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Abstract

In this work, we propose “Cell Variational Information Bottleneck Network (cellVIB)”, a
convolutional neural network using information bottleneck mechanism, which can be com-
bined with the latest feedforward network architecture in an end-to-end training method.
Our Cell Variational Information Bottleneck Network is constructed by stacking VIB cells,
which generate feature maps with uncertainty. As layers going deeper, the regularization
effect will gradually increase, instead of directly adding excessive regular constraints to the
output layer of the model as in Deep VIB. In each VIB cell, the feedforward process learns
an independent mean term and a standard deviation term, and predicts the Gaussian dis-
tribution based on them. The feedback process is based on reparameterization trick for
effective training.

This work performs an extensive analysis on MNIST dataset to verify the effectiveness
of each VIB cells mentioned above, and provides an insightful analysis on how the VIB
cells affect mutual information. Experiments conducted on CIFAR-10 also prove that our
network is robust against noisy labels during training and against corrupted images during
testing. Then, we validate our method on PACS dataset, whose results show that the VIB
cells can significantly improve the generalization performance of the basic model. Finally,
in a more complex representation learning task, face recognition, our network structure has
also achieved very competitive results.

Keywords: Variational Information Bottleneck, feature maps with uncertainty, regular-
ization effect

1. Introduction

It is meaningful to explain deep neural networks from the perspective of information the-
ory. The information bottleneck was first proposed in Tishby et al. (2000). It is attractive
because it makes a balance between the concise representation and the representation with
good predictive ability Tishby and Zaslavsky (2015). The main disadvantage of the informa-
tion bottleneck principle is that it is usually very difficult to calculate mutual information,
which severely limits the types of learnable models and makes the information bottleneck
only available under some extreme assumptions. To solve this problem, Alemi et al. (2016)
uses variational inference to construct the lower bound of the information bottleneck opti-
mization objective, and uses reparameterization trick Kingma and Welling (2013) so that
deep neural networks can parameterize the distribution of high-dimensional continuous data
and avoiding previous restrictions on discrete or Gaussian cases. However, the experiments
in Tsai et al. (2021) show that such information bottleneck methods are still not thorough
enough.

To understand information theory from the perspective of regularization, the latent
code Z of the input X is defined by the parameter encoder P (Z|X; θ). The target is to
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Figure 1: Concepts of Cell Variational Information Bottleneck. Best viewed in color.

learn a code that can understand the target Y to the greatest extent, measured by the
mutual information I(Z, Y ; θ) between the code Z and the target Y , and at the same
time, to minimize the complexity of Z, measured by the mutual information I(Z,X; θ)
between code Z and input X. In order to improve the regularity effect, we penalize the
redundant information theory measurement between adjacent network layers, that is, use
variational approximation to penalize the mutual information between the layers, instead of
only penalizing mutual information between Z and X. When looking at information theory
from another perspective, uncertainty comes from two parts Alemi et al. (2018). First, Z is
no longer a certain point, but a random distribution; second, we penalize the KL divergence
between the conditional distribution of a given input and a low-dimensional, low-information
code space. In this case, for the upper bound of the variational inference of uncertainty, the
layer-by-layer information interference is higher than just applying interference to a certain
layer Tsai et al. (2021). This is why we establish an information bottleneck in each cell as
shown in Figure 1.

The cellVIB network can be generated by simply stacking VIB cells, and VIB cells can
also be used as a direct replacement for primitive blocks of any depth in the architecture.
Although the template of the cells is universal, there will still be differences in cells of
different depths. In the shallow network, the VIB cell plays a weaker regularization role
and introduces weaker uncertainty. As the network continues to deepen, the regularization
and uncertainty will continue to strengthen. Therefore, the regularization and uncertainty
of cellVIB are gradual. The development of a new CNN architecture is a hard engineering
task, usually involving many new layer configurations. In contrast, the design of the VIB
cell outlined above is very convenient and can be used with the existing most advanced
architectures directly. The modules of these architectures can be enhanced by directly
replacing with the VIB cells.

