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Abstract

In scenarios where there is an imbalance between positive and negative examples, hard
example mining strategies have been shown to improve recognition performance by assist-
ing models in distinguishing subtle differences between positive and negative examples.
However, overly strict mining strategies may introduce false negative examples, while im-
plementing the mining strategy can disrupt the difficulty distribution of examples in the
real dataset and cause overfitting on difficult examples in the model. Therefore, in this
paper, we explore how to balance the difficulty of mined examples in order to obtain and
exploit high-quality negative examples, and try to solve the problem in terms of both loss
function and training strategy. The proposed balance loss provides an effective discrimi-
nant for the quality of negative examples by incorporating a self-supervised approach into
the loss function, employing dynamic gradient modulation to achieve finer adjustment for
examples of different difficulties. The proposed annealing training strategy constrains the
difficulty of negative examples drawn from mining and uses examples of decreasing dif-
ficulty to mitigate the overfitting issue of hard negative examples in training. Extensive
experiments demonstrate that our new sparse descriptors outperform previously established
state-of-the-art sparse descriptors.

Keywords: descriptor learning, hard negative sampling, unbiased negative sampling.

1. Introduction

In many computer vision tasks, such as structure from motion (SfM), simultaneous localiza-
tion and mapping (SLAM), pose estimation (De Bem et al. (2018)), and 3D-reconstruction,
extracting keypoints or local features from images to evaluate local correspondences is an
important problem.

To get the correspondences, there are two mainstream approaches: classical two-stage
pipeline, and end-to-end pipeline. The classical two-stage pipeline consists of two steps:
keypoint detection and local descriptor generation. The keypoints detection can be done
by Hessian-Hessian, Difference of Gaussians (DoG), and Harris-Laplace detectors to extract
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keypoints. Local descriptors can be obtained by hand-crafted or learning-based methods.
End-to-end approaches have emerged in recent years, they tried to integrate detector and
descriptor as a single model (DeTone et al. (2018); Revaud et al. (2019); Tyszkiewicz et al.
(2020)). They perform well on some benchmarks, but for reasons of computational effi-
ciency and modular design in practice, the traditional pipeline is still competitive in the
face of realistic matching scenarios (Jin et al. (2021)), (Ma et al. (2021)), with the exist-
ing rich, replaceable components as well as the allowance of incremental improvements in
independent modules (Lee et al. (2022); Cavalli et al. (2020)).

Earlier descriptors for local features were usually hand-crafted. Recently, learning-based
descriptors (Mishchuk et al. (2017); Tian et al. (2020)) have been proven to be more robust
than hand-crafted descriptors. Local descriptors learned with deep neural networks have
been shown to improve the performance of two-stage pipelines.

Overall, the inputs for generating the sparse local descriptors are image patches and the
goal of sparse local descriptors learning is to sculpt a discriminative feature space in which
descriptors with high matching similarity are projected to adjacent locations. In contrast,
mismatched descriptors with low similarity are separated from each other. This allows us to
predict whether a patch pair matches based on the distance between descriptors. Due to the
limited perceptual field of image patches, the differentiation between non-matching and fixed
patches can be very small. For this reason, loss functions with pair-based units are usually
used to improve the recognition ability of nuances in descriptor networks, such as triplet
loss (Kumar BG et al. (2016)). Pair-based loss functions are better suited to discriminating
examples without clear distinction boundaries. In particular, HardNet (Mishchuk et al.
(2017)) introduced an online Hard Negative Sampling (HNS) strategy to construct harder
negative pairs based on the use of triplet loss, which allowed the model to learn more subtle
differences between negative and positive examples.

In subsequent studies, a number of papers followed HardNet’s hard negative mining
strategy and modified the design of the loss function based on a simple intuition - harder
examples should receive more attention from the network to improve the model’s discrim-
inative ability further (Zhang and Rusinkiewicz (2019); Tian et al. (2020)). However, it
is worth noting that if the modulation strategy encourages too strict HNS strategy, the
difference between the sampled positive and negative pairs may be too small, and networks
that have been focusing on these extreme examples may overfit the difficult examples. This
effect can be more pronounced when the model has a small amount of parameters, making
it difficult for small models to learn the common paradigm used to identify examples in the
dataset. At the same time, we need to consider how to effectively measure the quality of
the sampled negative examples, strong negative cases beyond a certain threshold may pick
up false negatives, and these false negatives can negatively affect the model (Chuang et al.
(2020)). It also shows the poor results of hardest negative mining (Tian et al. (2017)) when
using the hardest examples in the training dataset. In summary, developing a strategy to
balance the difficulty of the extracted samples to provide the network with high-quality
negative examples is a problem that warrants further investigation.

