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Abstract

Graph neural networks (GNNs) have demonstrated their great power in learning graph-
structured data. Due to the limitations of expensive labeled data, contrastive learning has
been applied in graph domain. We propose GWGCL, a graph contrastive learning method
based on feature group whitening to achieve two key properties of contrastive learning:
alignment and uniformity. GWGCL achieves the alignment by ensuring consistency be-
tween positive samples. There is no need for negative samples to participate, but rather
to achieve the uniformity between samples through whitening. Because whitening has the
effect of feature divergence, it avoids the collapse of all sample representations to a single
point, which is called dimensional collapse. Moreover, GWGCL can achieve better results
and higher efficiency without the need for asymmetric networks, projection layers, stopping
gradients and complex loss function. Through extensive experiments, GWGCL performs
competitively on node classification and graph classification tasks across ten common graph
datasets. The code is in: https://github.com/MR9812/GWGCL.
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1. Introduction

Graph-structured data has emerged in a broad spectrum of research fields and appli-
cation domains, such as recommender systems (He et al., 2020), biological networks (Diao
et al., 2022), social networks (Perozzi et al., 2014) and knowledge graph (Wang et al.,
2018). The inherent complexity(i.e., non-Euclidean space) of graph-structured data that
differs from text and image has imposed unprecedented challenges to machine learning.

Recently, graph neural networks(GNNs) have exhibited prominent performance in learn-
ing representations and various downstream tasks including node classification(Kipf and
Welling, 2017; Veličković et al., 2018), link prediction (Grover and Leskovec, 2016) and
graph classification (Zhou et al., 2021). Although GNNs have achieved promising perfor-
mance on classification tasks, most existing GNN models ignore the rich information in a
large number of unlabeled data. To fully exploit the information of unlabeled data, con-
trastive learning as an effective self-supervised technique has been widely developed in graph
data mining domain.

Contrastive learning has achieved significant success in various fields (Chen et al., 2020b;
Gao et al., 2021). The contrastive learning encourages the learned representations of positive
samples to be similar while pushing apart the representations of randomly sampled negative
samples (Chen et al., 2020b). Researchers have proposed that contrastive learning should
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satisfy the following two properties: alignment, where two samples from a positive pair
should be mapped to adjacent regions in the representation space; and uniformity, where
all samples should be distributed roughly evenly in the representation space (Wang and
Isola, 2020). The current contrastive learning methods commonly use InfoNCE (Oord et al.,
2018) loss, such as SimCLR (Chen et al., 2020b). For a center sample y, the contrastive
loss function can be presented as

Lcl = − log
e

f(x)T f(y)
τ
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τ +
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i e
f(x−i )

T
f(y)

τ

(1)

Where τ is a scalar temperature hyperparameter, f (·) is the encoder,
({
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}M
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, y
)
∼

pdata, (x, y) ∼ ppos and negative samples are discovered by randomly sampling from the
dataset. Therefore, the InfoNCE loss function brings the positive samples closer together
to achieve the alignment, and satisfies the uniformity by pushing apart the negative samples,
ensuring that the representations are evenly distributed. It is worth noting that the success
of the InfoNCE loss is strongly influenced by the quantity and quality of negative samples.
However, using a large number of negative samples incurs higher time and space costs. If
only alignment is considered, there will be a phenomenon called dimension collapse (Hua
et al., 2021), where different dimensions capture the same information.

Therefore, researchers have sought a more efficient approach to simultaneously satisfy
the alignment and uniformity. Recently, a new research direction has emerged, where con-
trastive learning is performed using only positive samples. BYOL (Grill et al., 2020) utilizes
an online network to update a target network by a moving average to avoid dimension col-
lapse. Barlow Twins (Zbontar et al., 2021) avoids dimension collapse by measuring the
cross-correlation matrix between two augmentation views, and making it as close to the
identity matrix as possible.

In the field of graph representation learning, some methods (Zhu et al., 2020b; You
et al., 2020) are similar to SimCLR, using negative samples to achieve the uniformity.
Furthermore, there have been research efforts on contrastive learning methods that only
use positive samples. BGRL (Thakoor et al., 2021) ensures the uniformity of all samples
by utilizing an asymmetric network structure, which is achieved by adding a prediction
layer and applying stop-gradient, and updating the target network by exponential moving
average from the online network. CCA-SSG (Zhang et al., 2021) employs an additional loss
function that enforces the cross-correlation matrix between two augmentation views to be
close to the identity matrix.

