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Abstract

This paper introduces two key contributions aimed at improving the speed and quality of
images generated through inverse diffusion processes. The first contribution involves repa-
rameterizing the diffusion process in terms of the angle on a quarter-circular arc between
the image and noise, specifically setting the conventional

√
ᾱ = cos(η). This reparameteri-

zation eliminates two singularities and allows for the expression of diffusion evolution as a
well-behaved ordinary differential equation (ODE). In turn, this allows higher order ODE
solvers such as Runge-Kutta methods to be used effectively. The second contribution is
to directly estimate both the image (x0) and noise (ϵ) using our network, which enables
more stable calculations of the update step in the inverse diffusion steps, as accurate esti-
mation of both the image and noise are crucial at different stages of the process. Together
with these changes, our model achieves faster generation, with the ability to converge on
high-quality images more quickly, and higher quality of the generated images, as measured
by metrics such as Fréchet Inception Distance (FID), spatial Fréchet Inception Distance
(sFID), precision, and recall.

Keywords: Diffusion Model; Estimating Image and Noise; ODE; Faster Converge; Better
Quality

1. Introduction

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020), which have emerged as
powerful tools, are capable of generating synthetic images that exhibit both high quality
and diversity. These models leverage the concept of gradual image refinement through a
diffusion process, where noise is sequentially transformed into realistic images. The ability
to generate visually appealing and realistic images has found applications in various fields,
such as data augmentation, computer vision, and image synthesis.

Significant progress has been made in recent years in advancing diffusion models, either
by improving the empirical performance Nichol and Dhariwal (2021b); Song et al. (2020a);
Song and Ermon (2020) or by extending the capabilities of the models from a theoretical
perspective Lu et al. (2022a); Lu et al. (2022d); Song et al. (2021); Song et al. (2020b),
leading to improvements in image quality and generation capabilities. However, the current
diffusion models face a limitation in terms of time inefficiency during the inference process,
particularly in models that utilize noise as the target object Ho et al. (2020); Nichol and
Dhariwal (2021b); Song et al. (2020a). This inefficiency is due to the substantial amount of
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time required in the initial stages of sampling, where the model progresses from pure noise
to low-quality images. Meanwhile, models that use images as the target object Bansal et al.
(2022), do not encounter the same issues as noise-based diffusion models, as they can achieve
a faster transition from pure noise to low-quality images. However, these models still face
the challenge of directly estimating the image, which becomes increasingly difficult at the
final stage of the diffusion process when the input is dominated by noise. Consequently,
this difficulty leads to a lower performance of the final result than the noise-based diffusion
model.

To address these limitations, in this paper, we propose a novel approach that combines
the advantages of both noise-targeted training and image-targeted training in the diffusion
process. By simultaneously incorporating noise and actual images as training objectives, our
model aims to overcome the aforementioned limitations and achieve superior performance
in terms of both result quality and diversity. Figure 1 depicts our model architecture and
concepts.

Figure 1: The overview of our model architecture and concept. It depicts how our system
diffuses from input images to images with noise, eventually leading to pure noise.
The figure also showcases our sampling process, which utilizes gradients to gen-
erate images from noise.

Overall, our framework proposes several practical and theoretical contributions,

• Our approach develops a new and efficient parameterization technique that results in
an innovative noise scheduler. In Section 5.1 of the ablation experiments, we describe
that this approach improves the overall quality of generated images while reducing
the number of steps needed to produce high-quality results.
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• Our proposed model significantly improves over traditional models that only estimate
images or noise separately. Our model is trained to simultaneously predict both
noise and images, which improves the estimate of the gradient at each timestep. We
use gradients as a loss function to update the model, which enhances controllability
during image generation. Additionally, we utilize gradient information to optimize
the generation process during the reversed process. Our model obtains higher quality
and more realistic results by calculating the gradient information of the current state
and using that information to update the steps more accurately and stable, and the
results are shown in Section 5.

2. Background and Related Work

In this section, a brief introduction is provided regarding the relevant work that our model
is built upon.