We proposed Self-TNet which tried to solve the problem from two aspects - loss function
and training strategy. First, we try to introduce a dynamic-gradient-modulation strategy
and use a self-supervised approach to design the loss function. This adaptive loss function
combines the information generated during training, forcing the network to strike a balance
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between focusing on hard examples and excluding potential low-quality hard examples.
Then, we changed the sampling strategy in the training which divides the training process
into two phases: preliminary training using the basic HNS, and annealing training (AT)
afterward. We performed AT by a progressive sampling strategy and setting a threshold
value to constrain the difficulty of the examples drawn from the HNS, so as to train the
model with examples of progressively decreasing difficulty. In other words, the loss function
aspect mainly provides fine-grained gradient modulation for the sampled data according to
different learning stages, while the training strategy provides the network with data sources
of different difficulty distributions.

Finally, we evaluated the effectiveness of our model. The superiority of the descriptors
obtained by Self-TNet is confirmed on standard benchmarks including patch verification,
matching, and retrieval tasks (Balntas et al. (2017)), and the performance of our model
are evaluated on downstream tasks by evaluating the pose estimation in IMC2021 (Jin
et al. (2021)). We also demonstrate the compatibility of the improved loss function with
the training strategy through ablation experiments, which works best when the two are
combined. Our contributions can be summarized as follows.

• We proposed a balance loss for the characteristics of the data distribution of local
descriptor learning, which uses dynamic gradient modulation to achieve more refined
hard negative mining.

• We proposed a self-supervised approach for sampling unbiased processing, which pro-
vides a valid discriminant for the quality of negative examples to alleviate the adverse
effects of extreme values or outliers on the gradient modulation.

• We proposed a progressive sampling strategy based on difficulty to provide the network
with data of different difficulty distributions. After using this annealing training
strategy, the performance of the model in real scenarios can be improved.

2. Related Works

Sparse Local Descriptor Learning. Early works on local patch descriptors focused
on hand-crafted descriptor extraction algorithms, such as SIFT (Lowe (2004)). With the
advent of open patch datasets extracted on SIFT keypoints (i.e., Gaussian difference or
DoG) (Brown et al. (2010)), data-driven descriptor-based learning methods showed sig-
nificant superiority over earlier hand-crafted methods (Tian et al. (2017); Mishchuk et al.
(2017); Zhang and Xu (2018)). TFeat (Balntas et al. (2016)) introduced triplet loss and
used triplet margin loss to construct triplets. L2Net (Tian et al. (2017)) introduced a CNN
network architecture that has been widely adopted by subsequent works and redesigned the
loss function and corresponding normalization. HardNet (Mishchuk et al. (2017)) confirmed
the importance of the mining strategy by using a simple but fruitful online HNS strategy
to select the hardest examples from each batch to construct a triplet. HyNet (Tian et al.
(2020)) used a hybrid similarity loss that balanced the gradients from negative and positive
examples, and proposed a new network architecture suitable for large-batch training. In ad-
dition to training neural networks on pre-cropped patch datasets, there are also works that
exploit other cues such as geometric context or image context to generate dense descriptors,
such as ContextDesc (Luo et al. (2019)) and R2D2 (Revaud et al. (2019)).
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Gradient Modulation. Gradient modulation strategies are often used in metric learn-
ing to design more reasonable loss functions. Usually, in order to follow HNS strategy, the
gradient of the positive pair should be modulated with an increasing function, while the
gradient of the negative pair requires a decreasing function. In recent years, Circle loss (Sun
et al. (2020)) unifies triple loss and softmax loss from a new perspective and achieves this
purpose by circle margin. For local descriptor learning, Keller et al. (Keller et al. (2018))
made each triplet axially symmetric and balance the gradients of positive and negative pairs
according to the axis of symmetry. Exponential loss (Wang et al. (2019)) achieves the pur-
pose of gradient modulation in exponential form so that pairs with greater relative distance
receive greater attention during the update. Also, there are some related works focusing on
modulation for triplet tuples according to margins. Starting from (Balntas et al. (2016)) in-
troducing static hard margins for local descriptor learning, Zhang and Rusinkiewicz (Zhang
and Rusinkiewicz (2019)) further added cumulative distribution functions (CDF) to formu-
late dynamic soft margins.

