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Abstract

Neural Networks (NN) are increasingly used for image classification in medical, trans-
portation, and security devices. However, recent studies have revealed neural networks’
vulnerability against adversarial examples generated by adding small perturbations to im-
ages. These malicious samples are imperceptible by human eyes, but can give rise to
misclassification by NN models. Defensive distillation is a defence mechanism in which
the NN’s output probabilities are scaled to a user-defined range and used as labels to
train a new model less sensitive to input perturbations. Despite initial success, defensive
distillation was defeated by state-of-the-art attacks. A proposed countermeasure was to
add noise in the inference time to hamper the adversarial attack which also decreased the
model accuracy. In this paper, we address this limitation by proposing a two-phase training
methodology to defend against adversarial attacks. In the first phase, we train architec-
turally diversified models individually using the cross-entropy loss function. In the second
phase, we train the ensemble using a diversity-promoting loss function. We also propose
a robustness certification procedure for our method. Our experimental results show that
our training methodology and noise addition in the inference time improved our ensemble’s
resistance against adversarial attacks, while maintaining reasonable accuracy, compared to
the state-of-the-art methods.

Keywords: Deep Learning, Diversity, Ensemble Learning, Robustness, Adversarial At-
tacks, Trustworthy Machine Learning

1. Introduction

Recent advances in Neural Networks (NN) result in the widespread use of NN classifiers in
daily human life applications such as natural language processing (Hinton et al., 2012) and
image recognition (Zoph et al., 2018). However, NNs are vulnerable to adversarial attacks,
which are intentionally crafted perturbations on images. The small but hardly detectable
perturbations can impair the functionality of a model (Szegedy et al., 2014). For example,
NNs embedded in image recognition systems of autonomous vehicles may misinterpret a
stop sign as a yield sign or speed limit (Eykholt et al., 2018). Such malfunctions can cause
serious safety problems. Therefore, machine learning researchers are motivated to seek a
way to increase the robustness of DNN systems against adversarial attacks.
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Robustness is one of the most critical properties of NN models that ensures the model’s
ability to handle distortions and variations in inputs and produce accurate results. An NN
model is considered to be robust to adversarial examples when its output remains unaffected
by slight modifications to its input (Goodfellow et al., 2014). The practicality of possible
adversarial examples is shown by feeding adversarial images from a cell phone camera to
an ImageNet inception classifier (Kurakin et al., 2018). By measuring the classification
accuracy, it is shown that most adversarial examples are incorrectly classified in this real-
world application.

Defence methods against adversarial perturbations have been proposed in the literature.
The closest work to this proposal are (Liang and Samavi, 2023, 2021), where noises are
added to the layers of a NN to improve the robustness of the model against Carlini and
Wagner (C&W) attack (Carlini and Wagner, 2017). We refer to the work of (Liang and
Samavi, 2023) as the state-of-the-art (SOTA) method throughout this paper. Since C&W
attack is dependent on the logits of the neural network, the genuine logits are obscured
by adding noise to the inputs and making the outputs of all the layers of the NN noisy.
However, the noise addition method decreased the accuracy of the models. The SOTA
method used an ensemble of networks to increase the accuracy. The ensemble method refers
to the technique of combining multiple models to achieve better predictive performance
than using an individual model. The authors were able to improve accuracy by using an
ensemble where all networks shared the same architecture (similar ensemble). However,
using an ensemble of networks brings about the concept of ensemble diversity. The impact
of diversified ensembles on the robustness of NNs when the logits are noisy is an unknown
phenomenon. Although (Li et al., 2021) proposed a diversity-promoting loss function to
investigate the impact of diversity on the ensemble accuracy, the impact of diverse ensemble
on the robustness has not been investigated.

The objective of this research is to investigate the compound impact of noisy logits and
diversified ensembles on the robustness and accuracy of NNs. Our method is implemented
using a two-phase training process. Phase 1 involves individual training of the models of
the ensemble using the cross-entropy loss function. The architectures of the models are
diversified by adding layers to the network or increasing the filter size (Strauss et al., 2017).
Inspired by (Li et al., 2021), in Phase 2, we train the ensemble utilizing a loss function
that encourages ensemble diversity. Similar to the SOTA method, to hinder the adversarial
attack, we add noise to the inputs during inference time. We evaluate our approach by
running experiments to compare our results with the state-of-the-art methods. The results
of our experiments show that our approach improves the robustness of the ensemble against
adversarial examples in comparison with the state-of-the-art defence method of noisy logits
while maintaining accuracy. In this paper, we are making three contributions: (1) we
develop a methodology to protect models against adversarial examples using diversified
ensemble and noisy logits (Sections 3.1, 3.2, and 3.4), (2) propose an approach based on
training the ensemble with a diversity-promoting loss function to evaluate the effect of
increased ensemble diversity on the robustness of our models (Section 3.3), and (3) we
define robustness guarantee and a certification procedure for our approach (Section 3.5).
Our experimental evaluation confirms the effectiveness of our methodology (Section 4).
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2. Related Work