The concept of diffusion models Sohl-Dickstein et al. (2015);Ho et al. (2020) is rooted in
non-equilibrium thermodynamics, wherein the diffusion and reverse processes act as Markov
chains. Unlike other approaches to generative modelling such as Variational Autoencoders
(VAEs, Kingma and Welling (2013)), normalizing flows (Rezende and Mohamed (2015)),
or Generative Adversarial Networks (GANs, Goodfellow et al. (2020)), the purpose of the
diffusion model is to describe the distribution of the data by gradually reducing the noise
or uncertainty of the input, and the latent space has the same dimensionality as the input
space.

2.1. Noise-based diffusion models

The majority of diffusion models Kong et al. (2020); Song et al. (2020a); Nichol and Dhari-
wal (2021a); Roman et al. (2021); Rombach et al. (2021) are trained by adding Gaussian
noise to the images to generate noisy samples, and feeding them into the U-Net network Ron-
neberger et al. (2015) for predicting the added noise. This process is effective because incor-
porating noise prediction into the training procedure can effectively disentangle the noise
from the underlying signal, allowing for a more accurate and robust generation of samples,
and alleviating the burden of explicitly modelling complex data patterns. The first widely
followed and used model is the Denoising diffusion probabilistic models (DDPMs, Ho et al.
(2020)), latent variable models that utilise a Markov chain concept. These models have
learned Gaussian transitions that begin with a Normal distribution p(xT ) ∼ N (xT ;0, I) in
the following form:

pθ(x0) :=

∫
pθ(x0:T )dx1:T , pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (1)

where x1, x2, ..., xT keep the same shape with x0, θ means the weights of neural networks,
commonly using the U-net structure, and the pθ(x0:T ) is defined as the reverse process. The
parameters θ are trained to match the data distribution q(x0) by maximizing a variational
lower bound by optimizing the negative log-likelihood.

LV LB = max
θ

Eq(x0:T )

[
log

q(x1:T |x0)
pθ(x0:T )

]
≥ max

θ

[
−Eq(x0) [log pθ(x0)]

]
(2)
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where the q(x1:T |x0) follows a Markov chain that systematically introduces Gaussian noise to
the data, following a pre-determined variance schedule βt ∈ (0, 1)Tt=1, named as the forward
process or diffusion process. Ho et al. (2020) defines βt as a sequence of linearly increasing
constants from β1 = 0.0001 to βT = 0.02.

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1), where q(xt|xt−1) ∼ N (xt;
√

1− βtxt−1, βtI) (3)

Then, by employing the reparameterization trick Rezende and Mohamed (2015), the con-
ditional distribution q(xt|xt−1) can be expressed as a closed form.

xt =
√
1− βtxt−1 +

√
βtϵt−1, where ϵt−1 ∼ N (0, I)

Let αt = 1− βt and ᾱt =
∏t

i=1 αi,

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (4)

Among them, the linear design of the βt in Ho et al. (2020) causes most of the values in
ᾱt to be concentrated near 0, as shown in the Figure 3, thus causing inefficiencies in the
sampling process.

Combining Equation (4), we can simplify the objective function defined by Equation (2)
to,

Ex0,ϵ

[
C∥ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ∥

]
, where C is an constant. (5)

However, DDPM Ho et al. (2020) suffers from limitations in inference due to its Markov
chain-based framework, leading to computational burden and extended inference times.

By addressing the limitations of DDPM, Denoising Diffusion Implicit Models (DDIM, Song
et al. (2020a)) improve inference by utilizing non-Markovian methods and implicit models
to reduce the computational burden and enable faster and more efficient inference, without
changing the training process. Song et al. (2020a) proposes that comparing the FID score
of DDPM, the DDIM model can obtain lower fid values when the number of steps is below
1000, but the DDPM model achieves better results when the number of steps is equal to
1000.

The forward process of Equation (3) from DDPM is that the xt only rely on xt−1 based
on Markovian, and the DDIM derives such forward process from Bayes’ rule,

qσ(xt|xt−1, x0) =
qσ(xt−1|xt, x0)qσ(xt|x0)

qσ(xt−1|x0)

where the hyper-parameter σ is utilized to regulate the stochastic nature of the forward

process, then qσ(xt−1|xt,x0) defines as N (
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtx0√

1− ᾱt
, σ2

t I).