In Chapter Experiments, we verify the superiority of cellVIB from different perspective.
In order to further illustrate its general applicability, we have adopted different backbone
structures and different datasets in different tasks to show that our proposed method is not
limited to specific datasets or tasks. First, we analyze the correspondence between I(Z;Y )
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and I(Z;X) when β changes on MNIST dataset, and analyze how I(Z;Y ) and I(Z;X)
changes with the network depth. The experimental results demonstrate the deficiencies
of Deep VIB in removing information redundancy. Subsequently, we also prove through a
series of experiments that cellVIB method is robust to input noise and label noise, because
the representation Z learned by cellVIB removes more redundant information about X.
Besides, compared with the deterministic model fitted by maximum likelihood estimation
or VIB, cellVIB has a stronger generalization ability. Intuitively speaking, each input image
is mapped to a feature map distribution instead of a unique feature map in each layer. The
introduction of this uncertainty strengthens the generalization ability of the model. Finally,
our model also shows very competitive results in face recognition, a much more complex
representation learning task.

The major contributions of this paper are summarized as follows.

• We discovered the existence of mutual information redundancy between layers, and
analyzed the influence of mutual information redundancy between layers on the gener-
alization and robustness of the model, which has never been paid attention to before.

• We proposed a new network structure, cellVIB, by gradually increasing the regular-
ization effect and uncertainty as the layer deepens, instead of directly adding too
many regular constraints to the output layer. VIB cells can also be used as a direct
replacement for primitive blocks of any depth in the architecture.

• We verified the superiority of our model through detailed experiments, and explained
from the perspective of mutual information why the results displayed on a smaller
dataset can be extended to larger ones.

2. Related Work

2.1. Deep Architectures

VGGNets Simonyan and Zisserman (2014) and Inception models Szegedy et al. (2015) ex-
plains the effect of network depth on performance. Batch normalization (BN) Ioffe and
Szegedy (2015) improved the gradient propagation by inserting units for adjusting layer in-
put, thereby stabilizing the learning process. ResNets He et al. (2016a,b) demonstrated the
effectiveness of learning deeper networks by using identity-based skip connections. Highway
network Srivastava et al. (2015) used a gating mechanism to adjust shortcut connections.

Another research direction is to explore ways to adjust the functional form of network
modular components. Grouped convolution can be used to increase the cardinality Ioannou
et al. (2017); Xie et al. (2017). Multi-branch convolutions can be interpreted as a gener-
alization of the concept, which makes the combination of operators more flexible Ioffe and
Szegedy (2015); Szegedy et al. (2017, 2015, 2016). Recently, compositions learned in an
automated manner Liu et al. (2017); Zoph and Le (2016); Zoph et al. (2018) have shown
competitive performance. Cross-channel correlation is usually independent of the spatial
structure Chollet (2017); Jaderberg et al. (2014) or by using a standard convolution filter
with 1 × 1 convolution Lin et al. (2013) to jointly map a new combination of features. In
this work, we construct Cell Variational Information Bottleneck Network by stacking VIB
cells, which generate feature maps with uncertainty.
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2.2. Information Theory Regularization Methods

Tishby & Zaslavsky Tishby and Zaslavsky (2015) pointed out the idea of applying infor-
mation theoretic objectives to deep neural networks. However, their work only contained
theoretical hypotheses, and did not design experiments to verify their hypotheses. Although
not combined with the information bottleneck objective, variational bounds on mutual in-
formation has been discussed previously in Agakov (2004). Mohamed & Rezende Mohamed
and Rezende (2015) also explored variational bounds on mutual information and applied
it to deep neural networks for reinforcement learning. Variational autoencoder Kingma
and Welling (2013) is a special case in the unsupervised learning literature, in which the β
parameter is fixed at 1.0 while Higgins et al. Higgins et al. (2016) explored VAE targets
with different β values.

Variational information bottleneck Alemi et al. (2016) suggests using variational infer-
ence to construct a lower bound of the information bottleneck objective. The reparam-
eterization trick Kingma and Welling (2013) allows the use of deep neural networks to
parameterize the distribution to process high-dimensional continuous data. In this work,
we have revealed the crux of VIB from the perspective of mutual information redundancy
and put forward a feasible solution, cellVIB, by gradually increasing the regularization effect
as the layer deepens, instead of directly adding too many regular constraints to the output
layer.