The vulnerability of Neural Networks (NNs) to adversarial examples is attributed to model
structures and learning techniques (Ren et al., 2020). Transferability is a key feature of ad-
versarial examples, allowing attacks generated for one model to fool others, even with diverse
architectures or training data (Papernot et al., 2016b). Various methods have been devel-
oped, including L-BFGS (Szegedy et al., 2014), Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2014), Jacobian-based Saliency Map Attack (JSMA) (Papernot et al., 2016a),
Basic Iterative Method (BIM) (Kurakin et al., 2018), and Carlini and Wagner (C&W) at-
tacks (Carlini and Wagner, 2017) to use the loss function that is dependent to the output of
the second last layer (i.e. the logits). These methods aim to find minimal perturbations to
deceive the model’s predictions using techniques such as gradient updates, saliency maps,
iterative noise application, and alternative loss functions based on logits.

Research into countermeasures against adversarial attacks has led to the development
of defense mechanisms to mitigate their effects (Goodfellow et al., 2014; Kurakin et al.,
2018). Adversarial training incorporates adversarial examples into the training data to in-
crease a model’s resistance (Szegedy et al., 2014; Goodfellow et al., 2014). (Athalye et al.,
2018) presented an algorithm to synthesize adversarial examples (3D objects) over a specific
distribution of transformations which are robust to noise, distortion, and affine transfor-
mation. Although adversarial training techniques have shown success in defending NNs
against known adversarial examples, they do not provide a formal guarantee of the model’s
robustness (Raghunathan et al., 2018; Bastani et al., 2016). Certified robustness provides
a formal guarantee of a model’s ability to withstand adversarial attacks (Carlini and Wag-
ner, 2017). As another defense method, Defensive Distillation smooths output probabilities
using temperature scaling to decrease the effectiveness of attack algorithms (Papernot and
McDaniel, 2016; Papernot et al., 2016b). However, it was later found that the C&W attack
can defeat defensive distillation in black-box settings by targeting the logits of the network.

Ensemble methods enhance neural network accuracy and generalizability by combin-
ing multiple models (Li et al., 2021). Diversity within the ensemble compensates for one
classifier’s failures with others’ successes, leading to increased robustness (Sharkey and
Sharkey, 1997; Liu et al., 2019). Weighted strategies can also emphasize classifiers with
better performance (Breiman, 1996). To overcome C&W attacks, Liang and Samavi (Liang
and Samavi, 2023, 2021) (SOTA) impaired the functionality of the C&W attack algorithm
by adding random noise to the logits and preserving model accuracy using an ensemble of
models and a majority vote technique. They used an ensemble of architecturally similar
models to maintain accuracy as a solution to the adverse effect of noise on the accuracy
of the models. However, since diversifying the architectures of the ensemble models can
enhance their resistance to adversarial examples (Strauss et al., 2017), we were inspired
to diversify the architectures of the networks used by the SOTA method to improve the
clean accuracy and robustness of their ensemble against adversarial attacks. Training an
ensemble is a computationally expensive task. However, the diversity in an ensemble where
the models’ architectures are only slightly different does not impose significant additional
expenses, but it results in the benefit of increasing both accuracy and robustness. Other
approaches, such as “Specialists+1” ensembles (Abbasi and Gagné, 2017), ATHENA (Meng
et al., 2020), Xensemble (Wei and Liu, 2020), gradient dispersion in ensemble models (Huang
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Figure 1: Model training and inference phases of DENL method

et al., 2021), and diversifying ensemble architectures (Strauss et al., 2017) have also been
proposed to enhance ensemble performance and diversity for improved robustness against
adversarial attacks.

3. Diverse Ensembles and Noisy Logits (DENL)

We are inspired by the general effect of ensemble diversity in increasing the accuracy of
the NNs. We investigate using diversified ensembles to improve the robustness of NNs to
adversarial examples, where the model is under C&W attack. To be more specific, we apply
the combination of two methods to improve defensive distillation: 1) adding diversity to
the ensemble in training time, and 2) adding random noise to the inputs during inference
time. As model training and inference phases are shown in Figure 1, adding diversity to the
ensemble is achieved through a two-phased training process. In Phase 1, we diversify the
architectures of the models in the ensemble, and in Phase 2, we utilize a diversity-promoting
loss function to improve the diversity among models of the ensemble. Then, a random noise
is added to the inputs in inference time.

3.1. Diversity in Ensembles

In this paper, we quantify ensemble diversity using the correlation between the outputs of
the models of the ensemble. This definition is inspired by the diversity measurement index
RLL proposed by (Li et al., 2021), which is the average correlation between the outputs of
the pairs of models.

Our methodology is based on increasing the diversity among models. The training of
our ensemble method is divided into two phases to add diversity to the ensemble. In the
first phase, we diversify the architectures of the models in the ensemble and individually
train the models of the ensemble while defensive distillation is applied. Therefore, by adding
a temperature parameter to the softmax function, the output probabilities are scaled. The
ensemble diversity initiates from the various architectures used for models in the ensemble.
In the second phase, we utilize a diversity-promoting loss function to improve the diversity
among models of the ensemble. During the ensemble training phase, the parameters of the



DENL: Diverse Ensemble and Noisy Logits

models are updated to minimize the loss function, which focuses on improving the ensemble
diversity. An overview of model training in Phase 1 and Phase 2 is shown in Figure 1 which
are described in Sections 3.2 and 3.3, respectively.