For the σt = 0 setting in DDIM, the forward process is deterministic except for t = 1, given
the values of xt−1 and x0.

Then, the reverse process from sample xt to the generated sample xt−1 can be defined
as (setting the σ = 0)

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ϵθ(xt), where x̂0 =

xt −
√
1− ᾱtϵθ(xt)√

ᾱt
(6)
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Meanwhile, there are various methods Song et al. (2020c); Lu et al. (2022b); Lu et al.
(2022c) that share a similar motivation with noise-based diffusion models, but they rely
on score matching during the reverse process. However, such type of diffusion models are
known to have certain limitations, such as difficulty in initial stage learning and limited
control over sample generation.

2.2. Image-based diffusion models

Some models use a different approach to train generative models. Instead of predicting
noise, they train the models to predict images directly Bansal et al. (2022); Hoogeboom
and Salimans (2022). This method simplifies the training process by focusing on learning
patterns and structures within input images. By predicting images, these models take
advantage of the inherent advantages of images, such as spatial coherence and semantic
information, to create high-quality samples. This approach can speed up the learning
process, as the initial prediction stages provide meaningful visual information for generating
samples. The aim of using image prediction is to capture the essence of the underlying data
distribution and generate visually appealing and coherent outputs.

Cold Diffusion Bansal et al. (2022), as the first model to introduce this concept into
diffusion models, defines Equation (3) as the broader concept of ”degradation”, which is
defined as x0 by operation D with the timestep t, denoted as xt = D(x0, t).

Correspondingly, the reverse process is also defined as the ”restoration”, which is an
operation to approximately invert operation D, denoted as R, implemented by a neural
network with theta as the parameter.

Rθ(xt, t) ≃ x0.

Therefore this objective function becomes,

min
θ

E [∥Rθ(D(x0, t)− x0∥] (7)

The sampling for Cold Diffusion can be defined as

xt−1 = D(x̂0, t− 1).

When using noise-based degradation D(x0, t) =
√
ᾱtx0 +

√
1− ᾱtϵ, the sampling process

becomes deterministic, which is similar to Equation (6) defined in DDIM Song et al. (2020a),

xt−1 =
√
ᾱt−1Rθ(xt, t) +

√
1− ᾱt−1ϵ̂(xt, t), ϵ̂(xt, t) =

xt −
√
ᾱtRθ(xt, t)√
1− ᾱt

(8)

Although image-based diffusion models are useful, they have certain limitations. Specif-
ically, they struggle to capture long-range dependencies and can be computationally com-
plex. Hence, we introduce a novel architecture to eliminate the limitations of noise-based
or image-based models while retaining the advantages of both.
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3. Methodology

Through examining various categories of diffusion models, it becomes apparent that there
are numerous opportunities for enhancing and improving these models. Firstly, proposing a
more effective noise scheduler in Section 3.1. Secondly, pursuing the simultaneous estimation
of both images and noise in Section 3.2. Lastly, utilizing gradient descent to improve the
stability of the sampling process in Section 3.3.

3.1. Noise Scheduler

In the forward process, DDPM, DDIM and noise-based Cold Diffusion all rely on Equa-
tion (4) with the square root parameterization. This definition leads to two singularities
at t = 0 and t = T (dxt

dᾱ → ∞) and also causes more steps to be required in the reverse
diffusion process.

We propose changing the parameterization to:

xt = cos(ηt)x0 + sin(ηt)ϵ. where ηt =
t

T

π

2
, t ∈ {0, 1, 2, ..., T}. (9)

where mapping the
√
ᾱt to cos(ηt) and

√
1− ᾱt to sin(ηt).

The benefit of our new parameterization approach is to avoid the problem of singularities
that existed in previous methods. This has the benefit of allowing us to express the reverse
diffusion processes as an ordinary differential equation (ODE) in continuous time, as shown
in Fig 1. In turn, this enables us to replace the commonly used Euler step method with
higher order ODE solvers such as Runge-Kutta methods.

