
real unlabeled datasets), and Bolded scores are the best among the methods of the gSSL
setting (i.e., using foundation generative models).

Method / Labeled Dataset Size 10% 25% 50% 100%

Base Model 19.74±.15 47.54±.67 71.62±.30 85.75±.08

Oracle SSL (D +Du)
UDA (Xie et al., 2020) 19.36±.44 47.95±.30 72.76±.53 N/A
FixMatch (Sohn et al., 2020) 20.98±.99 63.58±.64 83.94±.65 N/A
FreeMatch (Wang et al., 2023) 18.07±.03 60.13±.61 82.60±.28 N/A

Generative SSL (D +GF)
Näıve gSSL (FreeMatch) 20.11±.03 49.33±.54 72.91±.38 81.68±.18

P-SSL (Yamaguchi et al., 2022) 20.34±.42 48.27±.48 72.62±.33 85.78±.23

MP-SSL (Ours) 23.82±.55 53.37±.56 76.33±.31 86.84±.10
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Figure 3: Performance Comparisons in Small Labeled Dataset (ResNet-18)

This indicates that MP-SSL is not sensitive to the label space mismatch and stably improves
classifiers in various settings. Furthermore, on the Aircraft and DTD datasets, MP-SSL is
competitive with the oracle SSL methods. This suggests that MP-SSL and gSSL have the
potential to approximate the oracle SSL methods in terms of the final model accuracy.

4.3. Evaluation by Varying Dataset Size

We evaluate MP-SSL by varying the size of training labeled datasets. We used all of the
remaining unlabeled samples as Du for the oracle SSL methods and did not use Du for the
gSSL methods. Table 2 shows that our MP-SSL achieves the best results in the gSSL setting
for all dataset sizes. More interestingly, MP-SSL significantly outperformed the best result
of the oracle SSL methods when the labeled dataset is extremely small (i.e., 10% ≤ 1,000
samples). This trend is consistent with multiple datasets, as shown in Fig. 3. These results
suggest that the synthetic samples from GF are more valuable than real unlabeled samples
for improving classification performance when the labeled datasets are quite small.

4.4. Analysis of Synthetic Samples

We examine what the classifier is learning through MP-SSL. To this end, we visualize the
synthetic samples generated by MP-SSL and compare them to real and synthetic samples
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(a) Real (b) P-SSL (c) MP-SSL (Ours)

Figure 4: Real and Synthetic Samples in Training (Cars)

Table 3: Analysis of LMO

Pattern Cars Test Acc.(%)

Base Model 71.62±.30

MP-SSL w/o LMO 74.34±.01

MP-SSL w/o Lgap(ϕ, ξ) 75.46±.22

MP-SSL w/o Lval(θ∗) 75.63±.21

MP-SSL 76.33±.31

Table 4: Ablation Study of Mϕ

Pattern Cars Test Acc.(%)

Base Model 71.62±.30

Unconditional Mϕ 75.55±.40

Conditional Mϕ 76.33±.31

generated by P-SSL. Figure 4 shows the real and synthetic samples. Interestingly, we see
that P-SSL produces more relative samples to real samples (Cars), whereas MP-SSL pro-
duces not so relative but diverse samples. Since the performance studies in Sec. 4.2 and 4.3
show that MP-SSL completely outperformed P-SSL, this visualization result is contrary
to intuition. We consider that this can be caused by the unsupervised regularization of
MP-SSL, which penalizes the feature extractor instead of the entire model. As defined in
Eq. (6), LMO of MP-SSL optimizes the latent vectors through the backpropagation from
the unsupervised loss, and thus, the synthetic samples generated from the latent vectors
are not optimized to become similar to real samples in its label spaces. The results suggest
that the regularization of feature extractors does not necessarily require perfect imitation
of the training data, and the diversity of samples is more important.

4.5. Ablation Study

4.5.1. Meta-Learning and Gap Loss in LMO

We evaluate the effectiveness of LMO by decomposing the objective function defined in
Eq. (6). Eq. (6) is composed of the meta-learning loss Lval(θ∗) and the feature gap loss
Lgap(ϕ, ξ). Table 3 shows the impact of these components on accuracy by ablating them in
MP-SSL. The row of MP-SSL w/o LMO denotes the test pattern of discarding LMO from
MP-SSL, i.e., producing x̂u by random sampling from GF. From the results, we confirm
that Lval(θ∗) and Lgap(ϕ, ξ) equally contribute to the test performance. In other words, the
meta-learning loss and the feature gap loss have different effects on the synthetic samples
and are complementary.
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Table 5: Ablation Study of Iξ

Output Module Cars Test Acc.(%)

Soft Label by EMBξ 75.55±.24

Soft Gumbel Softmax 75.72±.41

Hard Gumbel Softmax (τ = 1.0× 10−1) 75.85±.31

Hard Gumbel Softmax (τ = 1.0× 10−3) 75.87±.33

Hard Gumbel Softmax (τ = 1.0× 10−5) 76.33±.31

Hard Gumbel Softmax (τ = 1.0× 10−7) 76.02±.50

Table 6: Comparison of ℓu for MP-SSL

ℓu Cars Test Acc.(%)

FreeMatch 73.32±.40

L1 Distance 73.80±.73

L2 Distance 74.71±.86

Smooth L1 Distance 74.67±.60

SCR (Eq. (13)) 76.33±.31

4.5.2. Conditional Mapper

We assess the design validity of conditional mapperMϕ(z, y). In Eq. (10), we defineMϕ to be
conditioned by a training class label y. To confirm the effectiveness of using labels, we tested
unconditional mapperMϕ(z), which is created by discarding the components for labels from
Mϕ(z, y). Table 4 summarises the results. MP-SSL with a conditional mapper significantly
outperformed one with an unconditional mapper. Therefore, we can say that using condi-
tional labels for transforming a latent variable z helps boost models’ performance.

