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Abstract

The salp swarm algorithm(SSA) has been successfully used to solve the feature selection
problem due to its fast convergence and simple structure. However, existing SSA-based
methods still suffer from the issue of low classification accuracy due to the problem of getting
trapped in local optima. Therefore, this paper proposes a novel feature selection method
for classification based on SSA, which can continuously generate new sub-populations to
improve the search environment of the main population. Specifically, a flip-prohibition(F-
P) operator is first proposed to help the main population, which may currently fall into
a local optimum, find a new and more promising region. A multi-surrogate technique is
suggested to evaluate the region to determine the position of sub-populations, which can
reduce the high computational cost. In addition, a population initialization method is
developed according to the importance of features and the dimensionality of the dataset.
Finally, a communication mechanism is presented to enable different sub-populations to
learn from each other. By comparing the proposed method with other 6 feature selection
methods on 16 datasets, we demonstrate that the proposed method has better classification
ability and can select a smaller feature subset in most cases.

Keywords: feature selection, salp swarm algorithm, multi-population, classification, multi-
surrogate.

1. Introduction

Feature selection can reduce redundant and unrelated features in the dataset, improve
classification performance while successfully cutting down on computation, and effectively
avert ”dimensional disasters” Li et al. (2023). Because of its effectiveness, it has been widely
used in different fields, such as network anomaly detection El Sayed et al. (2022), sentiment
analysis Hosseinalipour and Ghanbarzadeh (2023), cancer classification Shaban (2023), etc.

Feature selection methods can be generally classified into 2 categories: filter-based and
wrapper-based methods Dong et al. (2020). The primary distinction between them is that
wrapper-based methods incorporate a learning/classification algorithm into the feature sub-
set evaluation process Khaire and Dhanalakshmi (2022). The wrapper-based methods may

© 2023 Z. Yu, H. Dong�, T. Guo & B. Zhao.



Yu Dong� Guo Zhao

have better performance, but it has higher computational cost and poorer generalization.
Filter-based models evaluate features without using any learning algorithms. Thus, it is
usually fast. When selecting a feature subset, filters cannot reflect the relevance of each
dimension, thus degrading the final classification performance Sun et al. (2023). Many re-
searchers are now also proposing hybrid methods that advantages of both Qu et al. (2023).
Despite the advancements in feature selection methods, the problem of dimensionality still
poses a challenge due to the 2n possible solutions for a problem of dimension n.

In recent years, researchers have found that metaheuristic algorithms have shown posi-
tive effects in solving feature selection problems. The salp swarm algorithm (SSA) Mirjalili
et al. (2017) is one of them. Due to its simple structure, lower computational cost, and
easy integration with other algorithms, many SSA-based methods have been proposed. For
example, Qaraad et al. (2022) developed an SSA-based algorithm for feature selection that
uses local escape operators and quadratic interpolation to balance exploitation and explo-
ration. Faris et al. (2020) proposed an SSA with a dynamic number of leaders and followers.
However, the existing SSA-based feature selection methods still have deficiencies. First, the
single-chain model of the basic SSA lacks diversity and tends to fall into local optima when
encountering problems with a large number of local optima. Second, the existing SSA-based
methods do not consider exploiting the correlation between features to improve the search
environment of the population during the evolution of salps. Therefore, SSA still has great
potential for improvement in solving feature selection problems.

In the process of finding the best solution, we often have to evaluate the fitness of a
large number of solutions, which is expensive. To reduce the number of expensive true
fitness assessments in the feature selection process, researchers use cheap surrogate models
that approximately reflect the performance of solutions Chen et al. (2021). The surrogate
models generally used are radial basis function neural network (RBFNN) Liu et al. (2022),
Krigingh Dong et al. (2021) and random forest Sun et al. (2019), etc. In this paper, surrogate
techniques will be developed to predict the position of new populations.