3.2. Injecting Diversity in Network Architectures

As shown in Figure 1, we add diversity to our ensemble by varying the architecture of the
networks and call it Phase 1. The architecture of the first model in the ensemble is regarded
as the base architecture. Architectures of the other models in the ensemble have slight
variations from the basic architecture. The variations in the architectures are achieved by
changing the number of layers or the size of convolutional filters. The underlying defence
method that we are aiming to improve is defensive distillation (Papernot et al., 2016b)
described in Section 2 to soften the output probabilities. In defensive distillation, the
softmax function of the model is replaced with a version in which the logits are divided by
a constant temperature T . Using T > 1, we smooth out the output probability distribution
and reduce the confidence of the model’s predictions. By increasing the parameter T , the
probability distribution becomes smoother over the classes.

In creating adversarial examples, the attackers often choose pixels with a high gradient,
because the gradient of the loss function with respect to the input image provides informa-
tion about how much each pixel contributes to the output of the model. By manipulating
the pixels with high gradients, an attacker has a better chance to cause misclassification.
When the temperature parameter is applied to the softmax function, the gradients that are
computed during backpropagation are affected since the softmax probabilities become more
evenly distributed in which the value of the gradients decreases. In Phase 1, we train each
individual model using cross-entropy loss function. We utilize the temperature-scaled soft-
max function to calculate the probabilities. In the next phase, we implement an ensemble
learning phase to improve ensemble diversity using the diversity-promoting loss function.

3.3. Diversity-Promoting Ensemble Training

In this step which is called Phase 2, we perform a procedure similar to Phase 1, but with
three important differences: (1) the initial values of the parameters for Phase 2 are the
values calculated at the end of Phase 1, (2) in Phase 2, all the models in the ensemble
share the same loss function. This is in contrast with Phase 1, where the cross-entropy loss
function of each model is calculated independently, and (3) the outcomes of all the models
in the ensemble are involved in calculating the shared loss function, as described below.

In Phase 2 (Figure 1), we construct a stacked model from our models in the ensemble
to apply the diversity-promoting loss function proposed in (Li et al., 2021). The inputs are
fed into each of the K models F 1, · · · , FK with parameters of Θ1, · · · , ΘK and the outputs
of each model are calculated. The loss function used in Phase 2 is defined as,

Ldiv = −(RTL − λ.RLL) , (1)

in which RTL is the average correlation between models’ outputs and ground-truth labels
and defined as,

RTL =
1

K

K∑
k=1

rT,Lk
s.t. rT,Lk

:=
1

M

M∑
j=1

corr(y:j , ŷ
k
:j) , (2)
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where K is the number of models in the ensemble and rT,Lk
is the average of the Pearson

correlation coefficient between ground-truth labels and the predictions made by the kth

model in the ensemble denoted by corr(·, ·) defined in Eq. 3. Moreover, y:j and ŷk
:j are

the vectors associated with the class label j over all data samples in the matrices Y and
Ŷ k, respectively. For two arbitrary vectors v and w, the Pearson correlation coefficient is
defined as,

corr(v,w) =

∑
i(vi − v̄) · (wi − w̄)√∑

i(vi − v̄)2 ·
∑

i(wi − w̄)2
, (3)

where vi ∈ v, wi ∈ w, and v̄ and w̄ are the mean of the vectors v and w.
Assume that Y = [y]N×M denotes a N ×M matrix of M one-hot encoded ground-truth

labels for N data samples, where yij is equal to one, if sample i belongs to class j and
is equal to zero otherwise. Moreover, assume Ŷ k = [ŷk]N×M is a N ×M matrix of class
probabilities produced by the kth model in the ensemble using N data samples in which ŷkij
is the prediction probability corresponding to the jth class of the ith sample. In Eq. 1, RLL

is the average correlation between the outputs of the pairs of models (i.e., inter-member
correlation). In other words, RLL measures the correlation between the predictions made
by different pairs of models selected from the ensemble and is defined as,

RLL =
2

K(K − 1)

K∑
k=1

K∑
k′=k+1

rLk,Lk′ s.t. rLk,Lk′ =
1

M

M∑
j=1

corr(ŷk
:j , ŷ

k′
:j ) , (4)

where rLk,Lk′ denotes the average of Pearson correlation coefficient between the predictions
made by models k and k′. Note that RLL and RTL are capturing the ensemble diversity and
the accuracy of the models, respectively. The subscripts LL and TL denote the computed
correlation among pairs of learners (models) and the computed correlation among learners
and true labels, respectively. The higher the value of the RLL metric is, the more correlated
the ensemble models are in terms of their predictions. An ensemble with a smaller value of
RLL can be regarded as being a more diverse ensemble.