3. Cell Variational Information Bottleneck

We propose VIB cell which includes distributional representation and KL-divergence regu-
larization in a repeatable small cell.

3.1. Distributional Representation

Specifically, we define a hidden layer x̃ of input x as a Gaussian distribution,

p(x̃|x) = N (x̃; x̃µ, x̃
2
σI) (1)

The two parameters of the Gaussian distribution (mean and variance) are both predicted
by CNN and related to the input:

x̃µ = fθµ(x); x̃σ = fθσ(x) (2)

where θµ and θσ are the model parameters with respect to output x̃µ and x̃σ respec-
tively. The predicted Gaussian distribution is a diagonal multivariate normal distribution
and feature maps of each sample is no longer deterministic, but randomly sampled from
N (x̃; x̃µ, x̃

2
σI). However, the sampling operation is not differentiable, thereby preventing

the backpropagation of the gradient flow during training. We use the reparameterization
technique Kingma and Welling (2013) to make the model still use gradients as usual. Specif-
ically, we first sample a random noise ε independent of the model parameters from N (0, I),
and then treat x̃ as an equivalent sampling feature map,

x̃ = x̃µ + εx̃σ, ε ∼ N (0, I) (3)
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Figure 2: A variational information bottleneck cell. Best viewed in color.

The basic structure of cellVIB net is shown in Figure 2. For any given transformation
Fµ : X → X̃µ,X ∈ RH×W×C , X̃µ ∈ RH̃×W̃×C̃ (for example, a convolutional layer or a
convolutional block composed of a series of convolutions), we can construct a corresponding
VIB cell as shown below. First, introduce a new transformation Fσ : X → X̃σ,X ∈
RH×W×C , X̃σ ∈ RH̃×W̃×C̃ , the complexity of Fσ can be lower than Fµ to obtain another
feature map equal in size to Xµ as the standard deviation term. Second, we sample E on a
normal distribution. Finally, we input feature maps X̃ = X̃µ + E · X̃σ into the subsequent
layers.

3.2. KL-Divergence Regularization

Eq.(3) shows that during the training process, feature map x̃µ is affected by x̃σ, which will
prompt the model to predict a small x̃σ for all samples to suppress the unstable component
in x̃. In this case, the random feature map will degrade to x̃ = x̃µ, which is actually
the original deterministic feature map. Inspired by the variational information bottleneck
Alemi et al. (2016), we explicitly constrain N (x̃µ, x̃

2
σ) in the optimization process to make it

close to the normal distribution N (0, I), measuring by Kullback-Leibler divergence between
them. The Kullback-Leibler divergence term is,

Lkl = KL[N (x̃|x̃µ, x̃2
σ)||N (ε|0, I)] (4)

In Eq.(4), Lkl is a good balancer. In particular, x̃ is not encouraged to predict the large
variance of all samples, which may lead to extreme deterioration of x̃µ, making it difficult
for the model to converge. At the same time, x̃ is not encouraged to predict low variance
over all samples, which may in turn lead to a larger Lkl penalty.

3.3. Variational Information Bottleneck in Cell

The input variable of a neural network with I layers is represented as x, and the related
target output is represented as y. We denote the activation of the hidden layer of the
network as {x̃i}Ii=1.

Now the feedforward network layer can be interpreted as a Markov chain of successive
representation Tishby and Zaslavsky (2015), that is,

y→ x→ x̃1 → ...→ x̃I → ŷ (5)
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Every hidden layer in the network defines a conditional probability p(x̃i|x̃i−1). For
convenience, we use x = x̃0 and z = x̃I .

For the deterministic network model, p(x̃i|x̃i−1) is absolutely certain. In this situation,
the function of the hidden layer is to extract information from the previous layer, while the
output layer tries to approximate the real distribution p(y|x̃I).

Deep VIB introduces a variational information bottleneck in the output layer. On the
one hand, it can reduce I(x̃I ,x) to remove the redundant content. On the other hand,
it can incorporate uncertainty during training. However, only add information bottleneck
in the last layer is not sufficient, regardless of to remove redundant information or to add
uncertainty.