Recalling the parameterization equation in DDIM defined in Equation (4), there are two
singularities at t = 0 and t = T when computing the gradient for this formula,

xtᾱt = (
√
ᾱtx0 +

√
1− ᾱtϵ)ᾱt =

1

2
√
ᾱt

x0 −
1

2
√
1− ᾱt

ϵ,

When t = 0, ᾱt = 0, xtᾱt|ᾱt=0 → +∞,

When t = T, ᾱt = 1, xtᾱt|ᾱt=1 → −∞.

However, our new parameterization formula defined in Equation (9) can remove the singu-
larities,

xtηt = (cos(ηt)x0 + sin(ηt)ϵ)ηt = − sin(ηt)x0 + cos(ηt)ϵ,

When t = 0, ηt = 0, xtηt|ηt=0 = ϵ,

When t = T, ηt =
π

2
, xtηt|ηt=π

2
= −x0.

With the new parameterization defined in Equation (9), we can back-derive an equivalent
schedule for ᾱt and βt.

ᾱt = cos2(ηt)

βt = 1− cos2(ηt)

cos2(ηt−1)
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In Figure 2 and Figure 3, comparing the traditional linear noise schedule Ho et al. (2020)

and JSD schedule, which is defined as βt =
1

t
, t ∈ {1, 2, 3, ..., T}, we found that our schedule

makes the forward process smoother and does not cause the problem of information loss
due to sudden drops as in the linear scheme. In practice, we also found that using this
schedule would be beneficial in balancing the contribution of image loss and noise loss, in
Section 3.2.

Figure 2: The βt schedule changes with in-
creasing diffusion steps.

Figure 3: The ᾱt changes with increasing dif-
fusion steps.

3.2. Simultaneous Estimation of Image and Noise

In the objective function, DDPM Ho et al. (2020) and DDIM Song et al. (2020a) train the
generative models by estimating the noise, and Cold Diffusion Bansal et al. (2022) fits the
generative model by predicting the image directly.

Noise-based diffusion models offer certain advantages, particularly in the later stages of
sampling where the process becomes simpler and clearer due to the subtraction of noise.
However, starting from pure noise during the initial stages of sampling can pose learning
challenges because of the presence of noise-dominated data. In contrast, image-based diffu-
sion models exhibit the opposite characteristics. In the initial stages of sampling, they begin
with actual images, which facilitates the learning process by providing meaningful informa-
tion from the start. However, during the later stages of sampling, the complexity increases
as the model needs to manipulate and transform the images to generate new samples.
Therefore, by simultaneously predicting both noise and images, we aim to overcome the
limitations of each approach and achieve a more controllable sampling process. By utilizing
joint prediction, we can harness the benefits offered by both noise-based and image-based
diffusion models. This approach provides improved control and flexibility throughout the
sampling process, as the Figure 4 shows.

As shown in Figure 4, during the initial steps of the inference stage, the image recon-
struction error is lower when estimating both the image and noise, compared to estimating
the noise only and using it to derive the image. In the final steps of the inference stage,



Zhang Ehinger Drummond

both image and noise reconstruction errors are lower when both are estimated together,
compared to models that estimate image only or noise only.

Figure 4: Image reconstruction error (left) and noise reconstruction error (right) at infer-
ence for a model that estimates both noise and image, compared to models that
estimate only one of these. Lines indicate average MSE and the shaded area
indicates the standard variance of MSE.

Hence, by combining Equation (5) and Equation (7), we derive the desired loss function
for our model.

min
θ

E [∥Rθ(xt, t)− x0∥+ ∥ϵθ(xt, t)− ϵ∥]

3.3. Sampling with Gradient Update

From Figure 1, we can conceptualize the entire diffusion process as the progress of starting
from an initial image x0 and progressively reducing the level of the image along a curve
until obtaining pure noise ϵ. Hence, we can consider discovering an image from noise as an
iterative optimization process that implements gradient descent to seek the solution. We
take the gradient of Equation (9) to get the ground-truth gradient.