In Eq. 1, the parameter λ controls the balance between the two components. Since the
output of all the models is involved in the calculation of RLL and RTL, the loss function in
each epoch is affected by the outputs of all the models. We call this newly developed model
a stacked model, since the models are connected via a shared loss function. After calculating
the shared loss function, in the backpropagation, the gradient of the loss function for each
submodel F k is calculated with respect to the parameters of kth model Θk. It means the
backpropagation process happens in each model individually. The gradients of the loss
function L, i.e., ∇(λ ·RLL −RTL) with respect to Θk are used to update the values of Θk

in each model. This is done by subtracting Θk − α2 · ∇(λ · RLL − RTL), where α2 is the
learning rate of Phase 2. The Phase 2 procedure is summarized in Algorithm 1. The inputs
of the algorithm are K models as F 1, · · · , FK with the updated parameters in Phase 1 as
Θ1, · · · , ΘK , N labelled samples (x1, y1), · · · , (xN , yN ), number of classes M , learning rate
α2, and the trade-off parameter λ. Algorithm 1 shows the ensemble training for each epoch.
Lines 5 and 8 show the process of calculating the loss functions based on two components
of inter-member correlation (RLL) and correlation between each model and ground truth
(RTL). Line 11 shows how the parameters of all the models are updated using the gradient
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Algorithm 1: Phase 2: Ensemble Training

Data: A set of N data samples as X; A matrix of M one-hot encoded classes per data
sample as [y]N×M ; Models F k with parameters Θk such that k ∈ {1, ...,K}
updated in Phase 1; Phase 2 learning rate α2; Phase 2 trade-off parameter λ;

Result: A set of trained models F k;
RTL, RLL ← 0
for each class j do

for each model k do

Ŷ k ← F k(X; Θk) // Ŷ k is a [N ×M ] matrix of output probabilities

RTL ← RTL + 1
MK corr

(
y:j , ŷ

k
:j

)
// ŷk

:j is the jth vector of Ŷ k

for k
′
:= k + 1 to K do

Ŷ k′ ← F k′(X; Θk′)

RLL ← RLL + 2
MK(K−1) corr

(
ŷk
:j , ŷ

k′
:j

)
end

for each θ ∈ Θk do
θ ← θ − α2

n ∇(λ.RLL −RTL) // Update the parameters by gradients

end

end

end

return {F k}

of the shared loss function L. The output of the algorithm are K models F 1, · · · , FK with
the updated parameters after each epoch.

3.4. Noisy Logits

Carlini and Wagner were able to break the defensive distillation technique by accessing the
logits of the network, as defensive distillation was only hiding the softmax probabilities. To
prevent C&W attack to succeed, similar to the SOTA method, we impair the performance
of C&W attack by obfuscating the precise logits. Furthermore, the output of all the layers
should be noisy, so the attacker cannot recover the logits by making queries of previous
layers.

In the inference time of our method, random noise is added to each input before being
fed to our ensemble. To achieve noisy outputs for all the layers, we add random Gaussian
noise ε ∼ N (0, σ2I) to the inputs of the network. Thus, for each input x ∈ X after noise
addition x′ = x+ ε and we have,

x′l = Fl ◦ Fl−1 ◦ ... ◦ F1(x
′) . (5)

Since the added noise is considered in the calculation of the outputs of all layers, the at-
tacker’s access to the genuine values of logits of the network is hindered. We add zero-mean
Gaussian noise to our inputs, which has proved to be effective against C&W l2 attack
(SOTA). We use ensemble method as a solution to improve the accuracy, which was de-
creased because of the noise. After calculating the output of each individual model, the
final output of the ensemble is calculated by majority voting among models.
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3.5. Ensemble Voting and Robustness Guarantee

We follow a similar approach as the SOTA method and (Cohen et al., 2019) to aggregate the
results of the ensemble and provide robustness guarantee for our approach. It is important
to understand how much perturbation the model is able to withstand without changing
its prediction, as it gives us confidence about the model’s robustness to make predictions
under adversarial attacks. We say a classifier F is robust to perturbations of a certain size
if its original prediction on an input does not change after perturbations. Formally, let
F : D → Y and x ∈ D be any input. F is robust at x up to perturbations of size R (under
some norm function || · ||), if for any δ ∈ Rm (m is the dimension of input x) such that
||δ|| ≤ R and x+ δ ∈ D, we have F (x+ δ) = F (x).

Given an ensemble F consisting of K models S = {F k : k = 1, 2, ...,K}, p(S) is defined
as the set of all partitions of the set S. For each partition h of the set p(S), let Lh define
the largest subset in h and P (Lh) be the probability that all models in Lh successfully
classify a data point. Then the probability of success by majority voting is

∑
h∈p(S) P (Lh).

It should be noted that when K is large, there are many alternative partitions, which
increases the likelihood that the majority vote would succeed. We use the majority vote
consensus method to aggregate the outputs of all the networks for the winner class.