Our starting point for achieving this goal is to clearly punish the information theory
measure of redundancy between each adjacent layer. More specifically, for each hidden layer
x̃i, we want to minimize the mutual information I(x̃i, x̃i−1) between x̃i and x̃i−1, eliminating
the redundancy between layers and maximizing the mutual information I(x̃i,y). Therefore,
the objective of layer Li becomes

Li = I(x̃i,y)− βiI(x̃i, x̃i−1) (6)

Among them, βi ≥ 0 is a coefficient, which determines the strength of the bottleneck.
To sum each layer, the goal is to maximize

∑
i Li.

3.4. Cell VIB Applied in Modern Architectures

Applying VIB cells to AlexNet Krizhevsky et al. (2012) or VGGNet Simonyan and Zisserman
(2014) is simple. The flexibility of VIB cells means that they can be directly applied
to transformations other than standard convolution. To illustrate this point, we develop
cellVIB networks by integrating VIB cells into modern architectures with complex design.
Figure 3 describes the architecture of the cell-VIB-ResNet module. An equivalent sampling
feature map of VIB cells is treated as a non-identity branch of the residual module. The
reparameterization trick works before summing with the identity branch.

4. Experiments

4.1. Experiments of Mutual Information

4.1.1. Dataset and Architecture

We start with experiments on unmodified MNIST LeCun et al. (1998) and use the same
architecture as Pereyra et al. (2017), namely, an MLP with fully connected layer in the
form of 784− 1024− 1024− 10 and activated by ReLU.

In our method, each cell in the random encoder has the following form

p(x̃|x) = N (x̃|f iµ(x), f iσ(x)), i = 1, 2, 3 (7)

where i is the depth of the network. Among them, f iµ(x) is the MLP cell with the format
of 784− 1024, 1024− 1024, and 1024−K respectively, and the output of f3µ(x) is x̃µ, where
K is the size of the bottleneck. f iσ(x) has the same structure as f iµ(x) and outputs encode
x̃σ after a softplus transform.
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Figure 3: Left: The architecture of Residual module. Right: our cell-VIB-Residual mod-
ule. Best viewed in color.

Figure 4: I(Z, Y ) vs I(Z,X) of VIB and cellVIB as we vary β for K = 256. Best viewed
in color.

The classifier fcls(z) maps the K-dimensional latent code to the C = 10 classes, followed
by a simple logistic regression model in the form of q(y|z) = Softmax(y|fcls(z)). In the
latter part, we will consider more complex architecture in other experiments, but here, we
want to show the advantages of cellVIB in a simple setting.

4.1.2. Results and Discussion

In Figure 4, we draw the mutual information curve of original VIB (blue curve), cellVIB-
v1 (the second and third fully connected blocks replaced by VIB cells, green curve) and
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Figure 5: I(Z,X) and I(Z, Y ) vs depth of MLP,VIB and cellVIB for K = 256. Best
viewed in color.

cellVIB-v2 (all fully connected blocks replaced by VIB cells, red curve), i.e., we plot I(Z, Y )
vs I(Z,X) as we vary β. Notice that the x-axis is a logarithimc one.

We can observe that the three different structures have some common characteristics.
When we allow more information from the input to the bottleneck (by reducing β), the
mutual information between the embedding and the labels increases on the training set, but
not necessarily on the testing set. In other words, increasing I(Z,X) helps the performance
of the training set, but may lead to overfitting, which can be clearly seen from Figure 4.

On the other hand, we can observe that as the original fully connected blocks are replaced
by VIB cells gradually, the regularization effect of the network becomes stronger. In three
different structures, when I(Z,X), the upper bound on the mutual information between
the images X and the stochastic encoding Z, is equal, the I(Z, Y ) value of cellVIB-v2 is
greater, that is, the mutual information between encoding Z and label Y is greater, and the
I(Z, Y ) value of the original VIB is the smallest. It can be seen from Eq.(6) that cellVIB is
obviously easier to achieve a more ideal optimization state compared to the original VIB.