Multi-population refers to dividing of a complete population into several independent
sub-populations. Each sub-population may use a different search strategy or initialization
method to ensure diversity. For example, Kılıç et al. (2021) proposed a new multi-population
particle swarm optimization (MPPSO) algorithm for feature selection. It includes two popu-
lations that use random initialization and initialization based on relieff sorting, respectively,
to increase the diversity of the solution space. However, when the optimal solution in the
population falls into the local optima, other individuals will also fall into it under its leader-
ship. To address this issue, this paper proposes a multi-surrogate assisted salp swarm feature
selection algorithm with a multi-population adaptive generation strategy (MSA-MPSSA).
Unlike conventional multi-population methods, all salps in MSA-MPSSA are initially in a
main population. When the main population falls into local optima, some individuals use
the F-P operator and multi-surrogate to find new promising areas and form new indepen-
dent sub-populations. This not only ensures diversity but also improves the search region
of the population to avoid local optima. The following are the main contributions of this
paper:

(1) A novel SSA-based multi-population adaptive generation strategy is proposed. When
the main population falls into local optima, some salps are split to generate a new indepen-
dent sub-population. This not only ensures diversity but also opens up a new independent
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population to avoid local optima. To determine the position of the sub-population, an F-P
operator is presented, which uses feature correlation and existing experience to generate a
promising candidate pool for selection. To our knowledge, no studies have generated new
independent populations during the search process.

(2) A multi-surrogate model is developed to estimate the fitness of the solutions in the
candidate pool, so that each new sub-population can determine the initial position with a
small time cost.

(3) A population initialization method based on the importance of features and the
dimensionality of dataset is designed, which can improve the quality of the initial population.

(4) A communication mechanism is designed to help the populations learn from each
other and improve local optima problems. It works for different population sizes.

The rest of this paper is organized as follows. In Section 2, the feature selection problem,
SSA, and SSA-based feature selection methods are introduced. The proposed MSA-MPSSA
is detailed in Section 3. In section 4, the proposed method is compared with 6 feature
selection methods on 16 datasets. Finally, the full paper is concluded in Section 5.

2. Related Works

2.1. Feature Selection Problem

Feature selection is an important data preprocessing technique in machine learning and
pattern recognition, which can significantly reduce the cost of model training and improve
the performance of learning algorithms. The feature selection problem involves selecting
d features from a dataset with D-dimensional features and M instances(d < D), using a
particular strategy. The objective is to optimize the performance metric f(X), it can be
described by Eq. (1). xm takes the values 1 (the mth feature is selected) or 0 (not selected).

min f(x)

s.t. X = (x1, x2, ..., xD)

xm ∈ {0, 1},m ∈ {1, 2, ..., D}
(1)

2.2. Salp Swarm Algorithm

As one of the swarm intelligence, SSA was proposed by Mirjalili et al. (2017) in 2017 to solve
single-objective optimization problems. The SSA algorithm mimics the swarming behavior
of salps forming a salp chain in the deep sea. The first salp in a salp chain is called the leader
and the rest of the chain are called followers. Each salp is represented by a position vector
of solutions in SSA. In the D-dimensional search space, the position vector is encoded as an
D-dimensional vector. X∗ is used to record the position of the food i.e. the best solution.
The position of the leader is updated by the following equation:

X1
j =

{
X∗

j + c1 ((ubj − lbj) c2 + lbj) c3 ≥ 0.5

X∗
j − c1 ((ubj − lbj) c2 + lbj) c3 < 0.5

(2)

The jth dimension position of the first salp (i.e. the leader) in the chain is denoted as
X1

j . ub and lb are the upper and lower bounds of the search space. c2 and c3 are random
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numbers in [0,1]. c1 is a convergence factor used to balance exploration and exploitation,
as shown in Eq. (3), where t and Tmax denote the current number of iterations and the
maximum number of iterations, respectively. The position of the ith salp (i.e., follower) in
the jth dimension is represented by Xi

j as in Eq. (4). It can be observed that its position
is updated based on the guidance of the previous salp in the chain.

c1 = 2e−( 4t
Tmax

)
2

(3)

Xi
j =

1

2

(
Xi

j +Xi−1
j

)
, i ≥ 2 (4)

In this paper, each salp represents a solution (feature subset), and each dimension
ranges within [0, 1]. Set a threshold value of 0.5, when the position value of a dimension is
greater than 0.5, the feature corresponding to that dimension is considered to be selected.
Otherwise, it is not selected.

2.3. SSA-based Feature Selection Methods

Recently, various SSA-based methods have been widely applied to feature selection prob-
lems. Tubishat et al. Tubishat et al. (2021) proposed dynamic SSA with two main im-
provements. The first improvement is a new update formula for follower salp that increases
the diversity of solutions. The second improvement is the introduction of a local search
algorithm (LSA) to explore the optimal solution and improve the exploitation ability of the
algorithm. However, the LSA significantly increases computational cost due to the high
number of true fitness evaluations required.