To provide robustness guarantee, compared to the method in (Cohen et al., 2019), since
we are using an ensemble with voting instead of a single network, we report the winner class
along with the runner up. Let nA and nB correspond to the vote counts of the top two
classes yA and yB, respectively, predicted by the ensemble for some given input x, where
nA ≥ nB. Let F

∗ denote the ensemble classifier where its output is decided from the most
frequent output among K models as,

F ∗(x) = argmax
y∈Y

K∑
k=1

1Fk(x)=y . (6)

After adding noise ε∼N(0, σ2I), we define g(x) = F ∗(x + ε). If, we follow Cohen et al.
method and substitute their base classifier f , with our ensemble F ∗ and their smoother
classifier g, with our noisy ensemble, we can adapt the same proof for the following theorem.

Theorem 1 (l2-norm): If there exists yA ∈ Y and pA, pB ∈ [0, 1] such that

P (F ∗(x+ ε) = yA) ≥ pA ≥ pB ≥ max
y ̸=yA

P (F ∗(x+ ε) = y) , (7)

then g(x + δ) = yA for all ||δ||2 ≤ R, where R = σ
2 (Φ

−1(pA) − Φ−1(pB)), pA is the lower
bound of pA (the probability that the top class yA is returned), pB is the upper bound of
pB (the probability that the second top class yB is returned), and Φ−1 is the inverse of the
Gaussian CDF.

Note that the distribution of F ∗(x+ ε) can be approximated using Monte Carlo simu-
lations, so we can estimate pA at a specified level of α. Then, the certification procedure
follows the algorithm provided in the SOTA method (Liang and Samavi, 2023).

4. Experimental Evaluation

To investigate the impact of using a diversified ensemble and noisy logits on the robustness
against adversarial examples, we implement our method on two different ensembles. First,
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we implement our method on a similar-architecture ensemble (SAE). By comparing the
results of SAE with a diverse-architecture ensemble (DAE), we aim to observe the impact
of diversity on the robustness of the ensemble. Since our proposed method is implemented
in two phases, we evaluate our ensembles (SAE and DAE) after each phase.

Test Environment. We implemented1 and ran our experiments on Python 3.8 and Ten-
sorFlow v.2.8.0 using a machine with AMD EPYC 7402P (24 cores) CPU, a Tesla T4 GPU,
and 220GB RAM.

Datasets. We evaluate our approach on two real-world datasets, CIFAR10 and MNIST.
These two datasets are widely used in the literature as benchmarks. CIFAR10 consists of
60,000 colour images, with 32 × 32 pixels from 10 object class labels. MNIST is a dataset
of 70,000 gray-scale images of digits (0-9) with 28× 28 pixels.

Training Setup. The architectures used in SAE for MNIST and CIFAR10 have 32 and
64 kernels of size 3× 3 in convolutional layers, max pooling of size 2× 2, and 200 and 256
hidden neurons in fully-connected layers, respectively. This architecture is consistent with
the architecture applied in the SOTA method for a fair experimental comparison. For DAE,
we use 10 different models: the first model of the ensemble inherits the same architecture as
the architecture used in SAE. The other models have different permutations in the number
of convolutional kernels and hidden neurons in the architecture, specifically, additional
convolution layers and extra filters are added to the models. To perform cross-validation
evaluations for both datasets, we divide the training set into ten equal-sized subsets which
in each fold, we dedicate one subset (5,000 images) for validation.

4.1. Evaluation Procedure

In addition to the model accuracy to assess our method, we also use adversarial accuracy
as the proportion of the adversarial examples that the ensemble classifies correctly to the
number of total generated adversarial examples. We evaluate ensemble diversity and indi-
vidual model performance using the metrics RLL and RTL, respectively. In the following,
we provide the evaluation procedures in both training phases.

Phase 1. To implement defensive distillation, we use the temperature-scaled version of
the softmax function. The set of temperatures used to train the models is T={10, 20, 30,
40, 50, 60, 70, 80, 90, 100}, for both SAE and DAE and consistent with (Papernot et al.,
2016b)). Note that using different temperatures in the models of the ensemble helps to
improve the ensemble diversity.

In order to be consistent with the SOTA method, in Phase 1, we train our models using
SGD optimization algorithm with learning rate of 0.01, dropout rate of 0.5, and batch size
of 128 for 150 and 250 epochs over CIFAR10 and MNIST datasets, respectively. We fix
the number of models in the ensemble to ten and each model wass trained individually.
For CIFAR10, we train the models on the entire training set (45,000 images). Each model
was randomly initialized and trained for 150 epochs with a different temperature value.
For MNIST, in Phase 1, we equally divide the training data (55,000 images) among the
ten models of the ensemble. Each model was trained with random initialization of the
parameters for 250 epochs with a different temperature value. When the temperature of
the softmax function increases, the models need more training epochs to converge. The loss

1. Our source codes are available at: https://github.com/samavi/pubs/tree/main/DENL

https://github.com/samavi/pubs/tree/main/DENL
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function used in Phase 1 is cross-entropy, which solely stresses the accuracy of the ensemble
and does not take into account ensemble diversity.

Phase 2. In this phase, we generate a stacked ensemble model and train it over the same
training data as Phase 1. Note that in this phase, the MNIST training dataset, was not
partitioned. We train the ensembles as a whole and update the weights and biases of the
models simultaneously using the loss function described in Eq. 1. We use SGD optimization
algorithm with learning rate of 0.1 and batch size of 512 for 120 and 20 epochs over CIFAR10
and MNIST datasets, respectively.