Another study Ermolov et al. (2021) proposed that batch normalization(BN) (Ioffe and
Szegedy, 2015) is the crucial component to avoid degenerate solutions. Based on this per-
spective, we introduce the normalization technique commonly used in supervised learning
into the context of contrastive learning without negative samples. BN is the first method
that normalizes each batch of data in a way that supports back propagation and has shown
significant performance improvements in training deep neural networks. After applying the
BN transformation, the feature distribution has a mean of 0 and a variance of 1, which par-
tially alleviates dimension collapse. However, using BN alone is not sufficient, as features
exhibit certain correlations, indicating the presence of redundant information. Huang et al.
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(2018) proposed Decorrelated Batch Normalization (DBN), which not just centers and scales
activations but whitens them. To prevent dimension collapse, it is necessary to decorrelate
the feature dimensions during the contrastive learning process. Unlike CCA-SSG, which
constrains the cross-correlation matrix through a loss function, we adopt group whitening
to decorrelate the learned representation matrix. This approach endows the whitened repre-
sentations with the following property: the elimination of correlations between dimensions
and a variance of 1 for all representations. Our contributions are as follows:

• We propose GWGCL, a simple yet effective graph contrastive learning framework with
group whitening, which does not rely on negative samples to achieve the uniformity.

• We conduct extensive experiments on benchmark datasets and various tasks, which
can demonstrate the effectiveness of our proposed GWGCL comparing with state-of-
the-art baselines.

2. Related Works

2.1. Graph neural networks

Recently, graph neural networks (GNNs) have received growing attention which utilize
node features as well as the unique graph structure information to learn node representa-
tions. Existing GNNs follow the neighborhood aggregation strategy, which we iteratively
update the node representation by aggregating the representations of its neighboring nodes
and combining with its representations (Xu et al., 2018). Numerous variants of GNNs (Kipf
and Welling, 2017; Wu et al., 2019; Veličković et al., 2018) have been proposed to achieve
outstanding performances in a wide variety of graph-based tasks (Zhou et al., 2021). How-
ever, in most graph application tasks, most current GNNs ignore the rich information in
a large number of unlabeled data. Therefore, we utilize the recently developed contrastive
learning technique to fully explore the rich information of the unlabeled data.

2.2. Contrastive learning

Recently, contrastive learning technique has arisen a lot of research interest due to its
novel ideas. The key idea of contrastive learning is to learn the representations by contrast-
ing positive and negative samples in a self-supervised manner. The success of contrastive
learning has aroused repercussions in the field of Computer Vision (Chen et al., 2020b;
Grill et al., 2020; Zbontar et al., 2021) and Natural Language Processing (Gao et al., 2021).
Contrastive learning on graph domain has proven to be an active and promising research
area with broad potential applications (Zhu et al., 2020b; You et al., 2020; Miao et al.,
2022). DGI (Veličković et al., 2019) is the first proposed graph contrastive learning method
utilizing the idea of defining the mutual information between nodes and the graph represen-
tation as the contrastive metric. MVGRL (Hassani and Khasahmadi, 2020) utilizes node
diffusion technique to obtain the augmented graph and explicitly models the relationship
between node representation and graph summary using discriminator. GRACE (Zhu et al.,
2020b) and GCA (Zhu et al., 2020a) learn discriminative representations by maximizing
the agreement of nodes between different augmented views. BGRL (Thakoor et al., 2021)
utilizes the asymmetric network structure, which achieved by adding a prediction layer and
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applying stop-gradient, and updating the target network using the exponential moving av-
erage from the online network. CCA-SSG (Zhang et al., 2021) employs an additional loss
function that enforces the cross-correlation matrix of two views’ representations close to an
identity matrix.

3. Approach

3.1. Model Framework

In this paper, an efficient graph contrastive learning method called GWGCL is de-
veloped, which addresses the issue of dimension collapse by applying feature whitening
to remove redundancy between feature dimensions, without the use of negative samples.
GWGCL consists of four main components: 1) a graph augmentation generator, 2) a en-
coder based on GNN (Graph Neural Network), 3) the group whitening technology, and
4) a loss function that constraints consistency among positive samples. The framework of
GWGCL is illustrated in Figure 1 and the pseudo-code is in Appendix C.