Saafan and El-Gendy (2021) combined SSA with an improved WOA to enhance the
exploitation and exploration abilities of the algorithm. Zivkovic et al. (2022) proposed a
replacement mechanism to enhance the exploration ability of the algorithm by replacing the
worst solution in early iterations. To explore the effect of parameter c1 on the performance
of SSA, Aljarah et al. (2018) divided the salp chain into several sub-chains, and the c1
update methods of different chains are different. Liu et al. (2021) proposed an SSA-based
framework with chaos assistance. To improve the exploitation ability of SSA, logic mapping
is applied to generate new solutions for the population. However, these methods still suffer
from the local optima, especially on high-dimensional datasets.

3. Proposed Method

3.1. MIC-based Population Initialization

The maximum information coefficient (MIC) is a statistical indicator that can be used to
quantify the strength of the relationship between two variables Wang et al. (2023). We can
use MIC to determine which features are more relevant to the class label, then we think
they are more helpful for classification and need to be selected.

MIC(D) = max
p·q<B(n)

MI∗(D, p, q)

log(min {p, q})
(5)

Given variables X and Y , D is the set of ordered pairs of variables. MI∗(·) represents
the maximum mutual information in the partition p ∗ q, where B(n) = n0.6 is the upper
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limit of the grid size and n is the number of samples. The MIC is a normalized statistic that
ranges from 0 to 1, with higher values indicating stronger correlations between variables
and lower values indicating independence. This overcomes the drawback of MI, which is
not normalized.

We calculate the MIC values between features and class labels, and divide them into
4 groups from high to low. The group in front corresponds to a higher MIC value, and
has a greater probability of being generated in the upper half of the search space (that is,
selected) during initialization. However, we also consider that some features may have little
correlation with the class label individually but may be important when combined with
other features. So we use a random initialization method for 50% of the salps.

In addition, for high-dimensional datasets (D > 1000), there may be more irrelevant or
weakly correlated features. Therefore, we will give a threshold a, and remove features with
MIC values lower than a in the original feature set in advance. Considering that not all
datasets have the same range of MIC, we set threshold ai = δ ·MIC MAXi for dataset i,
where MIC MAXi represents the largest MIC value in datasets i. By a sensitivity analysis,
δ was taken as 0.3.

3.2. Multi-Population Adaptive Generation Strategy

In the conventional multi-population method, all populations will be initialized in the initial
stage. However, when the optimal solution of the population is a local optimum, it is
difficult to produce a better solution to replace it, which will lead other individuals to the
wrong direction. To solve this problem, we propose a multi-population adaptive generation
strategy with only one main population in the initial stage. When the optimal solution
of the main population does not change in λ iterations, we consider that it falls into local
optima, where λ is set to 5 as suggested Qu et al. (2023). At this point, M (sub-population
size) salps farthest from the leader in the salp chain of the main population will form a
new independent sub-population, with the first salp as the leader and others as followers.
The remaining main population will continue to search the current region, retaining the
possibility of the main population. This method not only ensures diversity but also improves
the search region of the population to avoid local optima (the effect of this method can refer
to Section 4.4). But there are two challenges with the initialization of a new sub-population:
1. How to find a new region? 2. How to find a promising region? Therefore, we design
a flip-prohibition (F-P) operator to solve the above challenges as much as possible. The
specific steps are as follows:

Step 1. Find a new region: Given a threshold b (e.g. 0.2), if the event (rand < b) holds
for feature i, then feature i will be flipped. The aim is to generate a new solution for each
salp using existing experience.

Step 2. Find a promising region: The flip of Step 1 is random, but in order to find
promising regions, this paper presents a MIC-based method to prohibit flipping. When a
feature j satisfies Step 1 and will be reversed, a new event (rand < P ban

j ) is generated.

Flipping will be prohibited if it holds. P ban
j represents the flip prohibition probability of

feature j, which is defined as follows.

P ban =

{√
MICj ·A+B Xi

j ≥ 0.5

(A+B)−
√

MICj ·A Xi
j < 0.5

(6)
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MICj is the MIC value between the jth feature and the class label. This method takes
into account whether feature i is already selected or not. If feature i is already selected, the
higher the MICi, the higher the chance of prohibiting flipping (i.e. keeping it). Conversely,
if feature i is not selected, the lower the MICi, the higher the chance of prohibiting flipping
(i.e. remaining unselected). The arithmetic square root is used to calculate P ban as it
is simple to implement and has a fast-to-slow growth curve for numbers between [0,1].
According to Chen et al. (2021), features with middle correlation are more promising for
exploration. Therefore, in this method, the medium correlation features are quite different
from the low correlation features, and not much different from the high correlation features.
The range is adjusted to (B,B+A) using A and B (e.g., 0.45 and 0.05) when calculating
P ban. All parameters will be analyzed and given in Section 4.