4.5.3. Label Converter

In Sec. 3.1, we design label converter Iξ composed of the Gumbel softmax module as Eq. (11).
This section provides the ablation study to evaluate the design choice. We varied the im-
plementation of Iξ with (a) soft label by embedding layer, i.e., ŷF = EMBξ, (b) soft Gumbel
softmax, i.e., ŷF = Iξ. Furthermore, we varied the hyperparameter τ in Eq. (11). Table 5
shows the results. Using the Gumbel softmax with hard label output brings better test
accuracy. This indicates that using the soft label output might not be appropriate for the
unsupervised regularization loss since it results in ambiguous and low-quality output as in
P-SSL, which uses soft labels for generating synthetic samples (Figure 4b).

4.5.4. Synthetic Consistency Regularization

We lastly provide an ablation study of SCR defined by a cosine distance form as Eq. (13).
We tested four variants of ℓu in MP-SSL: (a) FreeMatch (Wang et al., 2023) that updates
the entire model fθ including the classifier head hω, (b) L1 distance, i.e., |gψ(TW(x̂u)) −
gψ(TS(x̂u))|, (c) L2 distance, i.e., ∥gψ(TW(x̂u))−gψ(TS(x̂u))∥22, (d) Smooth L1 distance (Gir-
shick, 2015). We list the results in Table 6. First, we see that our SCR loss significantly
outperforms the FreeMatch loss. This means that the consistency regularization on the
feature spaces is quite effective for gSSL, as we expected in Sec. 3.2. Second, among the
variants of SCR, the cosine distance based loss function achieved the best results. We con-
jecture that losses that directly minimize differences between feature vectors, such as L1
and L2 distance, involve the L1 and L2 norm of the feature vector. Therefore, the norm
of the feature vectors during training is relatively smaller, which hurts the norm of the loss
gradients of classification tasks (Hariharan and Girshick, 2017).
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5. Related Work

Semi-supervised Learning. Semi-supervised Learning (SSL) is a paradigm that trains
a supervised model with labeled and unlabeled samples by simultaneously minimizing su-
pervised and unsupervised loss. Historically, various SSL algorithms have been proposed
for deep learning such as entropy minimization (Grandvalet and Bengio, 2005), pseudo-
label (Lee et al., 2013), and consistency regularization (Bachman et al., 2014; Sajjadi et al.,
2016; Laine and Aila, 2016). UDA (Xie et al., 2020) and FixMatch (Sohn et al., 2020), which
combine ideas of pseudo-label and consistency regularization, have achieved remarkable per-
formance. More recent methods such as FreeMatch (Wang et al., 2023) improve UDA and
FixMatch to adaptively control the confidence threshold of acceptance of the pseudo labels
for preventing error accumulation and overfitting. These SSL algorithms assume that many
unlabeled data are provided because unlabeled samples can be more easily obtained than
labeled samples with human annotations. However, we point out that even unlabelled data
is becoming more difficult in today’s increasingly privacy-conscious world. This paper opens
up a new SSL paradigm that makes unlabelled data unnecessary by leveraging pre-trained
generative foundation models.

Leveraging Generative Models for Training Discriminative Models. In the con-
text of data augmentation and transfer learning, several studies have applied the expressive
power of conditional generative models to boost the performance of discriminative models,
e.g., classifiers. Zhu et al. (2018), Yamaguchi et al. (2020), Yamaguchi et al. (2023), and He
et al. (2023) have exploited the generated images from conditional GANs and diffusion mod-
els for data augmentation and representation learning, and Sankaranarayanan et al. (2018)
have introduced conditional GANs for domain adaptation setting to learn feature spaces
of source and target domains jointly. Li et al. (2020) have implemented an unsupervised
domain adaptation technique with conditional GANs in a setting of no accessing source
datasets. More similar to our work, Yamaguchi et al. (2022) have proposed a transfer learn-
ing method called P-SSL using pre-trained generative foundation models in semi-supervised
learning. However, we note that P-SSL and our method differ three-fold: (a) problem set-
ting, (b) assumptions of data and label spaces, and (c) optimization methods. For (a),
the problem setting of our method is focused on SSL, whereas P-SSL is for transfer learn-
ing, where the neural architectures of source and target classifiers are different. For (b),
our method assumes the generative foundation model GF covers the training data space
X . In contrast, P-SSL assumes the label space of GF covers the training label space i.e.,
Y ⊂ YF; the latter is more strict and thus the performance might degrade when it does not
hold (Yamaguchi et al., 2022). For (c), we directly optimize the latent variables of GF to
find optimal unlabeled samples for SSL, whereas P-SSL just samples related synthetic sam-
ples via similarity in the label spaces through source pre-trained classifier. These differences
produce the performance improvements of our method in SSL, as shown in Sec. 4.

6. Conclusion

This paper presents a new semi-supervised learning (SSL) problem setting called generative
SSL, where real unlabeled datasets are unavailable, where a generative foundation model
is given as the source of unlabeled data. This setting is important because we are often
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restricted from obtaining real unlabeled data due to privacy concerns. To solve this problem,
we propose a training method called MP-SSL, which consists of latent meta-optimization
(LMO) and synthetic consistency regularization (SCR). We experimentally demonstrate
that our MP-SSL outperforms existing baselines and can potentially replace real unlabeled
datasets with generative foundation models. One of the limitations of this work is the
dependency on the existence of foundation generative models, but this limitation will be
relaxed because the foundation model trend is rapidly developing for various modalities in
the community. Important future steps are to speed up or avoid the computation of meta-
learning in LMO and to extend our method to diffusion models, which produce synthetic
samples with higher fidelity but require higher computational costs for sampling than GANs.
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