Negative Sampling Strategy. In general, when the number of positive examples
and candidate negative examples is not in the same order of magnitude, better results
can be achieved by using a certain strategy to sample the negative ones in training. In
other research areas, except for HNS strategy (Canévet and Fleuret (2015)), it has been
shown that showing semi-hard (Schroff et al. (2015)) or distance-weighted examples (Wu
et al. (2017)) when training the model will help the improvement of performance. In
the field of descriptor learning, Balntas et al. (Balntas et al. (2016)) used triple edge loss
and triple distance loss for random sampling of triplet tuples. The batch-hard sampling
strategy of HardNet (Mishchuk et al. (2017)) demonstrates superior performance compared
to preceding negative sampling techniques and has been extensively adopted in subsequent
research (Tian et al. (2019, 2020)).

3. Methodology

3.1. Method Framework

Our novelties can be shown from two aspects - loss function and training strategy. The cal-
culation process of our new loss function is shown in Figure 1. For better representation, we
refer to the network being trained as the supervised network and the network that provides
information to guide the supervised network in training as the supervising network. The
training patches are first input into the supervised network to generate the corresponding
embeddings, then based on the L2 distance matrix calculated from embeddings the triplet
tuples of batch size can be selected. The supervising network then recalculates the positive
and negative distances of these triplet tuples and generates confidence levels to guide the
training of the supervised network. Finally, the confidence weight produced by the super-
vising network will be integrated into the balance loss of the supervised network to form
weighted balance loss LWBlance, for parameters update.

For the training strategy, we divide it into two stages: preliminary training and then
annealing training. The main difference between them is that annealing training uses train-
ing data of decreasing difficulty, which can further improve the performance and decrease
the potential overfitting.
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Figure 1: The calculation process of the proposed new loss function LWBalance. In our self-
supervised strategy, the supervising network refers to the network being trained,
which is located during the inference phase.

3.2. Loss Function

In order to better balance the difficulty of samples in real-time training of the model, our
balance loss has integrated modifications in two main aspects - adaptive weight assignment
of the gradient and unbiased processing of negative sampling through a self-supervised
approach.

Compared with triplet loss, our new loss function removes the positive margin from
the loss function, and the strategy of gradient modulation is changed to a strategy that
is similar to constructing two potential wells for positive and negative distances. In the
training process of the supervised network, it is like the process that the two potential wells
of positive and negative distances are constantly and dynamically adjusted and finally reach
relative equilibrium, as shown in Figure 2. Note that, in this paper we only use L2 distance
for quantifying the similarity between descriptors. The selection of triplet tuples, as well as
the computation of negative and positive distances, can be described as:

dnegi = min
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, d
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where negative and positive distance denoted by dnegi and dposi respectively and x+
i is the

corresponding patch for xi with the same label in the dataset, where they are selected to

compose a triplet tuple
{
pi, p

+
i , p−

i

}
based on the calculated distances.

3.2.1. Construct the Balance Loss

At this stage, our overall loss function can be expressed as:

LBalance =
1

N

N∑
i=1

(sposi + snegi ) . (2)
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Figure 2: Schematic of the improved LBalance and the superimposed distance distributions
of dneg and dpos. The y-axis represents the value of the loss function or the
distribution of dneg and dpos in a batch. The x-axis represents the L2 distance
between the examples in a pair. The two curves represent the similarity measure
functions (spos and sneg).

In Eq. (2), N is the the batch size and the similarity measure function s(d) can be defined
as two exponential functions:

sposi = (dposi − Ppos)
α
,

snegi = (dnegi − Pneg)
α
,

(3)

where α is a predefined constant and Pneg and Ppos are zero positions which are the keys
to characterize the similarity measure functions. The zero positions correspond to the
intersections of the x-axis with the zero gradients of spos and sneg, as depicted in Figure 2.
The use of exponential functions has the advantage of enabling adaptive weight assignment
to gradients based on the calculated distances (i.e., harder examples should receive more
attention during gradient updates). Detailed proof and comparison with the triplet loss
can be found in the supplementary material. Considering that the selected samples of each
batch vary across different training stages, zero positions are dynamically adjusted based
on the sample distribution within a batch. Visualizations of the zero position adjustment
and training sample distributions can also be found in the supplementary material.