Figure 1: Illustration of F-P operation.

After performing the above two steps for each salp, we obtained a candidate pool. Figure.
1 illustrates the process of obtaining a new position by an F-P operation. X represents the
position of a salp with 8 features. Only the features with serial numbers 2, 5, and 6 reached
the events of step 1 and so will be flipped. Then we calculate the flip prohibition probability
P ban of these 3 features, if it is greater than the random number, the flip will be prohibited.
Xnew represents the new position obtained by X through the F-P operation. With the F-P
operation, we utilize feature correlation in the flipping process and thus are able to find a
new and promising set of solutions.

Finally, we use a surrogate model instead of true fitness function to predict the best
M solutions as the positions of salps that constitute the new sub-population, which saves
high computational costs. The surrogate model is constructed based on the position and
true fitness of all salps from the previous iteration. We utilize two surrogates, RBFNN and
k-nearest neighbor (KNN), which are used alternately each time a new sub-population is
generated. Using a different surrogate each time takes into account the uncertainty of the
surrogate. The ability of these two surrogates to predict the true fitness trends has been
demonstrated in Liu et al. (2022) and Chen et al. (2021).

Figure. 2 illustrates the process of generating a new sub-population. Firstly, a candidate
pool is obtained by performing an F-P operation on all salps. Then, the positions and fitness
values of all salps are used to train the surrogate model. The trained surrogate model is
used to predict the best M salps in the candidate pool. Finally, these M salps replace the
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last M salps of the chain in the main population, resulting in a new sub-population for
searching.

Figure 2: The process of generating a new sub-population.

Additionally, the salp follower update method is simpler and only considers the position
of itself and the previous salp, which is easy to fall into local optima. So we used a fusion
approach, combining a new physics-based metaheuristic algorithm proposed by Qais et al.
(2020) with followers in SSA. The original Eq.(3) or Eq.(7) is chosen randomly. Xl represents
the position of the lth iteration, and X∗

l represents the global optimum. r is a random
number in [0, 1], T and C1 are random coefficients.

Xl+1 =

{
X∗

l + e−T [cos (2πT ) + sin (2πT )] |(Xl − C1 ·X∗
l )| r ≥ 0.5

X∗
l + (Xl − C1 ·Xl

∗) e−T r < 0.5
(7)

3.3. Communication Mechanism

During the iterative process, the main population is continuously improved by splitting it
into new sub-populations. However, sub-populations may also suffer from the problem of
falling into local optima. Cooperative co-evolutionary algorithms rely on the mutual coop-
eration of different populations to solve large-scale optimization problems Cai et al. (2021).
Inspired by it, we designed a weight-based multi-population communication mechanism,
which is applicable to different population sizes. Calling starts when the sub-population
size reaches 3 or more. In this communication mechanism, each sub-population randomly
selects two other sub-populations to communicate with, that is, replaces its worst solution
with the weighted average of the best solutions from these two sub-populations. The weight
is determined by the fitness, as indicated by the following formula.

Xworst
m = (1−

f∗
r1

f∗
r1 + f∗

r2

) ·X∗
r1 + (1−

f∗
r2

f∗
r2 + f∗

r1

) ·X∗
r2 (8)
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Algorithm 1 MSA-MPSSA

Input: population size: N , maximum iteration: Tmax, the number of individuals contained
in each sub-population: M , the current number of independent populations: m

Output: best salp position X∗

1: Initialize the positions of all salps (Section 3.1)
2: m = 1 // main population
3: while t < Tmax do
4: Calculate real fitness of each salp using Eq. (9)
5: Update the best salp X∗ of each population
6: Update c1 by Eq. (3)
7: if m < N

M && X∗
master did not change in 5 iterations then

8: Splitting the main population to generate a new independent sub-population (Sec-
tion 3.2)

9: m = m+ 1 // At most N
M -1 sub-populations

10: end if
11: for each salp in all populations do
12: if Xi is leader then
13: Update Xi using Eq. (2)
14: else
15: Update Xi using Eq. (4) or Eq. (7)
16: end if
17: end for
18: if m >= 4 then
19: for each sub-population do
20: if best salp did not change in 5 iterations then
21: Call communication mechanism (Section 3.3)
22: end if
23: end for
24: end if
25: t = t+ 1
26: end while

return the best X∗ among all populations

X∗
r1 is the best salp of the first random sub-population and f∗

r1 is its fitness value. It
can be seen that the smaller the fitness value, the greater the weight (according to the Eq.
(9), the smaller the fitness, the better the solution). Xworst

m represents the worst solution
of the mth sub-population, which will be replaced. When X∗

r1 and X∗
r2 are close to the

global optimal solution, replacing the worst solution of the population can improve the
poor population. Additionally, when the random solution is far from the global optimum,
the obtained new individuals are expected to go to a new search region, which can test
whether the optimal solution of the population is a local optimum.