We compare our method with the baseline MLP and the baseline variation information
bottleneck model Alemi et al. (2016). We also consider the following deterministic limita-
tions of the model. When βi → 0(i = 1, 2, 3), we observe that the cellVIB optimization
process tends to make f iσ(x)→ 0(i = 1, 2, 3), so the network becomes nearly deterministic.
When βi → 0(i = 1, 2), we observe that cellVIB degenerates to the original VIB form, at
this time, f iσ(x)→ 0(i = 1, 2).

Based on the above approximation effect, we draw the changes of I(Z, Y ) and I(Z,X)
in the test phase with the network depth of MLP, VIB and cellVIB respectively, as shown in
Figure 5. For the MLP network, since there is no explicit regularization constraint, I(Z,X)
only slightly decreases with depth, while I(Z, Y ) increases significantly after passing through
the second layer of the network and reaches the maximum, and then decreases after passing
through the third layer of the network. For the VIB network, since the network only has
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regularization constraint in the final output layer, I(Z,X) has a similar trend to MLP
when passing the first two blocks, and it drops significantly after passing the third layer.
At the same time, I(Z, Y ) of VIB has the same trend compared to MLP, but larger than
MLP due to the influence of regularization constraint. For the cellVIB network, due to the
global regularization constraints of the network, I(Z,X) declines in a more gentle trend
and reaches a value close to VIB in the output layer, and I(Z, Y ) of cellVIB is the largest
of the three models.

4.2. Experiments of Robustness

In this section, we evaluate the robustness of the cellVIB model. In image classification
tasks, the robustness of the model during training and testing is equally important. For
the robustness of the model in the training phase, we consider label flipping, that is, the
situation where images are mislabeled in the training set; for the robustness of the model
in the testing phase, we apply different levels and types of corruption to the test images.
Without loss of generality, we conduct these experiments in the CIFAR-10 dataset.

4.2.1. Datasets and Architecture

CIAFR-10 Krizhevsky et al. (2009) is a widely used benchmark in the image classification
task. It contains 60000 32 × 32 color images of 10 classes, with 50000 for training and
10000 for testing. CIFAR-10-C Hendrycks and Dietterich (2019) is a corrupted version of
CIFAR-10 test set, in which the images are processed by 19 corruption types falling into
four main categories: weather, noise, blur and digital. Each corruption contains 5 severity
levels, ranging from the lowest level “1” to the highest level “5”.

We follow the settings in the Wide Residual Networks(WRN) Zagoruyko and Komodakis
(2016) with 16 layers and the width is 4. The training images are zero-padded by 4 pixels
and randomly cropped to 32×32. All the input data subtracts a mean value and is divided
by standard deviation per channel for normalization.

4.2.2. Testing Image Corruption

We train the network on CIFAR-10 training set and report the averaged top-1 accuracy
under 5 severity levels on the CIFAR-10-C. WRN can be viewed as the baseline model, VIB
and our proposed cellVIB are based on the WRN architecture, the results are summarized
in the Table 1.

As shown in Table 1, both VIB and cellVIB outperform the baseline method, indicating
that VIB method can enhance the robustness in the testing phase. Moreover, the proposed
cellVIB is superior to VIB by a large margin, which suggests that cellVIB has natural
advantages in strengthening model’s robustness against test image corruption.

4.2.3. Training Label Flips

In real world classification scenario, labeling huge dataset for training is laborious and
costly. An alternative approach is collecting some noisy dataset with keyword searching,
allowing some mislabeled example. We follow the settings of paper Sukhbaatar et al. (2014)
on CIFAR-10 dataset, and set the confusion matrix Q as follows:
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Method Lv 1 Lv 2 Lv 3 Lv 4 Lv 5

WRN 85.9 79.0 73.1 65.9 53.8
Deep VIB 86.4 79.6 73.7 66.8 54.7

cellVIB 88.5 81.2 75.5 68.7 56.8
↑ WRN 2.6 2.2 2.4 2.8 3.0
↑ Deep VIB 2.1 1.6 1.8 1.9 2.1

Table 1: Averaged top-1 accuracy (%) under 5 severity levels, Lv means Level and ↑ means
performance boost. As the severity increases, the gain is more significant.

Q =


1− r r

9 · · · r
9

r
9 1− r · · · r

9
...

...
. . .