ẋt = η′t [− sin(ηt)x0 + cos(ηt)ϵ] . (10)

Then, the estimated gradient is,̂̇xt = η′t [− sin(ηt)Rθ(xt, t) + cos(ηt)ϵθ(xt, t)] . (11)

In practice, we have observed that incorporating the gradient of the loss as part of the
objective function significantly improves the performance of the model. Then, we obtain
the final objective function,

min
θ

E
[
∥Rθ(xt, t)− x0∥+ ∥ϵθ(xt, t)− ϵ∥+ γ∥̂̇x− ẋ∥

]
(12)
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where the γ is used to control the weight of gradient loss.
With the gradient update approach, our sampling process is,

xt−1 = xt −∆t
̂̇xt (13)

In practice, we can use techniques like Second Order Runge-Kutta (RK2) and Fourth Or-
der Runge-Kutta (RK4) Hairer et al. (1993), to extend the gradient function defined in
Equation (11) to improve performance.

4. Experiments Setup

Baseline Models. In our experiments, we use the noise-based diffusion models DDPMHo
et al. (2020) and DDIM Song et al. (2020a) and the image-based diffusion model Cold
Diffusion Bansal et al. (2022) as baseline models. By comparing these two types of models,
we can validate the improvements in performance that our contributions and model bring
to diffusion models. However, for the Cold Diffusion model Bansal et al. (2022), we found
that this model only allows for full-step inference. In other words, if our model is trained
with a total of 200 steps, we can only set it to 200 steps during the inference process to
achieve optimal performance. Comparing to Equation (6) in DDIM Song et al. (2020a)
and Equation (8) in Cold Diffusion Bansal et al. (2022), we can conclude that they are
from similar ideas, the only difference is that one is to estimate the noise and the other is
to predict the image. Models that predict noise tend to perform better than models that
predict images when the sampling steps are large. Therefore, we decided not to include it
in the experiment for comparison.

Datasets. We primarily evaluated the performance of our model using three datasets of
varying scales, CIFAR-10 (32× 32, Krizhevsky et al. (2009)), CelebA (178× 218, Liu et al.
(2015)), and LUSH (256×256, Yu et al. (2015)). For the UNet architecture model, achieving
good results often requires input images to have consistent width and height. To maintain
consistency with models’ data preprocessing in DDIM Song et al. (2020a), we performed
cropping on the CelebA dataset, resizing the original images from 178x218 to 64x64 Song
et al. (2020a). Additionally, in the LUSH dataset, we chose for evaluation a widely used
subset of outdoor church images which have dimensions 256x256.

Evaluation Metrics. We used four evaluation metrics to gauge the models’ perfor-
mances. The FID Heusel et al. (2017) metric is utilized to determine the divergence be-
tween the distribution of generated images and the distribution of actual images. Similarly,
sFID Nash et al. (2021) is also used to measure this divergence while maintaining spatial
information of the images. Additionally, precision indicates the fraction of the generated
images that match reality, and recall measures the coverage of the training data manifold
by the generator Kynkäänniemi et al. (2019).

Implementation Details. Our proposed method is built upon the DDIM model Song
et al. (2020a) as the base model, and we use the same trained model with T = 1000 with the
objective function from Equation (5) for each dataset. To mitigate the potential confusion
caused by varying iterations during model training, in our ablation experiments, we employ
models with parameters approximating the number of iterations used in the pre-training



Zhang Ehinger Drummond

model. This approach ensures that the compared models have a similar number of iter-
ations, reducing the confounding factor of iteration differences in performance evaluation.
In our experiments, we utilized pre-trained models from DDPM for LUSH Church and CI-
FAR10 datasets Ho et al. (2020), as well as a pre-trained model from DDIM for the CelebA
dataset Song et al. (2020a), as references.

5. Experiments Results

Figure 5: Comparing the performance of DDPM, DDIM and our method in FID↓, sFID↓,
Precision↑, and Recall↑ evaluation metrics in three different scale datasets,
CIFAR-10 (32×32), CelebA (64×64) and LUSH outdoor Church (256×256).
Top: Measuring the metrics value change with the diffusion steps increase in
the CIFAR-10 dataset. Middle: CelebA dataset. Bottom: LUSH outdoor
church.