Specifically, we define zero positions of the similarity measure functions as:

Ppos = Me
(
dposall

)
− Fpos,

Pneg = Me
(
dnegall

)
+ Fneg,

(4)

where Me is a method to get the median in a batch of positive or negative distances, Fpos

and Fneg are focusing intensities which are used to adjust how much attention is paid to
the hard examples and can be represented as distance between Ppos and Me

(
dnegall

)
shown

in Figure 2. Based on the assumption that there is a strong correlation between positive
and negative focusing intensities, we can link the two focusing intensities with:

γFpos = Fneg, (5)
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where γ is an attention coefficient to adjust the ratio between the two focusing intensities.
For positive distances, dposi is a positive value representing the distance between the

positive example (p+
i ) and the anchor example (pi) in a triplet tuple. The model aims to

minimize this distance as much as possible. Therefore, we set Ppos always situated at zero
and only regulate Pneg for simplification. Substituting the expressions of Fpos and Fneg

from Eq. (5) with the corresponding derived expressions from Eq. (4), we get the formula
to calculate Pneg:

Pneg = γMe
(
dposall

)
+ Me

(
dnegall

)
, (6)

where its value varies with the training process. This dynamic regulation reduces the trouble
of over-parameterization and contributes to the stability of the final performance.

3.2.2. Negative Sampling Unbiased Processing through Self-supervising

The adaptive weighting in the previous subsection is designed to modulate the gradients
based on information about the distribution of individual pairs with positive or negative
distances, which makes the network more focused on the hard negative and positive ex-
amples. In this case, the subsequent negative sampling unbiased processing measures the
relative distance between positive and negative distances in triplet pairs to mitigate the
negative impact of potentially false negative examples or overly difficult negative examples.
Specifically, we proposed to use a supervising network to help the model identify these
outliers and reduce their weight.

We can use either the training model (i.e., the supervising network and the supervised
network are identical) or a pre-trained model as the supervising network. The difference
is that the output of this supervising model is not labels, but the confidence level of the
original labels for some examples. First, we define I to represent the confidence level of
the labels for positive and negative examples that are located within a dynamically selected
triplet during the training process:

Ii = dposi − dnegi . (7)

Note that dposi and dnegi are calculated by the supervising network for the triplet tuples
which are selected by the supervised network through HNS. When dposi - dnegi < upper, this

means the anchor pi is predicted to be more similar to the p−
i than the p+

i in a triplet
tuple, where upper is a predefined hyperparameter. When the supervising network makes
this judgment, we need to calculate the magnitude of the weight to be mitigated for that
triplet tuple based on the value of I. Therefore, we define the confident weight for each
triplet tuple in a batch can be calculated as:

Wi =


f(Ii), Ii ∈ [upper, threshold],

1, Ii > upper,
0, Ii < threshold,

(8)

where Wi ranging form [0, 1], and f(·) is the monotonic function that maps I to the interval
[0,1], which can usually be selected as an exponential function. upper and threshold are
hyperparameters to determine the domain of the mapping function, as shown in Figure 3.
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Figure 3: The blue curve represents the values of the confident weight (Wc) from Eq. (8)
with different I values.

Finally, our weighted balance loss can be expressed as:

LWBalance =
1

N

N∑
i=1

Wi (sposi + snegi ) . (9)

And combine with Eq. (3) and Eq. (6) we can express it as:

LWBalance =
1

N

N∑
i=1

Wi

(
(dposi )

α
+
(
dnegi − γMe

(
dposall

)
−Me

(
dnegall

))α)
. (10)

Because the supervising network only needs to process the patches selected by the super-
vised network and calculate the distance each time, this approach does not incur excessive
computational overhead and only increases the training time by about 10% when using the
training model as the supervising network.

3.3. Annealing Training

In the preliminary training, we used the strategy of Hard Negative Sampling to select triplet
tuples for gradient updates. However, in the actual deployment and testing scenarios, the
model needs to face a larger proportion of easy and medium difficult examples, so it is
necessary to change the training strategy after the preliminary training is completed, i.e.,
to move from the strategy of selecting only the hardest examples in a batch to the strategy
of selecting examples with decreasing difficulty to improve the data generalization ability
of the model in the actual testing scenarios.