The pseudocode of the proposed MSA-MPSSA is given in Algorithm 1.
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4. Experimental Research

4.1. Experiment Settings

To evaluate the quality of a solution, two essential metrics are considered: minimizing the
classification error rate and maximizing the dimension reduction rate. Thus, the fitness is
calculated by Eq.(8), where α is the weight factor, S is the number of selected features, and
D is the total number of features. To avoid data imbalance, we used balanced accuracy(BA)
Bhowan et al. (2011), where ICi represents the proportion of correct recognition in class i.
The weight of each class is 1

c and α is set to 0.9 Qu et al. (2023); Chen et al. (2021).

Fitness = α · (1−BA) + (1− α) · S
D

(9)

BA =
1

c
·

c∑
i=1

ICi (10)

To validate the performance of the proposed method, we adopted 16 datasets from
UCI machine learning repository Dua and Graff (2017) and Qu et al. (2023). Table 1
shows the details of the datasets. For the classifier, we used the most classical KNN,
and employed 5-fold cross-validation. The classification balanced accuracy (CBA), the
dimension reduction rate (DRR), and the running time will be recorded. To avoid chance,
each dataset was independently run 30 times. Moreover, we conduct a statistical test to
compare the performance of our method with competing methods. In this paper, we used
the Wilcoxon rank sum test with a significance level of 0.05. In the subsequent results, we
used the symbols ”≈”, ”−” and ”+” to signify similar, weaker, and stronger performance
than competing methods, respectively.

Table 1: Experimental datasets

No. Dataset Number of features Number of instances Number of classes

1 HeartEW 13 270 2
2 SpectEW 22 267 2
3 Horse 27 368 2
4 flags 28 194 8
5 BreastEW 30 568 2
6 ionosphere 34 351 2
7 Sonar 60 208 2
8 PenglungEW 325 73 7
9 Yale 1024 165 15
10 warpPIE10P 2420 210 10
11 lymphoma2 4026 96 9
12 Breast3 4869 95 3
13 Nci 5244 61 8
14 Leukemia1 5327 72 3
15 9 Tumors 5726 60 9
16 Lung Cancer 12600 203 5
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4.2. Parameter Settings

In the experiments, besides the basic SSA, we compared four most advanced SSA-based
feature selection methods, namely Dynamic SSA(DSSA) Tubishat et al. (2021), hybrid
improved Whale Optimization SSA(IWOSSA) Saafan and El-Gendy (2021), SSA with re-
placement mechanism and sine cosine algorithm(SSARM-SCA) Zivkovic et al. (2022), and
termite colony inspired multi-population SSA(TCSSA3) Aljarah et al. (2018), and com-
pared with the multi-population PSO (MPPSO) Kılıç et al. (2021). Table 2 shows the
parameter settings for all methods. Moreover, we set all methods with the same population
size of 50 and iteration number of 100.

Table 2: Parameter setting of algorithm

Algorithms Parameter settings

MSA-MPSSA c2, c3 ∈ (0, 1), the MIC threshold a=0.3, the
flipping threshold b=0.2, sub-population pa-
rameter M=N

10 , range constants for prohibit-
ing flipping probability A=0.45, B=0.05.

DSSA Tubishat et al. (2021) c2, c3∈ (0, 1),LSA maximum iterations=10
IWOSSA Saafan and El-Gendy (2021) c2, c3 ∈ (0, 1); r, p, a3 ∈ (0, 1), b = 1.
SSARM-SCA Zivkovic et al. (2022) c2, c3 ∈ (0, 1), rms = Tmax/10, wrs = N/5.
TCSSA3 Aljarah et al. (2018) c2, c3 ∈ (0, 1), number of leaders = N/2
MPPSO Kılıç et al. (2021) c1 = c2 = 2, Wmax = 0.9,Wmin = 0.4
SSA Mirjalili et al. (2017) c2, c3 ∈ (0, 1)