In Figure 5 and Table 1, we conducted a comparison of sample quality from DDPM Ho
et al. (2020), DDIM Song et al. (2020a), and our model trained on CIFAR10, CelebA, and
Church datasets. The samples were evaluated based on FID, sFID, precision, and recall,
with variation in the number of time steps used for sample generation. In this figure, for
the FID score and sFID score, we can find that our model outperforms DDPM and DDIM
on all these three datasets, and the improvement is especially noticeable when the steps are
between 50 and 200. However, when the number of steps reaches 1000, in the CIFAR-10
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dataset, the FID value in DDPM is better than our model, since DDPM tends to get better
performance than DDIM when the maximum number of steps for training is the same as
the number of steps for inference. For the score of precision and recall, our model can
outperform the other two models in both CIFAR-10 and CelebA datasets, which means
that the accuracy and diversity of the results predicted by our model are better. For the
Church dataset, we observe that its results are similar to those of DDIM. Combined with the
experiments in Figure 8, we use these results to show that our model requires less training
time to obtain results similar to those of DDIM.

Figure 6: CIFAR-10 (32×32) samples with sampling steps 10, 50, 100, 200.

Figure 7: CelebA (64×64) samples with sampling steps 10, 50, 100, 200.

In Figures 6, 7 and 8, we present the images of CIFAR-10, CelebA, Church sampled
in DDPM Ho et al. (2020) model, DDIM Song et al. (2020a) model, and our method us-
ing the same number of sampling steps. The results show that, if the sampling steps are
10, the quality of DDPM’s sampling is notably inadequate. DDIM’s sampling quality is
considerably better than DDPM, although the image appears slightly blurred. However,
our model can achieve clearer outcomes than those of DDIM. Furthermore, we have made
an additional noteworthy observation through experiments. As the dimensions of training
images increase, the complexity of the training process also escalates. Models trained en-
tirely on noise, like DDIM Song et al. (2020a), and DDPM Ho et al. (2020), require longer
training times, e.g., at least 4,432,000 iterations for good performance on the LUSH outdoor
Church dataset. However, in our training phase, we improve the performance of the model
by simultaneously learning the underlying distribution of the images directly, which can be
observed in the Figure 8 that our model only needs 1,135,000 iterations to obtain similar
performance to DDIM and DDPM.

In addition, Figure 9 shows the advantage of our model over traditional models in that
it can be converted from noise to coarse realistic images much faster. From this figure, the
image generated from our model can be clearly seen as the object of a ”horse” by taking
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Figure 8: LUSH outdoor Church (256×256) samples with sampling step 10, 100, and Top:
is DDPM with a pre-trained model with 4432000 iterations, Middle: is DDIM
with the same pre-trained model with DDPM, Bottom: is Our method without
using gradient update in the sampling process and the model’s iterations are
1135000.

Figure 9: Example of a CIFAR-10 image estimation (x̂0 ) over 1000 sampling steps from
three models (Ours, DDPM, DDIM). These three results are derived from the
same noise input, which leads to different results due to different model parame-
ters and sampling methods.

roughly 150 steps, but the same process in DDIM or DDPM has to spend roughly 400 to
500 steps. This means that during sampling, our model can convert from pure noise to
normal images 3 times faster than DDPM and DDIM models.

Moreover, in Figure 10, we presented the results obtained at different sampling steps
from our model.

Table 1: To verify the stability of our model, we randomly selected three random seeds and
obtained an interval of the FID scores.

Steps 10 20 50 100 1000

CIFAR-10 9.50± 0.10 5.62± 0.04 4.57± 0.02 4.17± 0.05 3.70± 0.03
CelebA 22.70± 0.12 11.00± 0.10 4.05± 0.05 2.39± 0.03 2.20± 0.02
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Figure 10: Sampling from our model in different sampling step in CIFAR-10 dataset.

Table 2: DDIM+β∗ denotes the first contribution, which proposes a novel noise schedule.
DDIM+sin() represents the new parameterization method with cos(·)x0 + sin(·)ϵ.
Additionally, the DDIM+x̂0, ϵ̂ indicates the method of estimating noise and image
both. Ours represents our final model, which incorporates the contributions (β∗

and x̂0, ϵ̂) mentioned earlier and utilizes gradient information for image sampling.