We use λ = {0.1, 0.2, ..., 1}, which was proposed by (Li et al., 2021). Our fine-tuning
(reported in Appendix A) shows that λ = 0.4 produced the ensemble with the highest
robustness for both datasets. We searched for the λ that yields an ensemble with higher
robustness in terms of accuracy on adversarial examples. The number of epochs needed for
this phase was 120 and 20 for CIFAR10 and MNIST, respectively. We continue ensemble
training until RLL reached its minima and started increasing. A set of experiments were
implemented on validation data to tune the λ value and the number of epochs.

4.2. Generating Adversarial Examples

We generate adversarial examples after the implementation of Phase 1 and 2, to evaluate
the effect of each phase on the resistance of our ensemble against adversarial examples.
Adversarial examples are generated by two adversarial attack scenarios. The first is a
single attack scenario, where we aim to observe the transferability feature of adversarial
examples. Transferability can be interpreted as the likelihood that adversarial examples
generated targeting one model is likely to fool other models of the ensemble (Papernot
et al., 2016b). However, by increasing the diversity in an ensemble, we expect the risk of
transferability decreases.

The second attack is superimposition attack, which is a perturbation aggregation type of
attack. We aggregate the perturbations designed for examples targeting two models in the
ensemble. Due to the combinatorial effect of possible subsets of superimposition attacks,
in this experiment, we limit superimposition attacks to be consisting of two simultaneous
attacks targeting two of the models in the ensemble. In this attack, we generate adver-
sarial examples when each of the models in the ensemble is targeted. We then choose two
adversarial examples with the two smallest perturbations and simultaneously impose both
perturbations to create adversarial examples.

In these experiments, for consistent and fair comparison with the SOTA method, we use
the l2 version of the C&W algorithms. To generate each adversarial example, we select a
model from an ensemble (SAE and DAE), an image from our test datasets, and a target label
that is different from the ground-truth label of the selected image. Formally, for a sample
input x and a target label t, for each F k we generate an adversarial example A(F k, x, t)
using the C&W attack2. The confidence, max iteration, and initial constant parameters of
the attacks are 0, 500 and 0.01, respectively for MNIST data set and 0, 50, 0.01 for the
CIFAR10 dataset.

To craft the adversarial examples, we generate a set of images from the test set that were
correctly classified by the ensemble before the attack. For example, we use 128 images from

2. The source code is available at: https://github.com/carlini/

https://github.com/carlini/nn_robust_attacks
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Table 1: The comparison of accuracy results for similar-architecture and diverse-architecture
(including the proposed DENL method) ensembles using single and superimposition attacks
on the CIFAR10 dataset over 5 folds in Phase 1 training

Ensemble Avg. of Individuals Adversarial Acc. Adversarial Acc.
Clean Acc. (%) Accuracy (%) Single Attack (%) Superimposition Attack (%)

Individual Model - 77.61 ± 0.09 0.00 ± 0.00 -
SAE 80.75 ± 0.20 75.46 ± 0.05 94.48 ± 0.05 91.81 ± 0.17
SAE + Noisy Logits 79.49 ± 0.11 73.86 ± 0.14 96.06 ± 0.24 94.65 ± 0.21
DAE 82.98 ± 0.13 76.15 ± 0.18 95.11 ± 0.23 95.34 ± 0.19
DAE + Noisy Logits 81.31 ± 0.17 74.08 ± 0.09 96.32 ± 0.26 96.47 ± 0.34

Table 2: The comparison of accuracy results for similar-architecture and diverse-architecture
(including the proposed DENL method) ensembles using single and superimposition attacks
on the MNIST dataset over 5 folds in Phase 1 training

Ensemble Avg. of Individuals Adversarial Acc. Adversarial Acc.
Clean Acc. (%) Accuracy (%) Single Attack (%) Superimposition Attack (%)

Individual Model - 99.45 ± 0.02 0.00 ± 0.00 -
SAE 99.27 ± 0.06 97.52 ± 0.04 89.40 ± 0.34 31.82 ± 0.14
SAE + Noisy Logits 98.31 ± 0.29 91.36 ± 0.04 80.59 ± 0.12 82.07 ± 0.02
DAE 98.76 ± 0.06 97.54 ± 0.05 90.98 ± 0.07 33.69 ± 1.18
DAE + Noisy Logits 97.89 ± 0.01 90.71 ± 0.10 81.69 ± 0.05 84.02 ± 0.96

the correctly classified test set of our data xi such that i = 1, 2, ..., 128 for the single attack.
From each clean image, we generate adversarial examples to attack each of the models in
the ensemble and target any class tj except the correct label tc where j ̸= c, i.e., 9 classes
out of 10 possible classes to cause misclassification. Thus, for each adversarial example
A(F k, xi, tj) on model F k, k ∈ {1, ..., 10} for target class, the total number of adversarial
examples created for the single attack is 128×10×9 = 11520. For superimposition attacks,
we take 256 clean images from the correctly classified test data and attack all the models
of the ensemble, but we select the top two smallest perturbations among them. We then
simultaneously add those perturbations to the clean image to create the adversarial example.
Thus, the total number of superimposition attacks is 256× 9 = 2304.