Shared EncoderShared Encoder ConsistencyConsistency
LossLoss

DataData
AugmentationAugmentation

GW

GW

Figure 1: GWGCL first builds two augmentation views through a graph augmentation
generator, then uses a shared encoder to generate node representations and performs group
whitening (GW), and finally utilizes the consistency loss function to constrain the similarity
between positive samples.

For a single graph G = (A,X), X ∈ RN∗F and A ∈ RN∗N respectively represent the
feature matrix and adjacency matrix, where N is the number of nodes in the graph, and
F represents the feature dimension. GWGCL first generates two views G1 = (A1, X1)
and G2 = (A2, X2) of G by applying graph augmentation, and then generates node repre-
sentations Z1 and Z2 from the augmentation graph using a GNN encoder. Among them,
Z1, Z2 ∈ RN∗D and D represent the dimensions of the learned representations, and then
whiten the learned node representations to achieve uniformity. Finally, the consistency loss
function is used to constrain positive samples to express similarity and ensure alignment.
Next, we will introduce graph data augmentation, encoder, group whitening strategy and
consistency loss function in detail.



Graph Contrastive Learning with Group Whitening

3.2. Data Augmentation

Contrastive learning learns representations by maximizing the consistency between dif-
ferent augmentation views of the same data. Data augmentation technology is very impor-
tant in contrastive learning. We use simple graph data augmentation techniques to ensure
fair comparison with existing graph contrastive learning methods. We introduce two stan-
dard methods of random graph data augmentation commonly used in previous work: edge
deletion(ED) and feature mask(FM). Edge deletion refers to randomly deleting some edges
from the original graph, while feature Mask refers to randomly masking some features of
all nodes, setting the feature value to 0. Given an edge deletion rate βe and a feature mask
rate βf , the graph augmentation process is described as follows:

Ĝ = ED (FM (G, βf ) , βe) . (2)

Given a graph G, two augmentation graphs Ĝ1 and Ĝ2 are obtained by performing edge
deletion and feature mask operations on the original graph G.

3.3. Encoder

GNNs have emerged as one of the standard tools to learn graph-structured data. Mathe-
matically, based on the unique message passing mechanism, through the k-th layer of GNNs,

the learned representation vector z
(k)
i of each node vi is obtained by:

z
(k)
i = Aggregate({z(k−1)

j | ∀j ∈ N (i) ∪ i}; θ), (3)

where N (i) denotes the neighbor set of node i and aggregate function denotes the combi-
nation operator (e.g., sum, mean, or max) on the neighborhood representations.

3.4. Group Whitening

We perform ZCA whitening (Bell and Sejnowski, 1997) operation on the learned node
representations H = {h1, . . . , hB} ∈ RB∗D which is a batch of D-dimensional vector. The
output obtained after ZCA whitening is vector Z = {z1, . . . , zB} ∈ RB∗D. The specific
calculation method is as follows:

Z = QΛ−1/2QT Ĥ, (4)

where Ĥ is the zero-mean matrix of H, Ĥd,b = Hd,b − 1
B

∑B
k=1Hd,k, Λ ∈ RD∗D is the

diagonal matrix of eigenvalues, Q ∈ RD∗D is the eigenvector, satisfying ĤĤT = QΛQT .
ZCA whitening assumes that ĤĤT ∈ RD∗D is a full rank matrix. The output matrix Z
of ZCA is a zero-mean matrix, therefore we can compute the covariance matrix by the
following formula:

ZZT = QΛ−1/2QT ĤĤTQΛ−1/2QT

= QΛ−1/2QTQΛQTQΛ−1/2QT

= QΛ−1/2ΛΛ−1/2QT

= QQT = I.

(5)
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It can be found that the output matrix Z obtained after ZCA whitening satisfies the
property of dimensional decorrelation. In addition, in order to improve efficiency, we utilize
the group whitening strategy. The grouping strategy can not only improve flexibility, but
also improve computational efficiency.

Ĥ ∈ RB∗D must have at least D ranks, and since the row-mean of matrix Ĥ is 0,
its rank is constrained by B − 1, indicating that the size of batch B is at least D + 1.
This greatly limits the flexibility of ZCA whitening, as either the number of dimensions in
the representation space must be limited or the batch size must be adjusted. For group
whitening, the batch size only needs to be scaled based on the group size G.