Specifically, in annealing training (AT), the weight of some triplets will be set to zero
when Ii < thr (Ii calculated from Eq. (7), and thr is a hyperparameter that is automatically
updated during the AT process), which means that they will not participate in the parameter
update of the model. This process is iterative as shown in Algorithm 1. It means bs and
thr, represent the batch size and cut-off threshold, will be updated after each iteration
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according to:
bst = bst−1 − stepsizebs,

thrt = thrt−1 + stepsizethr,
(11)

until the set final value is reached. And the initial learning rate lr in one iteration is
calculated by:

lrt = lrt−1 ∗ ϵt, (12)

where ϵ is the learning rate decay factor.

Algorithm 1 Annealing training algorithm
1: Initialization: current batch size bs, iteration started batch size bss, iteration ended batch size

bse, current iteration threshold thr, step size for each threshold increase stepsizethr, step size
for each batch size decrease stepsizebs, initial learning rate lr

2: n = (bse − bss)/stepsizebs
3: t = 0
4: while t < n do
5: Update bst, thrt based on Eq. (11)
6: Update lrt based on Eq. (12).
7: Update the hyperparameters in annealing training of the current model as bst, lrt, thrt.
8: Start training in this iteration:
9: for a triplet i in a batch do

10: if Ii < thrt for triplet i then
11: The weight of triplet i will be set to zero, which means it will not participate in the

process of model parameter update
12: else
13: Triplet i will participate normally in the process of model parameter update
14: end if
15: end for
16: Construct overall loss by Eq. (10) in a batch
17: Backpropagation and model update
18: End training in this iteration
19: t = t + 1
20: end while
Output: Well-trained model after annealing training

In AT, the instance of actual distribution of Wc∗dnegall is shown in Figure 4. As annealing
training proceeds, the examples used for training will gradually have a larger value of
confident level I, because the weight of triplets with low I is set to 0 in Wc. This is shown
in Figure 4 - the distribution density of Wc ∗ dnegall located at zero of the x-axis becomes
larger.

The key of AT is that the batch size gradually decreases after each iteration, while the
cut-off threshold gradually increases. We define the value of I calculated from Eq. (7) for a
triplet tuple as the basis for judging the difficulty of a sample. In this case, the increasing
thr will force the samples with decreasing difficulty in each batch to be used for updating
the parameters of the model after each iteration. Decreasing the batch size means that
the probability of extracting a hard negative becomes smaller and the proportion of easy
samples increases after each iteration.
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Figure 4: Density distribution of Wc ∗ dnegall with different epochs in AT. The visualization
is performed by taking the first batch in each iteration.

4. Experiment and Results

4.1. Training Strategy

Preliminary training. We implemented our scheme with PyTorch by using the training
model in the inference stage as the supervising network. This scheme was called Self-TNet.
Our code can be found at https://github.com/zonszer/Self-TNet. As shown in Figure 5, for
a fair comparison, the network architecture is the same as that proposed by HyNet (Tian
et al. (2020)) and has the same amount of parameters as HardNet (Mishchuk et al. (2017)).
In the specific implementation of balance loss, we set α=2, γ=1.05, and in the unbiased
processing process, we set upper=0.10 and threshold=-0.55. The optimal model was trained
with 25 epochs with 4050000 tuples per epoch and batch size equals 2560. Adam optimizer
was used to update parameters with max lr=0.033, specifically using linear warm-up and
cosine decay strategy for learning rate.
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Figure 5: The network architecture is the same as that proposed by HyNet (Tian et al.
(2020)) with a dropout rate of 0.3.

In Eq. (3), α is a scalar. Normally, α can be set equal to larger than 1 to represent an
exponential function. We found a number larger than 2 does not necessarily lead to better
results, so in the following experiments, we always set α equal to 2.

Annealing training. In AT, we tried to use triplet tuples of decreasing difficulty
to update the network parameters at small learning rates. Specifically, the decrease in

https://github.com/zonszer/Self-TNet
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difficulty was achieved by setting the batch size to decrease by stepsizebs=128 per iteration
and the threshold to increase by stepsizethr=0.05. Other parameters included: bss=2944,
bse=1024, initial thr=-0.15, number of batches per iteration=1400. We also set the initial
lr=1.5 ∗ 10−6 with a decay factor ϵ=0.75 for each iteration.