Table 3: The average CBA of MSA-MPSSA at different M

No. M=N
3 M=N

5 M=N
8 M=N

10 M=N
12 M=N

15

1 0.8825 0.8832 0.8863 0.8873 0.8867 0.8869
2 0.8390 0.8391 0.8441 0.841 0.8384 0.8391
3 0.8357 0.8429 0.8453 0.8449 0.8475 0.8428
4 0.6270 0.6322 0.6343 0.636 0.6422 0.6442
5 0.9620 0.9645 0.9633 0.9649 0.9636 0.9628
6 0.9363 0.9368 0.9372 0.94 0.9359 0.9359
7 0.9065 0.9052 0.9043 0.9107 0.9000 0.9087
8 0.9426 0.9473 0.9498 0.9545 0.9529 0.9501
9 0.7096 0.7131 0.7051 0.7169 0.7252 0.7200
10 0.9749 0.9791 0.9785 0.9774 0.9794 0.9772
11 0.9709 0.9691 0.9735 0.9721 0.9714 0.9740
12 0.7478 0.7461 0.7447 0.7539 0.7459 0.7445
13 0.8555 0.8654 0.8534 0.8602 0.8557 0.8522
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15 0.6680 0.6752 0.6876 0.6809 0.6831 0.6881
16 0.9796 0.9807 0.9819 0.9825 0.9814 0.9816
rank 6 5 4 1 2 3

There are several important parameters in this paper, namely the MIC threshold a, the
number of salps M in the new sub-population, the flipping threshold b in the F-P operation
and the range constants A, B for calculating Pban. Based on Table 7 and Table 8 (appendix),
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a and b were set to 0.3 and 0.2, respectively. Additionally, we performed sensitivity analyses
for A and B. Since the minimum value of Pban should be greater than 0, B is set to a small
value of 0.05 and experimented with the values of A(0.2∼0.6). Finally, A takes 0.45.

For M, we conducted an experimental comparison using different values and recorded
the results in Table 3, where N is the total number of salps. From the table, we observe that
as M decreases, the classification performance first increases and then decreases. This is
because the smaller M has more sub-populations that can improve the search region when
the main population encounters a local optimum. However, when M is too small, there are
too few salps per sub-population, so the search ability also decreases. Therefore, we set M
to N

10 in our experiments.

4.3. Comparison of MSA-MPSSA with Competing Methods

Table 4 shows the average CBA of all methods running 30 times on 16 datasets. The
best-performing methods on the dataset are marked in bold. We can see that among these
7 methods, the MSA-MPSSA performs best on all datasets. Moreover, the results of the
Wilcoxon test demonstrate that in most cases, the CBA of MSA-MPSSA is significantly
better than the competing methods.

Table 4: The average CBA of the MPSSA and competing algorithms over 30 runs

No. DSSA
SSARM

IWOSSA TCSSA3 SSA MPPSO
MSA

-SCA -MPSSA

1 0.8823(≈) 0.8540(+) 0.8769(+) 0.8563(+) 0.8646(+) 0.8858(≈) 0.8873
2 0.8344(+) 0.8082(+) 0.8396(≈) 0.8160(+) 0.8243(+) 0.8358(+) 0.8410
3 0.7349(+) 0.7123(+) 0.8100(+) 0.7339(+) 0.7260(+) 0.7725(+) 0.8449
4 0.5315(+) 0.4534(+) 0.5786(+) 0.4883(+) 0.4849(+) 0.5641(+) 0.6360
5 0.9623(+) 0.9541(+) 0.9582(+) 0.9524(+) 0.9600(+) 0.9619(+) 0.9649
6 0.9025(+) 0.8716(+) 0.9270(+) 0.8845(+) 0.8808(+) 0.9200(+) 0.9400
7 0.8950(+) 0.8732(+) 0.8940(+) 0.8839(+) 0.8873(+) 0.9086(≈) 0.9107
8 0.9418(+) 0.9140(+) 0.9399(+) 0.9354(+) 0.9391(+) 0.9471(+) 0.9545
9 0.7031(+) 0.6865(+) 0.7011(+) 0.6980(+) 0.7017(+) 0.7074(+) 0.7169
10 0.9570(+) 0.9463(+) 0.9564(+) 0.9550(+) 0.9541(+) 0.9564(+) 0.9774
11 0.9484(+) 0.9207(+) 0.9436(+) 0.9452(+) 0.9475(+) 0.9487(+) 0.9721
12 0.7384(+) 0.7046(+) 0.7533(≈) 0.7326(+) 0.7337(+) 0.7364(+) 0.7539
13 0.8413(+) 0.8337(+) 0.8421(+) 0.8406(+) 0.8444(+) 0.8454(+) 0.8602
14 0.9736(+) 0.9558(+) 0.9863(+) 0.9734(+) 0.9764(+) 0.9888(+) 1.0000
15 0.6202(+) 0.5890(+) 0.6446(+) 0.6073(+) 0.6217(+) 0.6354(+) 0.6809
16 0.9579(+) 0.9375(+) 0.9689(+) 0.9548(+) 0.9565(+) 0.9660(+) 0.9825