Another advantage of group whitening is that it improves efficiency. Without grouping,
the computational cost of a single ZCA whitening is O

(
BD2

)
, where B is the size of

batch and D is the dimension of representations. Compared to the non group whitening
method, the group whitening operation with the group size of G only requires O (BDG)
computational cost, which has significant advantages.

3.5. Consistency Loss

After obtaining the representations of augmented views, we use the Mean Squared Er-
ror(MSE) loss to constrain the similarity between positive samples. The MSE loss is ob-
tained by calculating the squared difference between the predicted values and the ground
truth. It can also measure the similarity between two vectors, where a smaller value indi-
cates a closer relationship. The mathematical form of lMSE is as follows:

lMSE (z1, z2) = ||z1 − z2||22 , (6)

where z1 and z2 represent the embeddings obtained by encoding a pair of positive samples.

4. Experiments

In this section, extensive experiments will be conducted to evaluate the effectiveness of
our proposed GWGCL by answering the following questions:

• Q1: Does GWGCL demonstrate superior performance in semi-supervised node clas-
sification tasks compared to current graph contrastive learning methods?

• Q2: Is our GWGCL better than the current graph contrastive learning methods in
graph classification tasks?

• Q3: How do different BN layers and related hyperparameters affect the performance
of GWGCL?

4.1. Node Classification

Datasets and Baselines. We conduct experiments on the commonly used citation net-
works (Cora, CiteSeer and PubMed) and Amazon co-purchase networks (Amazon Computer
and Amazon Photo). For citation networks, following the widely used standard split pro-
posed by Kipf and Welling (2017), we use 20 labeled nodes per class for training, 500 nodes
for validation and 1000 nodes for testing. For Amazon co-purchase networks, we follow the
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experimental settings of BGRL (Thakoor et al., 2021) and CCA-SSG (Zhang et al., 2021),
and randomly divides these two datasets into 0.1/0.1/0.8. The statistics of datasets are pre-
sented in Table 1. GWGCL was compared with classical supervised models GCN (Kipf and
Welling, 2017), GAT (Veličković et al., 2018), and the current graph contrastive learning
methods, such as DGI (Veličković et al., 2019), MVGRL (Hassani and Khasahmadi, 2020),
GRACE (Zhu et al., 2020b), BGRL (Thakoor et al., 2021), CCA-SSG (Zhang et al., 2021),
GGD (Zheng et al., 2022), MA-GCL (Gong et al., 2023), and GREET (Liu et al., 2023).

Table 1: Statistics of datasets used in node classification task.

Datasets Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Computer 13,752 245,861 767 10
Photo 7,650 119,081 745 8

Experiments Settings. GWGCL follows the widely used graph contrastive learning eval-
uation standard, which is proposed by DGI (Veličković et al., 2019): 1) In representation
learning stage, by optimizing the objective function in GWGCL, the GCN encoder is trained
in an unsupervised manner; 2) In classification evaluation stage, the parameters of the GCN
encoder are fixed, the original graph is fed to the encoder to get the node representations,
and finally the node representations are input into a linear classifier and trained to generate
predictive labels for the nodes. In the second stage, only the nodes in the training set are
used to train the Linear classifier, and then the best classifier parameters are selected by the
performance of validation set. This paper implemented the representation learning stage
and linear classification stage of this model using PyTorch and Adam optimizers (Kingma
and Ba, 2014). All experiments were conducted on an NVIDIA TitanRTX GPU with 24GB
of memory. A standard two-layer GCN (Kipf and Welling, 2017) model was used as the
encoder in all datasets except CiteSeer, as experiments have shown that a single layer GCN
has better performance in CiteSeer. We tune group size from {16, 32}, embedding dimension
from {512, 1024} and augmentation rate from {0.1, 0.2, . . . , 0.7}.

Results Analysis. The experimental results are shown in Table 2. We can make the
following observations to answer research question Q1.