4.2. Experimental Settings

We compared the performance of our solution with the state-of-the-art sparse descriptor
networks on AMOS dataset (Pultar et al. (2019)) and three standard benchmarks: UBC
(Brown et al. (2010)), HPatches (Balntas et al. (2017)) and IMC2021 (Jin et al. (2021)).
Detailed ablation studies and additional analyses can be found in the supplementary mate-
rial.

Train ND YOS LIB YOS LIB ND
Mean

Test LIB ND YOS

SIFT (Lowe (2004)) 29.84 22.53 22.79 26.55

TFeat (Balntas et al. (2016)) 7.39 10.13 3.06 3.80 8.06 7.24 6.64

L2Net (Tian et al. (2017)) 2.36 4.70 0.72 1.29 2.57 1.17 2.23

HardNet (Mishchuk et al. (2017)) 1.49 2.51 0.53 0.78 1.96 1.84 1.51

CDFDesc (Zhang and
Rusinkiewicz (2019))

1.21 2.01 0.39 0.68 1.51 1.29 1.38

SOSNet (Tian et al. (2019)) 1.08 2.12 0.34 0.67 1.03 0.95 1.03

HyNet (Tian et al. (2020)) 0.89 1.37 0.34 0.61 0.88 0.96 0.84

Ours 0.89 1.36 0.37 0.52 0.76 0.79 0.78

Table 1: Patch verification performance on UBC Phototour with LIB for Liberty, YOS for
Yosemite, and ND for NotreDame. Numbers shown are FPR@95 (%) with lower
values being better. The most outstanding results are shown in bold.

UBC Benchmark evaluates on the Brown dataset (Brown et al. (2010)). It is a widely
used patch dataset for evaluating the performance of local descriptors. The dataset consists
of three subsets for three different scenarios: Liberty, Yosemite, and Notredame. Typically,
deep descriptor networks are trained on one subset and tested on the other two subsets.
According to the standard protocol (Brown et al. (2010)), the benchmark verifies that the
network can correctly determine the 100K matching and non-matching pairs in the two test
subsets. The protocol evaluates the false-positive rate at 95% recall (FPR@95), and we
reported the experimental results including the average over all subsets in Table 1.

HPatches (Balntas et al. (2017)) is a more comprehensive benchmark that evaluates de-
scriptors on three tasks: patch verification, image matching and patch retrieval. According
to geometric distortion, subtasks are categorized into Easy, Hard and Tough. Furthermore,
patch pairs from the same or different image sequences are separated into two test subsets
for verification, denoted by Intra and Inter, respectively. And the matching task is designed
to evaluate the viewpoint (VIEWP) and illumination (ILLUM) invariance of descriptors.
According to the protocol, all models were trained on the Liberty dataset. As shown in Fig-
ure 6, our approach outperformed previous state-of-the-art methods across all three tasks.
Notably, compared to HyNet which uses the same network architecture, our Self-TNet
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Figure 6: We tested the data split ’a’ of the HPatches benchmark following the standard
protocol. All networks were trained on the Liberty dataset from UBC PhotoTour.
The bar chart shows the average scores of the networks for the three subtasks
Patch Verification, Image Matching, and Patch Retrieval, evaluated as mean av-
erage precision (mAP).

scheme achieved a significant performance improvement of 1.57 on Image Matching task,
demonstrating the effectiveness of our new loss function and training strategy.

Figure 7: Challenges in AMOS dataset. The red boxes in the second column show examples
where different images in the same sequence may contain some different dynamic
contents, eg. pedestrians. The blue boxes in the second and third columns of
images indicate similar content that may exist between different views.

AMOS Dataset (Pultar et al. (2019)) is composed of a set of images captured by
outdoor cameras in the same location at different times, exhibiting strong variability in ap-
pearance and lighting conditions. The training set consists of 27 sequences, each containing
50 images captured at the same angle but in different weather and lighting conditions. How-
ever, training with this dataset presents some challenges. Due to variations in the shooting
time, some images in a sequence may contain content that is not present in other images of
the same scene (as shown in Figure 7). Such noisy data used for training may influence the
learning of the descriptor network, potentially decreasing the performance. Furthermore, as
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more scenes are added to the training set, patches from different views may contain patches
similar to positive samples in the current view, which may, however, be treated as negative
examples. Therefore, effectively learning from these multi-source training data with some
noise poses a challenge to training descriptor networks on large-scale and expandable data.