Overall 15+,1≈ 16+ 14+,2≈ 16+ 16+ 14+,2≈

When compared with DSSA, IWOSSA, SSARM-SCA, and TCSSA3, MSA-MPSSA
achieves significantly better results in 61 out of 64 comparisons. This shows that MSA-
MPSSA not only outperforms the basic SSA algorithm but also has surprising effects in
the SSA-based improvement methods. In high-dimensional datasets with more than 5000
features, MSA-MPSSA outperforms all competing methods by far. This benefits from the
MIC-based initialization method, which not only filters a batch of irrelevant features in
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advance but also makes the population have high-quality initial positions. Compared with
MPPSO, it still faces the problem of falling into local optima, despite using two popula-
tions to increase diversity. In contrast, the proposed F-P operator and multi-surrogate can
generate new sub-populations that can improve the main population already trapped in
local optima. The sub-populations can also learn from each other using the proposed com-
munication mechanism. Furthermore, the classification accuracy of MSA-MPSSA on the
high-dimensional dataset Leukemia1 reaches an amazing 100%. These results demonstrate
the superiority of MSA-MPSSA in classification, especially on the high-dimensional dataset.

Table 5: The average DRR(%) over 30 runs

No. DSSA
SSARM

IWOSSA TCSSA3 SSA MPPSO
MSA

-SCA -MPSSA

1 65.90 62.56 70.00 66.92 63.08 74.36 76.41
2 58.94 51.21 70.00 60.45 57.88 62.27 80.76
3 63.21 59.88 93.33 61.23 59.51 74.57 91.98
4 58.45 52.38 88.69 62.98 60.83 75.36 84.40
5 69.78 69.78 90.33 60.44 64.11 78.33 93.00
6 71.76 66.96 91.27 61.76 63.82 79.71 90.69
7 53.72 57.50 75.28 63.39 56.89 69.83 81.11
8 50.90 49.55 72.59 62.58 51.11 61.14 81.20
9 50.60 45.73 69.72 61.42 50.13 60.94 84.02
10 50.20 53.38 91.99 61.84 49.97 66.61 91.42
11 50.03 46.90 77.12 62.04 49.97 60.92 91.15
12 49.85 50.58 94.64 62.09 50.03 57.85 84.25
13 50.23 33.60 78.39 61.92 50.03 58.06 85.54
14 49.85 49.62 88.66 61.91 50.29 63.51 96.61
15 50.27 35.84 70.58 61.79 49.90 54.94 84.29
16 50.06 51.36 82.05 61.98 50.06 63.42 85.83
rank 5 7 2 4 6 3 1

Table 5 records the average DRR of all methods running 30 times on 16 datasets. We
can see that MSA-MPSSA performs best in 11 out of 16 datasets, ranking first. The second-
ranked method is IWOSSA, and in its best-performing datasets, only Breast3 approximates
the proposed method in terms of accuracy. For the other datasets Horse, flags, ionosphere
and warpPIE10P, MSA-MPSSA is significantly better than IWOSSA in accuracy, which
can indicate the MSA-MPSSA has achieved a good balance in dimensionality reduction
and accuracy, and can better select the informative features. In addition, except for the
dataset HeartEW, MSA-MPSSA achieves a dimensionality reduction rate of over 80% in
all datasets, and six datasets are above 90%. These demonstrate the significant role of the
proposed method in feature dimensionality reduction.

4.4. Effect of Multi-Population Adaptive Generation Strategy and F-P
Operator

One of the main ideas behind the proposed MSA-MPSSA is to generate new independent
sub-populations when the main population falls into a local optimum, and use the F-P
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operator and multi-surrogate to find promising regions for the sub-populations to search.
To evaluate the effectiveness of the multi-population adaptive generation strategy and the
F-P operator, we set up two methods named MSA-MPSSA-F and MSA-MPSSA-R. The
former represents the generation of all sub-populations using the F-P operator and multi-
surrogate at the first iteration. The latter refers to discarding the F-P operator when
generating sub-populations, and randomly generating candidate pools.