❶ Our proposed GWGCL exhibits significantly superior performance compared with the
current graph contrastive learning methods. We can find that BGRL, CCA-SSG, and
GWGCL without using negative samples have achieved good performance, indicating the
feasibility of not using negative samples to improve efficiency. In addition, CCA-SSG and
GWGCL exhibit better classification performance compared to BGRL, indicating that fea-
ture decorrelation can satisfy the uniformity in contrastive learning. Although the architec-
ture of the proposed GWGCL is simple, it outperforms current graph contrastive learning
methods on used datasets other than computer. And the experimental results show that
the classification performance of GWGCL is better than that of BGRL with asymmetric
structure and CCA-SSG with decorrelation loss function, which shows the effectiveness of
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ZCA group whitening in realizing feature decorrelation. In addition, the implementation
of ZCA whitening is much simpler than BGRL’s asymmetric structure and CCA-SSG’s
decorrelation loss function.

Table 2: Test Accuracy (%) for different methods on five datasets. In addition, we show
the best and runner-up results are highlighted with bold and underline, respectively. We
run 10 times and report the mean ± standard deviation.

Methods Cora CiteSeer Pubmed Computer Photo

GCN 81.7± 0.7 71.4± 0.5 79.1± 0.3 86.5± 0.5 92.4± 0.2
GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3 86.9± 0.3 92.6± 0.4

DGI 82.3± 0.6 71.8± 0.7 76.8± 0.6 84.0± 0.5 91.6± 0.2
MVGRL 83.5± 0.4 73.3± 0.5 80.1± 0.7 87.5± 0.1 91.7± 0.1
GRACE 81.9± 0.4 71.2± 0.5 80.6± 0.4 86.3± 0.3 92.2± 0.2
CCA-SSG 84.2± 0.4 73.1± 0.3 81.6± 0.4 88.7± 0.3 93.1± 0.1
BGRL 82.7± 0.6 71.1± 0.8 79.6± 0.5 90.3± 0.2 93.2± 0.3
GGD 83.9± 0.4 73.0± 0.6 81.3± 0.8 90.1± 0.9 92.5± 0.6

MA-GCL 83.3± 0.4 73.6± 0.1 83.5± 0.4 88.8± 0.3 93.8± 0.1
GREET 83.8± 0.9 73.1± 0.8 80.3± 1.0 87.9± 0.4 92.9± 0.3

GWGCL 84.5± 0.8 74.3± 0.6 81.9± 0.5 88.9± 0.4 93.3± 0.2

(a) GRACE (b) CCA-SSG (c) GWGCL

Figure 2: The t-SNE embeddings of nodes in the Cora dataset.

❷ The GWGCL learns to concentrate node embeddings of the same class within compact
space. To better understand the effect of GWGCL, we utilize t-SNE (Van der Maaten
and Hinton, 2008) to visualize the node representations learned by GRACE, CCA-SSG
and GWGCL in Figure 2. Our analysis focuses exclusively on the Cora dataset due to its
minimal number of nodes. We can find that our GWGCL can exhibit 2D projections with
more coherent shapes of clusters. Therefore, GWGCL can obtain representations that are
beneficial for classification tasks.

❸ Our GWGCL effectively relieves the problem of over-smoothing. Over-smoothing
which suggests that as the number of layers increases, the representations of the nodes in
GCN are inclined to converge to a certain value and thus become indistinguishable (Chen
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et al., 2020a; Gasteiger et al., 2018). We analyse the impact of model depth (number of
layers) on node classification performance in Figure 3. When increasing the model depth,
GWGCL performs consistently better than GCN, GRACE and CCA-SSG at each layer.
This is because whitening operation constrains the divergence between nodes and decorre-
lates the dimensional information.
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Figure 3: Left: The effect of embedding dimension on citation networks. Middle: The effect
of different augmentation rates on Cora. Right: The test accuracies of GCN, GRACE, CCA-
SSG and GWGCL on Cora with different layers.

4.2. Graph Classification

Datasets and Baselines. For graph classification task, we conduct experiments on TU-
Dataset (Morris et al., 2020), including PROTEINS, DD, MUTAG, COLLAB and REDDIT-
B. The statistics of datasets are presented in Table 3. In order to verify the effectiveness of
GWGCL, we compare classical graph kernel methods, including WL (Shervashidze et al.,
2011) and DGK (Yanardag and Vishwanathan, 2015), and also compare with current graph
unsupervised and contrastive methods, such as graph2vec (Narayanan et al., 2017), MV-
GRL (Hassani and Khasahmadi, 2020), Infograph (Sun et al., 2019), GraphCL (You et al.,
2020), JOAO (You et al., 2021) and SimGRACE (Xia et al., 2022).