As we described in Section 3.4, we add noise to the inputs to impair the C&W attack
algorithm. In order to be able to evaluate the effect of adding noise to the inputs, we
generate adversarial examples with and without noise. For generating random noise, we
use a Gaussian noise function, ε ∼ N (0, σ2I) with σ = 0.5 and 0.03 for MNIST and
CIFAR10, respectively (these values provide sufficient noise while minimizing accuracy loss
based on the SOTA method). Thus, we use the same values of σ parameters to generate
our random noise on MNIST and CIFAR10. In the following, we evaluate SAE and DAE
ensembles after each one of Phase 1 and Phase 2 trainings.

4.3. Phase 1 Results

The training results are presented in Tables 1 and 2 for CIFAR10 and MNIST, respectively.
The adversarial examples classification and the perturbation details of the experiments
are reported in Appendix B, and the required time to run the experiments is reported in
Appendix C of the supplementary material.



Yazdani Karimi Samavi

Clean Accuracy Improvement. As shown in the first column of Table 1, for CIFAR10,
the ensemble clean accuracy is around 80.75% for SAE, where the accuracy increases to
82.98% for DAE. When we add noise to the inputs, the ensemble clean accuracy shows a
decrease in comparison when we have no noise on inputs.

As shown in Table 2, for MNIST, the ensemble clean accuracy in SAE and DAE are
around 99.27% and 98.76%, respectively. In contrast to CIFAR10, the ensemble clean
accuracy is slightly decreased after adding architectural diversity to the ensemble. Similar
to CIFAR10, when we add noise to the inputs, the ensemble clean accuracy of SAE and
DAE decreases.

As shown in the first and second columns of Tables 1 and 2, we can observe that in
CIFAR10 and MNIST, the ensemble clean accuracy has increased in comparison with the
average of the individuals accuracies for both datasets.

Transferability. As shown in the third column of Table 1, for CIFAR10 the adversarial
accuracy (single attack) for an individual model is 0.00%. The adversarial accuracy increases
to around 94.48% and 95.11% for SAE and DAE, respectively. When noisy logit is used,
the same values for SAE and DAE increase to 96.06% and 96.32%, respectively.

As shown in the third column of Table 2, for MNIST, the adversarial accuracy are
around 89.40% and 90.98% for SAE and DAE, respectively. In the MNIST dataset, noisy
logits decrease the adversarial accuracy, which means noisy logit could not decrease the
transferability of attacks among models trained on MNIST. This is consistent with the
results reported in (Liang and Samavi, 2023). However, using DAE improved the resistance
of the ensemble against transferability of the adversarial examples.

Superimposition Attack. As shown in the fourth column of Table 1, for CIFAR10 the
adversarial accuracy (superimposition attack) is 91.81% and 95.34% for SAE and DAE,
respectively. When we add noise, both SAE and DAE show an improvement in adversarial
accuracy. This trend is similar in MNIST, as shown in the fourth column of Table 2.

4.4. Phase 2 Results

The results are summarized in Tables 3 and 4 for CIFAR10 and MNIST, respectively. In this
phase, we observe the same trends as reported for Phase 1. For example, in the first column
of Table 3 for CIFAR10, the accuracy of the ensemble for SAE and DAE are around 80.11%
and 82.81%, respectively. Furthermore, if we compare the ensemble accuracy of SAE and
DAE with the average of individual accuracy, we observe an increase in accuracy while an
ensemble (majority vote) is used. The results of the adversarial examples classification and
the perturbation details of the experiments are reported in Appendix B, and the required
time to run the experiments is also reported in Appendix C of the supplementary material.
We have also the same trend and similar observation for MNIST as shown in Table 4.

4.5. Discussion

By comparing the first and second columns of Tables 1 and 3 for CIFAR10, and Tables 2 and
4 for MNIST, we observe that the ensemble clean accuracy and the average of individual
accuracy are slightly different between Phase 1 and Phase 2 training. For example, in
CIFAR10, ensemble accuracy of SAE and DAE are 80.75% and 82.98% after Phase 1. The
same values recorded after Phase 2, are 80.11% and 82.81%. Comparing the third columns
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Table 3: The comparison of accuracy results for similar-architecture and diverse-architecture
ensemble (including DENL) using single and superimposition attacks on adversarial CI-
FAR10 images over 5 folds in Phase 2 ensemble training

Ensemble Average of Individuals Adversarial Accuracy Adversarial Accuracy
Clean Accuracy (%) Accuracy (%) Single Attack (%) Superimposition Attack (%)

SAE 80.11 ± 0.31 75.51 ± 0.24 96.01 ± 0.27 92.97 ± 0.21
SAE + Noisy Logits 79.46 ± 0.23 73.66 ± 0.41 97.21 ± 0.13 96.11 ± 0.05
DAE 82.81 ± 0.33 76.94 ± 0.30 96.82 ± 0.28 96.90 ± 0.74
DAE + Noisy Logits 81.01 ± 0.42 74.24 ± 0.37 98.29 ± 0.61 97.46 ± 0.41