Model Name

Difficulty Division
Mean

Easy Hard Tough

HardNet 72.46 56.57 37.89 55.64

CDFDesc 72.83 56.95 38.15 55.97

SOSNet 73.49 57.56 38.91 56.65

HyNet 74.47 58.61 40.14 57.74

Ours 75.94 60.27 41.78 59.33

Table 2: Performance (mAP) of image matching task on hpatches benchmark ’a’ split, when
all the models are trained on AMOS dataset.

Our Self-TNet scheme effectively alleviated these problems, because our strategy can
effectively filter out these anomalous data during the training process. We retrained our
descriptor network and existing state-of-the-art descriptor networks on the AMOS dataset
and tested their mAP performance on the Hpatches benchmark. Table 2 reported the re-
sults. Our Self-TNet outperformed other descriptor networks observably, demonstrating its
scalability on large-scale datasets and robustness to noisy training data.

#Keypoints 2k 8k
Mean

Method \Task Stereo Mutiview Stereo Mutiview

DoG + HardNet 57.07 66.34 66.99 76.69 66.77

DoG + CDFDesc 57.16 66.30 67.03 76.72 66.80

DoG + SOSNet 57.03 66.76 66.78 76.96 66.88

DoG + HyNet 57.09 67.57 67.20 77.12 67.25

DoG + Ours 58.27 68.39 67.98 78.10 68.19

Table 3: Performance (mAA) on the validation set of IMC2021. Higher values of MAA in-
dicate higher performance. All reported performance were matched using the ratio
test (0.8 for multi-view task with 8K keypoints, 0.9 for all other tasks) with the
fast library for approximate nearest neighbors (FLANN). Geometric verification
was performed using the recommended settings with DEGENSAC (Chum et al.
(2005)) on both stereo and multi-view tasks.

Image Matching Challenge (IMC) (Jin et al. (2021)) is a large-scale challenge
dataset of wide baseline matching, which focuses on evaluating the performance of down-
stream tasks. In this experiment, We compared our method with the existing descriptor
networks in a two-stage image matching pipeline. We utilized DoG (Lowe (2004)) as our
detector and evaluated all the descriptor networks trained on the Liberty dataset using
the validation sets of Phototourism. This benchmark takes the predicted matches as in-
put and measures the 6-DoF pose estimation accuracy. The performance of the networks
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was reported In Table 3, the mean Average Accuracy at a 10◦ angular error (mAA@10)
is presented for both stereo and multi-view tasks. Our Self-TNet scheme achieved best
performance in both tasks using the same two-stage image matching pipeline with 2k and
8k keypoints. Furthermore, we combined our method with the REKD detector (Lee et al.
(2022)) and AdaLAM (Cavalli et al. (2020)) matcher to compare against several popular
end-to-end image matching methods, as shown in Table 4. These results highlight the prac-
tical superiority and applicability of our approach in real-world image matching pipelines.

#Keypoints 2k 8k
Mean

Pipeline Method \Task Stereo Mutiview Stereo Mutiview

SuperPoint (DeTone et al. (2018)) 40.55 55.46 – – –

End-to-end
R2D2 (MS) (Revaud et al. (2019)) 46.67 62.47 59.86 70.42 59.85
ASLFeat (MS) (Luo et al. (2020)) 42.96 54.69 51.35 63.48 53.10
DISK (Tyszkiewicz et al. (2020)) 64.53 74.04 70.37 81.72 72.67

Two-stage
REKD (Lee et al. (2022)) + HyNet

(Tian et al. (2020))
64.15 74.83 74.24 84.38 74.40

REKD (Lee et al. (2022)) + Ours 65.04 75.69 75.38 85.20 75.33

Table 4: Performance comparison (mAA) of end-to-end image matching methods and two-
stage pipelines on the validation set of IMC2021. We employed the optimal settings
as described in the respective papers for each end-to-end method

5. Conclusion

In this paper, we investigated the acquisition and utilization of high-quality negative exam-
ples in the widely used hard negative sampling (HNS) strategy, with the goal of balancing
the difficulty of the HNS extraction samples to improve the performance of the current
model. The proposed balance loss integrates a self-supervised approach within a dynamic
gradient modulation technique to achieve fine-grained gradient modulation for examples of
varying difficulty. Additionally, the proposed annealing training provides data sources with
different difficulty distributions for the loss function, which can reduce overfitting of hard
examples and facilitate learning of the generalized rules. Our improved local descriptors
demonstrate superiority on a variety of tasks and datasets.
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