Table 3: Statistics of datasets used in graph classification task.

Datasets Graphs Avg. Node Avg. degree Classes

PROTEINS 1,113 39.06 1.86 2
DD 1,178 284.32 715.66 2

MUTAG 188 17.93 19.79 2
COLLAB 5,000 74.49 32.99 3
RDT-B 2,000 429.63 1.15 2

Experiments Settings. For the evaluation protocol, following Sun et al. (2019), after
generating graph embeddings with GIN (Xu et al., 2018) encoder and readout function,
we feed graph-level representations into a SVM classifier to predict the label of graph, and
report the mean 10-fold cross-validation accuracy with standard deviation after 5 runs.
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Table 4: Test Accuracy (%) on five graph classification datasets.

Methods PROTEINS DD MUTAG COLLAB RDT-B

WL 72.92± 0.56 − 80.72± 3.00 − 68.82± 0.41
DGK 73.30± 0.82 − 87.44± 2.72 − 78.04± 0.39

graph2vec 73.30± 2.05 − 83.15± 9.25 − 75.78± 1.03
MVGRL − − 75.40± 7.80 − 82.00± 1.10
InfoGraph 74.44± 0.31 72.85± 1.78 89.01± 1.13 70.65± 1.13 82.50± 1.42
GraphCL 74.39± 0.45 78.62± 0.40 86.60± 1.34 71.36± 1.15 89.53± 0.84
JOAO 74.55± 0.41 77.32± 0.54 87.35± 1.02 69.50± 0.36 85.29± 1.35

JOAOv2 74.07± 1.10 77.40± 1.15 87.67± 0.79 69.33± 0.34 86.42± 1.45
SimGRACE 75.35± 0.09 77.44± 1.11 89.01± 1.31 71.72± 0.82 89.51± 0.89

GWGCL 74.89± 0.54 78.83± 0.33 89.68± 2.27 72.82± 1.06 90.31± 0.37

Table 5: Summary of classification results for different representation methods (percentage
accuracy).

Methods Cora CiteSeer MUTAG RDT-B

None 57.3 46.1 86.7 86.8
BN 79.4 70.9 88.1 87.3

Whitening 83.2 73.5 88.6 89.9
Group Whitening 84.5 74.3 89.7 90.3

Result Analysis. The experimental results are shown in Table 4. We show the best
results in bold. We can make the following observations to answer research question Q2.

❹ Our GWGCL exhibits superior performance compared with the current graph con-
trastive learning methods on graph classification tasks. We report results from previous
papers if available. We find that GWGCL outperforms all self-supervised baselines on four
out of five datasets and has competitive results on PROTEINS. The experimental results
show that our GWGCL has a wide range of applications.

4.3. Ablation Study and Efficiency Analysis

Effect of Group Whitening. ❺ Group whitening is critical in our GWGCL framework.
In order to further validate the benefits of feature whitening, four experimental settings,
namely standard BN layer, ZCA whitening, ZCA grouping whitening, and no processing,
were evaluated on Cora, CiteSeer, MUTAG and RDT-B. The results were reported in Table
5. It can be observed that compared to not performing any operations, the addition of BN
and whitening significantly improved the performance of both datasets, demonstrating the
importance of feature divergence. And the effect of feature whitening is better than BN,
which reflects the advantage of feature decorrelation. Finally, the effect of grouping whiten-
ing is stronger than feature whitening, indicating that grouping operation can improve the
flexibility of feature whitening.
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Table 6: Efficiency Analysis of GWGCL.

Methods
Cora PubMed

Time(s) Memory(MB) Time(s) Memory(MB)

GRACE 0.02 1355 0.34 12327
BGRL 0.02 1589 0.15 2279

CCA-SSG 0.02 1324 0.09 2056
GWCCL 0.02 1263 0.05 1814

Effect of Embedding Dimension. ❻ Unlike supervised models, such as GCN and GAT,
GWGCL requires a larger representation dimension to show superior performance. Figure 3
shows the impact of the representation dimension in the citation networks. Through ex-
periments, it is found that the appropriate number of dimensions in the Cora and PubMed
datasets is 512, and the optimal number of dimensions in CiteSeer is 1024, which is slightly
larger than the current graph contrastive learning methods. Appendix B provides more
information on the performance of GCN and GAT in different dimensions, which suggests
that GCN and GAT do not benefit from the larger dimensions. Through the experimental
results in the Figure 3, it can be found that the classification performance of GWGCL
decreases when the number of dimensions is set too large or too small.