Table 4: The comparison of accuracy results for similar and diverse architecture ensembles
(including DENL) using single and superimposition attacks on adversarial MNIST images
over 5 folds in Phase 2 ensemble training

Ensemble Average of Individuals Adversarial Accuracy Adversarial Accuracy
Clean Accuracy (%) Accuracy (%) Single Attack (%) Superimposition Attack (%)

SAE 98.90 ± 0.13 97.60 ± 0.35 90.39 ± 0.81 32.55 ± 0.45
SAE + Noisy Logits 97.85 ± 0.14 91.57 ± 0.23 82.61 ± 0.95 83.94 ± 0.17
DAE 98.58 ± 0.39 98.40 ± 0.41 91.50 ± 0.87 34.10 ± 0.91
DAE + Noisy Logits 97.35 ± 0.62 91.08 ± 0.54 83.02 ± 0.94 86.65 ± 1.61

of the same tables shows an increase of the adversarial accuracy in single attack for all cases
after Phase 2 training. For example, in CIFAR10, the adversarial accuracy (single attack)
of SAE and DAE are 94.48% and 95.11% after Phase 1 training, while the adversarial
accuracy increases to 96.01% and 96.82% after Phase 2. In a similar trend, the adversarial
accuracy in superimposition attack on CIFAR10, for SAE and DAE, increases to 92.97%
and 96.90%, respectively. This trend is similar when we have noisy logits too. For example,
after Phase 1, the ensemble accuracy of DAE + noisy logits is 96.32%, which increased to
98.29% for Phase 2 training of CIFAR10.

Figure 2 demonstrates how RTL and RLL of SAE (Figures 2(a) and 2(e)) and DAE
(Figures 2(c) and 2(g)) ensembles are modified during Phase 2 training for both CIFAR10
and MNIST datasets. RTL and RLL are dependent to each other so that there are two
borders to demonstrate the limits of RLL and RTL and how each metric changes with
respect to each other. Any ensemble falls within the region bounded by blue (upper bound)
and red (lower bound) Li et al. (2021). What is shown in these figures, is consistent with our
interpretation of how the diversity-promoting loss function worked during Phase 2 training.
The red points show the trend of RTL and RLL in each epoch from the starting point, and
the blue point is the final point after the last training epoch. Thus, the ensemble moves
in the direction of decreasing RLL and increasing RTL. This means both SAE and DAE
increase the diversity in the ensemble and single accuracy of the models. For example in
CIFAR10, comparing the robustness of the ensemble shown in Tables 1 and 3 shows that
the robustness against adversarial examples generated by single and superimposition attack
improved at the end of this trajectory.

By comparing the results of the tables in Section 4.3 and 4.4, we can infer that in
CIFAR10, DAEs outperform SAEs in terms of adversarial accuracy against examples gen-
erated by single and superimposition attacks. When we add noise to the inputs, a similar
trend is observed. Our results demonstrate that adding noise to the inputs in inference
time and adding diversity through our two-phase training process, increased the robustness
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MNIST dataset

Figure 2: Changes in RTL and RLL during training epochs for both datasets. The ensemble
starts from the red point and reaches to the blue point after Phase 2 training

of the ensemble against adversarial examples, while the accuracy is maintained. The best
performance is observed when DAE ensemble and noisy logits are both used.

In MNIST, the adversarial accuracy against superimposition attacks shows a similar
increasing trend. It means our compound method (DAE + noisy logits) improved the
robustness of the ensemble against adversarial examples. In single attack scenario, there
is an increase in the robustness when ensemble diversity is improved. However, in a single
attack scenario, adding noise decreased the adversarial accuracy of the ensemble. Thus,
in contrast to CIFAR10, noise addition causes more adversarial examples to successfully
transfer among models of the ensemble. The diversity among members made the ensembles
more robust against the transferability of the adversarial examples generated by single and
superimposition attacks.

Limitations. Despite of the benefits that an ensemble offers compared to an individual
network, the additional computational cost of training and inferring an ensemble is a limiting
factor. Our experimental evaluation supports achieving a more robust DNN when the
ensemble is diversified, however, a theoretical investigation of this problem will provide a
deeper understanding of the effect.

5. Conclusion

In this paper, we proposed a method to improve the robustness of NNs. To defend against
adversarial attacks, we trained the architecturally diversified models in two phases: indi-
vidually using the cross-entropy loss function and the ensemble using a diversity-promoting
loss function. In inference time, we added noise to the inputs to hamper attacks that
generate adversarial examples. Our experimental evaluations showed that architectural en-
semble diversity improves the resistance of the ensembles against adversarial examples. We
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also demonstrated that increasing ensemble diversity through an ensemble training process
improved the robustness of the ensembles.

As a research direction for future work, investigating the impact of other diversity fac-
tors, e.g., RTE to represent the correlation between ground truth labels and the ensemble’s
output is important. Also, using the same Gaussian noise as a data augmentation method
in the training time is an interesting future research to pursue.
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