CIFAR-10 CelebA
Steps 10 16 20 50 100 10 16 20 50 100

DDIM 18.67 12.67 11.06 7.08 5.64 16.92 15.68 13.38 9.00 6.40
DDIM+β∗ 15.04 10.77 9.28 6.00 4.92 23.03 15.23 13.06 5.92 4.24
DDIM+sin() 15.97 11.90 9.79 6.22 5.10 24.71 17.18 11.87 5.25 4.22
DDIM+x̂0, ϵ̂ 15.03 10.05 8.84 6.25 5.36 14.94 13.01 11.56 8.08 6.11

DDIM+sin()

+x̂0, ϵ̂
13.17 9.77 8.29 5.50 4.50 22.56 13.89 12.80 5.05 3.09

DDIM+β∗

+x̂0, ϵ̂
13.69 10.19 8.73 5.80 4.73 23.92 12.58 12.67 4.72 2.83

Ours 9.50 6.32 5.62 4.57 4.17 22.70 8.80 11.00 4.05 2.39

5.1. Ablation Experiments

We show the results of ablation experiments for our proposed three contributions, first is
a novel noise schedule, the second is a new parameterization method, which is described
in Section 3.1, and the last is a method to estimate both noise and image simultaneously
mentioned in Section 3.2. Our ablation experiments are based on modifying the DDIM
reference code, and we treat the original DDIM model as a baseline. To compare the
performance of each contribution, we use FID as the evaluation metric.

In Table 2, we present the ablation experiments conducted to demonstrate the three con-
tributions of our proposed approach. The baseline model used for comparison is DDIM Song
et al. (2020a). From the result, we found that each contribution results in a lower FID Heusel
et al. (2017) value compared to the baseline model, which means the generated images from
our model are better than the base model in the CIFAR-10 and CelebA datasets. Mean-
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while, we obtained further improvements to the model by combining the three contributions
discussed above. From the table, it can be observed that compared to models that only
utilize individual contributions, the performance is further enhanced by combining sin()
contribution with x̂0, ϵ̂ contribution, as well as by combining β∗ contribution with x̂0, ϵ̂ con-
tribution. However, since both β∗ and sin() contributions aim at optimizing the efficiency
and performance of training and sampling for diffusion models by improving the noise sched-
ule, we do not combine them as a comparison model. Furthermore, in our final model, the
use of sin() makes it more convenient to transform the parameterization equation into an
ODE, and it is beneficial to apply the gradient approach as the sampling approach. Thus,
our final model consists of sin(), x̂0, ϵ̂ and a gradient update-based sampling process, which
achieves the best result compared to the aforementioned models.

Meanwhile, by comparing the results of DDIM+x̂0, ϵ̂ with those in DDIM+β∗ and
DDIM+sin(), we find this result tends to be better when the sampling steps are less than
20, but when the steps are greater than 20, the impact of DDIM+x̂0, ϵ̂ is lower than the
impact of the other two contributions. Based on our analysis, it is evident that using the
conventional linear noise schedule in DDIM+x̂0, ϵ̂ model results in the noise contribution
outweighing the contribution from the image in the loss function. This is primarily due to
the concentration of training on the noisy regions within the linear noise schedule. This
is also demonstrated by the results of our DDIM+β∗+x̂0, ϵ̂ model, and DDIM+sin()+x̂0, ϵ̂
model. When we use the new noise schedule in the DDIM+x̂0, ϵ̂ model, this solves the pre-
vious problem that performance deteriorates when steps are increased, through balancing
the contribution of noise and image components.

6. Conclusion

In this work, our paper introduces two key contributions to the current diffusion meth-
ods, resulting in significant improvements in the quality and diversity of generated results.
Through applying these two contributions, our model achieves faster generation, with the
ability to converge on high-quality images more quickly, and higher quality of the generated
images than DDPM, DDIM, and Cold Diffusion models. Our model increases the control-
lability of the generation process by learning both noise and image information and using
gradient information in the inverse diffusion process.
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