Effect of Data Augmentation. ❼ The augmentation ratio also plays a crucial role in
graph contrastive learning. From the results in Figure 3, it can be found that compared
to using only a single graph data augmentation method, combining feature mask and edge
deletion can achieve better performance, indicating the necessity of mining difficult positive
samples. At the same time, it can also be found that either too large or too small aug-
mentation rates will result in poor classification performance. It is speculated that when
the augmentation rate is too small, the generated positive samples are relatively close, and
bringing the positive samples closer cannot be a challenging excuse task. However, when
the augmentation rate is excessively increased, it will excessively change the structure and
feature attributes of the graph, thereby damaging the key information of the nodes, causing
two augmentation samples of the same node to be unable to serve as positive samples of
each other can also lead to a significant decrease in classification performance.

Efficiency Analysis. ❽ GWGCL is a simple and effective graph contrastive learning
method. We analyze the efficiency of GWGCL and observe whether it has significant ad-
vantages compared to the current graph contrastive learning methods. Table 6 compares
the training time (training time per epoch) and memory overhead of GWGCL with other
graph contrastive learning methods on the Cora and Pubmed datasets. Overall, GWGCL
has shorter training time and less memory cost, and has significant efficiency advantages.

5. Conclusion and Discussions

In this paper, we first introduce the reason why the negative samples based contrastive
learning methods are successful is that the InfoNCE loss function satisfies the alignment
and uniformity, pulls positive samples closer to ensure the alignment, and pushes away the
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negative samples to achieve the uniformity. In order to improve the efficiency of graph
contrastive learning, the current method aims to achieve uniformity without using negative
samples. In order to solve the problem of dimension collapse in contrastive learning, we
proposes a graph contrastive learning method GWGCL based on feature whitening, which
utilizes ZCA group whitening to make the learned representations diverge and ensure the
uniformity. Then, consistency loss is used to constrain the consistency between positive
samples to ensure the alignment. Finally, the effectiveness of GWGCL in graph represen-
tation learning was demonstrated through experiments.
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Appendix A. Framework of Graph Classification
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Table 7: Test Accuracy (%) for different embedding dimensions on five datasets.

Methods Cora CiteSeer PubMed Computer Photo

GCN-64 81.7± 0.7 71.4± 0.5 79.1± 0.3 86.5± 0.5 92.4± 0.2
GCN-512 81.5± 0.5 71.7± 0.3 79.3± 0.4 86.2± 0.4 92.1± 0.2
GAT-8 83.0± 0.7 72.5± 0.7 79.0± 0.3 86.9± 0.3 92.6± 0.4
GAT-64 83.2± 0.6 72.1± 0.8 79.2± 0.4 87.2± 0.2 92.9± 0.3

Table 8: Test Accuracy (%) for different methods on Ogbn-Arxiv.

Methods Ogbn-Arxiv

GCN 71.74± 0.29
GWGCL 71.23± 0.34

Appendix B. Supplementary Experiments

Appendix C. Algorithm

We provide the pseudo code for our GWGCL about node classification tasks.

Algorithm 1 Algorithm for GWGCL

Input: original graph G, encoder fθ, number of iterations E, the edge deletion rate βe and
the feature mask rate βf

Output: Node embeddings
for 1 ≤ i ≤ E do

Ĝ1 = ED (FM (G, βf ) , βe) , Ĝ2 = ED (FM (G, βf ) , βe) ;
/* Generate two augmentation graphs. */

Z1 = fθ

(
Ĝ1

)
,Z2 = fθ

(
Ĝ2

)
;

/* Get node embeddings in augmentation graphs through the encoder */
Group whitening for node representations according to Eq 4;
Calculate the loss function L according to Eq 6;
▽θ [L] ;

end
Get node embeddings in the original graph, Z = fθ (G) , where θ is the frozen parameters
of the encoder.
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