...
r
9

r
9 · · · 1− r


10×10

(8)

where r is the mislabeled ratio in the training set. We compare cellVIB with WRN
and VIB under different noisy level r, demonstrating the noise resistant property of our
proposed method. Top-1 accuracy is reported in Table 2.

Noise Level 0% 10% 30% 50% 70%

WRN 95.00 90.41 87.81 82.52 69.62
Deep VIB 95.08 91.02 87.98 83.24 70.72

cellVIB 95.12 92.03 89.54 85.17 72.55
↑ WRN 0.12 1.62 1.73 2.65 2.93
↑ Deep VIB 0.04 1.01 1.56 1.93 1.83

Table 2: Top-1 accuracy (%) on CIFAR-10 test set trained with different noise level.

The results suggest that both VIB and cellVIB can resist the noisy label in the training
set while baseline model collapses rapidly as the noise level increases. CellVIB is more
powerful in resisting training label noise.

4.2.4. How CellVIB Enhance Model’s Robustness?

As stated in Alemi et al. (2018), VIB introduces uncertainty in the feature layer, which
has two implications for robustness. First, for the noise of the image, regardless of the
type of noise, the errors all increase with the norm of the weight matrix through error
propagationTsai et al. (2021), and there is a definite upper bound. Second, for label noise,
the uncertainty introduced by VIB in the feature layer is reflected in the logits. When
calculating the loss function (such as cross entropy, etc.) with the label, the effect is
actually equivalent to the soft label, which has a positive effect on the robustness of label
noise.
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As demonstrated in Tsai et al. (2021), in joint perturbation, the upper bound of the
predicted label probability difference is larger for full-layer perturbation compared to single-
layer perturbation, which shows that cellVIB has stronger robustness to both image noise
and label noise and is consistent with our experimental conclusions.

4.3. Experiments of Generalization

4.3.1. Datasets and Architecture

We also conduct experiments on the PACS dataset Li et al. (2017) to demonstrate that cell
VIB performs well in generalization. As a commonly used domain generalization benchmark,
PACS has dramatic inter-domain shift across four domains: Art Painting, Cartoon, Photo,
and Sketch. It consists of 9991 images in 7 common categories: “dog”, “elephant”, “giraffe”,
“guitar”, “horse”, “house” and “person”. Generalization of algorithms is measured by
training on any three of the four domains and testing on the rest one. Following Li et al.
(2017), we randomly choose 20% images from the training domains as validation set. We
take the ImageNet pre-trained ResNet-18 as a base model and finetune the whole network
on training domains.

4.3.2. Results and Discussion

In Table 3, we compare our method with Deep VIB. In most domains, except for ”photo”,
our method has better performance than VIB, which shows that cellVIB does help to further
improve the generalization performance of the model.

Domain
Art

Cartoon Photo Sketch Ave
painting

baseline 83.61 78.18 94.94 78.22 83.74
Deep VIB 85.30 78.02 95.68 77.22 84.05

cellVIB 85.47 78.42 95.60 78.46 84.49
↑ baseline 1.86 0.24 0.66 0.24 0.75
↑ Deep VIB 0.17 0.40 -0.08 1.24 0.44

Table 3: Top-1 accuracy (%) on PACAS test set.

The better generalization performance of cellVIB can be explained from two perspec-
tives. First, the regularization introduced between feature maps further reduces the in-
formation redundancy between layers, making the mutual information between the final
representation Z and the input X smaller. Second, the uncertainty introduced between
feature maps makes it difficult for the model to overfit on the training set, thereby forcing
the model to learn a more general representation.

4.4. Representation Learning

4.4.1. Datasets and Architecture

We use a cleaned version of the MS-Celeb-1M datasets Guo et al. (2016) as our training
set, which contains 3,648,176 images in 79,891 identities. Note that we follow the lists
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Wang et al. (2019a,b) to remove the overlapped identities between the employed training
datasets and the test datasets. 2 benchmarks including LFW Huang et al. (2008) and
Agedb-30 Moschoglou et al. (2017), 3 unconstrained benchmarks: CFP Sengupta et al.
(2016)1, IJB-B Whitelam et al. (2017) and IJB-C Maze et al. (2018), and 2 renovations
of LFW: CALFW Zheng et al. (2017) and CPLFW Zheng and Deng (2018), are used to
evaluate the performance of cellVIB following the standard evaluation protocols.