We ran the three methods independently 30 times and recorded the average CBA and
average DRR in Table 6. When compared with MSA-MPSSA-F, we observed that MSA-
MPSSA performs better in CBA on all datasets, and DRR is better on almost all datasets.
This indicates that the multi-population adaptive generation strategy is significantly better
than the conventional multi-population approach and is able to continuously improve the
population to avoid local optima. Furthermore, the proposed method outperforms MSA-
MPSSA-R on most of the datasets, demonstrating that the F-P operator can help new
sub-populations find more promising regions for exploration.

Table 6: Effects of multi-population adaptive generation strategy and F-P operator

No. MSA-MPSSA-F MSA-MPSSA-R MSA-MPSSA
CBA DDR CBA DDR CBA DDR

1 0.8847±0.004 76.92 0.8854±0.005 76.92 0.8873±0.005 76.41
2 0.8423±0.015 79.39 0.8433±0.011 80.00 0.8410±0.013 80.76
3 0.8394±0.010 91.73 0.8414±0.009 91.98 0.8449±0.013 91.98
4 0.6316±0.020 86.43 0.6271±0.027 85.95 0.6360±0.025 84.40
5 0.9628±0.003 92.56 0.9616±0.004 92.67 0.9649±0.003 93.00
6 0.9378±0.006 91.37 0.9372±0.006 91.47 0.9400±0.006 90.69
7 0.9068±0.010 79.50 0.9108±0.010 80.44 0.9107±0.013 81.11
8 0.9511±0.009 80.96 0.9477±0.011 81.30 0.9545±0.012 81.20
9 0.7081±0.014 82.06 0.7059±0.013 83.46 0.7169±0.015 84.02
10 0.9770±0.004 89.95 0.9768±0.004 91.34 0.9774±0.004 91.42
11 0.9712±0.009 89.70 0.9704±0.007 90.09 0.9721±0.009 91.15
12 0.7476±0.018 83.52 0.7503±0.019 83.31 0.7539±0.013 84.25
13 0.8555±0.015 82.28 0.8539±0.011 84.78 0.8602±0.016 85.54
14 0.9997±0.001 95.88 1.0000±0.000 96.56 1.0000±0.000 96.61
15 0.6805±0.023 83.03 0.6911±0.021 83.76 0.6809±0.026 84.29
16 0.9784±0.008 84.28 0.9808±0.007 85.78 0.9825±0.007 85.83

4.5. Running Time

To further investigate the performance of the proposed MSA-MPSSA, we compared the
running time and CBA of the 7 methods, and the results are shown in Figure. 3. The
dataset used covers the number of features from small to large.

As depicted in Figure. 3, MSA-MPSSA consistently achieves the best CBA with a
smaller running time, and reaches the optimal tradeoff between conflicting objectives. Al-
though IWOSSA is the fastest method, it is slower than MSA-MPSSA on the dataset
lymphoma2. This is due to the fact that MSA-MPSSA selects a smaller feature subset,
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Figure 3: Comparison of classification balance accuracy and running time(s). The dotted
line represents the optimal trade-off between the two conflicting objectives.

reducing the amount of data processed during the run. On the other hand, DSSA and
SSARM-SCA are the slowest because their proposed local search algorithms add a lot of
expensive real fitness evaluation.

5. Conclusion

In this paper, we propose a novel SSA-based feature selection method, namely MSA-
MPSSA. Firstly, an initialization method based on feature importance and dataset size is
suggested to improve the initial main population. A multi-population adaptive generation
strategy is developed to continuously improve the main population trapped in local optima.
To the best of our knowledge, no one has investigated generating new independent popu-
lations during the search process. To find promising search regions with a small time cost,
F-P operation, and multi-surrogate are proposed. Finally, a communication mechanism is
presented to help sub-populations to learn from each other.

We compare MSA-MPSSA with basic SSA and 5 state-of-the-art feature selection meth-
ods on 16 datasets. The results show that the MSA-MPSSA achieves best classification
performance and is able to select a smaller feature subset in most cases. In addition, its
time cost is usually smaller.

In the future, we will further study the generation timing and scale of new populations.
Additionally, we will explore the applicability of the multi-population adaptive generation
strategy to other metaheuristic methods. Our focus will be on improving the performance
on high-dimensional datasets.
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