We construct a face image (112×112) by warping a face region using three facial points:
the two eyes and the midpoint of the two corners of the mouth. We employ the modified
100-layer ResNet He et al. (2016a) as the backbone network. The head of the baseline model
is: BackBone-Flatten-FC-BN with embedding dimensions of 512 and dropout probability
of 0.4 to output the embedding feature.

4.4.2. Compared Methods

The original ArcFace Deng et al. (2019) is used as the baseline. In addition, we compared
our method with the original Deep VIB. In the training process, both the embedding fea-
tures and the weights in the classifier are L2-normalized, and cosine similarity is used for
evaluation. We re-implement these methods in accordance with every detail in the original
literature, and make fair comparisons under the same experimental settings.

Method LFW Agedb-30 CFP-FP CALFW CPLFW
IJB-B(TPR@FPR) IJB-C(TPR@FPR)

0.001% 0.01% 0.1% 0.001% 0.01% 0.1%

ArcFace 99.77 97.90 98.14 96.10 92.77 88.97 94.72 96.59 93.54 96.11 97.51

Deep VIB 99.78 98.08 98.07 96.18 92.58 87.69 94.74 96.47 93.75 96.08 97.41

cellVIB 99.83 98.08 98.27 96.14 92.85 89.65 94.82 96.63 93.94 96.15 97.46

Table 4: Results of models (ResNet100) trained on MS-Celeb-1M. The ArcFace model out-
puts a deterministic embeddings. The better performance among each base model
are shown in bold numbers.

4.4.3. Evaluation on General Datasets

We compare our method with the baseline and Deep VIB on the general face recognition
test set (that is, the test set with limited changes within the group). Table 4 summarizes
the results of these evaluations. It is worth noting that on these test sets, the performance
of the baseline model has almost reached saturation, and the advantages of cellVIB are not
obvious, but cellVIB still slightly improve the accuracy of some of the test sets.

4.4.4. Evaluation on Mixed-quality Datasets

When evaluating challenging datasets, such as IJB-B and IJB-C, these datasets have a large
domain gap with high-quality training datasets. At this time, the cellVIB model has better
performance compared with the baseline model and Deep VIB, especially when the false
acceptance rate is low, as shown in the Table 4.

1. Noted that we only use “frontal-profile” protocol of CFP
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4.4.5. Discussion

In most benchmark tests, our proposed method outperforms the benchmark deterministic
model. These results show that, compared with the point embedding estimated by the
baseline model and the normal distribution of a single sample estimated by Deep VIB,
embedding estimated by feature maps with uncertainty has better intra-class compactness
and inter-class separability, especially in unconstrained benchmarks: such as CFP with
front/side photos, and IJB-C which contains blurred photos collected from YouTube videos.
CellVIB has made the most significant progress in the IJB benchmark verification protocol,
which is also the most challenging one. This shows that the model with uncertainty is more
suitable for unconstrained face recognition scenarios than the deterministic model.

It is worth mentioning that, in the current face recognition task, because the number of
hyperparameters in cellVIB is very large, and the hyperparameters are all artificially set,
cellVIB may still not achieve the best performance in the above-mentioned backbone. We
will try to use reinforcement learning to explore the automatic setting of βi in our future
work. We believe this will further improve the performance of cellVIB in complex models.

5. Conclusion

We propose Cell Variational Information Bottleneck (cellVIB), which has a novel cell struc-
ture, being able to directly replace the intermediate structure of the existing networks.
We use a distribution to replace the original feature maps during training, so that the in-
formation redundancy between layers is less, and the uncertainty during training is more.
Extensive experiments have proved the effectiveness of our cellVIB, which achieve compet-
itive performance on multiple different tasks and datasets. In addition, cellVIB also has
better robustness and generalization, and has strong adaptability to noisy data or labels
and unknown domains. In future work, we will further explore ways to reduce the number
of hyperparameters or use reinforcement learning to automatically learn hyperparameters
to further improve the practicality of our model.
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