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Abstract

Large neural networks are often overparameterised and prone to overfitting, Dropout is a
widely used regularization technique to combat overfitting and improve model generalization.
However, unstructured Dropout is not always effective for specific network architectures and
this has led to the formation of multiple structured Dropout approaches to improve model
performance and, sometimes, reduce the computational resources required for inference.
In this work, we revisit structured Dropout comparing different Dropout approaches on
natural language processing and computer vision tasks for multiple state-of-the-art networks.
Additionally, we devise an approach to structured Dropout we call ProbDropBlock which
drops contiguous blocks from feature maps with a probability given by the normalized feature
salience values. We find that, with a simple scheduling strategy, the proposed approach
to structured Dropout consistently improves model performance compared to baselines
and other Dropout approaches on a diverse range of tasks and models. In particular, we
show ProbDropBlock improves RoBERTa finetuning on MNLI by 0.22%, and training of
ResNet50 on ImageNet by 0.28%.
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1. Introduction

In our modern society, Deep Neural Networks have become increasingly ubiquitous, having
achieved significant success in many tasks including visual recognition and natural language
processing Heaton (2020); Jumper et al. (2021); Schrittwieser et al. (2020). These networks
now play a larger role in our lives and our devices, however, despite their successes they still
have notable weaknesses. Deep Neural Networks are often found to be highly overparame-
terized, and as a result, require excessive memory and significant computational resources.
Additionally, due to overparameterization, these networks are prone to overfitting.
There are several approaches to mitigate overfitting including reducing model size or com-
plexity, early stopping Caruana et al. (2000), data augmentation (DeVries and Taylor, 2017)
and regularisation (Loshchilov and Hutter, 2017). In this paper, we focus on Dropout which
is a widely used form of regularisation proposed by Srivastava et al. (2014b). Standard
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Unstructured Dropout involves randomly deactivating a subset of neurons in the network
for each training iteration and training this subnetwork, at inference time the full model
could then be treated as an approximation of an ensemble of these subnetworks.
Unstructured Dropout was efficient and effective and this led to it being widely adopted,
however, when applied to Convolutional Neural Networks (CNNs), unstructured Dropout
struggled to achieve notable improvements He et al. (2016); Huang et al. (2017) and this led
to the development of several structured Dropout approaches Ghiasi et al. (2018); Dai et al.
(2019); Cai et al. (2019) including DropBlock and DropChannel. DropBlock considers the
spatial correlations between nearby entries in a feature map of a CNN and attempts to stop
that information flow by deactivating larger contiguous areas/blocks, while DropChannel
considers the correlation of information within a particular channel and performs Dropout
at the channel level. However, since the development of these structured approaches, there
have been further strides in network architecture design, with rising spread and interest in
Transformer-based models.
Given the success achieved by block-wise structured Dropout on CNNs, it is only natural
to ask the question, do these approaches apply to Transformer-based models? Structured
Dropout approaches for transformers seem to focus on reducing the model size and inference
time, these works place more emphasis on pruning or reducing computational resources Xin
et al. (2020); Fan et al. (2019) than combating overfitting which is the focus of this paper.

Original Image

(a) Dropout (b) BatchDropBlock

(c) DropBlock (d) ProbDropBlock

Figure 1: An illustration of applying different Dropouts to an image. The top row shows
the original image. In the second row, we show Dropout (a) on the left, and
BatchDropBlock (b) on the right. Notice BatchDropBlock applies the same
pattern across channels. In the third row, we show DropBlock (c) on the right
and ProbDropBlock (d) on the right.

In this paper, we revisit the idea of structured Dropout for current state-of-the-art models
on language and vision tasks. Additionally, we devised our own form of adaptive structured
Dropout - ProbDropBlock and compare it to preexisting approaches to structured and
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unstructured Dropout.
In Figure 1 we illustrate the effects of select structured and unstructured Dropout ap-
proaches on an image of a cat. As can be seen in the original image consists of three channels
(RGB) which are aggregated to form the image. Different approaches to Dropout may
treat channels differently. In Dropout (Figure 1), the many small black squares represent
deactivated/dropped weights at a pixel level and we also see different pixels have been
deactivated in each channel. In BatchDropBlock we see fewer but larger black squares, and
that the locations of dropped pixels are consistent between channels, however, this is not the
case in DropBlock and ProbDropBlock. In this work, we say that BatchDropBlock is channel
consistent i.e. channels do not deactivate blocks independently rather the deactivated blocks
are consistent between channels.
On left of the second row in Figure 1, for a single channel there is a uniform probability of
any pixel or block (depending on the approach) to be dropped and so deactivated pixels
may not contain any of the key information required to identify this image as a cat (i.e.
the probability of deactivating a pixel/block belonging to the cat is the same as that of
one belonging to the background). This is not the case for ProbDropBlock, in our adaptive
DropBlock approach the probability of a block being dropped is dependent on the value of
the center pixel in the block. It can be seen that this approach is not channel consistent
and deactivated pixels are concentrated on the cat. Figure 1 is illustrative to give one an
intuitive understanding of these techniques, as in practice these techniques are applied to
feature maps which are activations of a preceding layer of the network. The contributions of
this paper include:

• The testing of preexisting unstructured and structured Dropout approaches on current
state-of-the-art models including transformer-based models on natural language infer-
ence and vision tasks. We reveal that structured Dropouts are generally better than
unstructured ones on both vision and language tasks.

• The proposal of a new approach to structured dropout named ProbDropBlock, which
improved model performance on both vision and language tasks. ProbDropBlock is
adaptive and the blocks dropped are dependent on the relative per-pixel values. It
improves RoBERTa finetuning on MNLI by 0.22% and ResNet50 on ImageNet by
0.28%.

• Further observation of the benefits of simple linear scheduling observed Ghiasi et al.
(2018) for both structured and unstructured Dropout on a range of vision and language
models.

2. Related Work

In this section, we briefly review related works in the areas of structured and unstructured
Dropouts used as both a regularization technique to improve model performance and as an
approach to pruning to reduce the model size and computational requirements. We briefly
detail unstructured Dropout and the various structured Dropouts devised for other network
architectures.
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2.1. Unstructured Dropout

To help address the problem of overfitting in neural networks, Srivastava et al. (2014a)
proposed Dropout as a simple way of limiting the co-adaptation of the activation of units
in the network. By randomly deactivating units during training they sample from an
exponential number of different thinned networks and at test time an ensemble of these
thinned networks is approximated by a single full network with smaller weights. Dropout
led to improvements in the performance of neural networks on various tasks and has become
widely adopted. This form of Dropout in this work we refer to as unstructured Dropout as
any combination of units in the network may be randomly dropped/deactivated.

2.2. Dropblock and other structured Dropouts

Ghiasi et al. (2018) proposed DropBlock as a way to perform Structured Dropout for
Convolutional Neural Nets (CNNs). They suggest that unstructured Dropout is less effective
for convolutional layers than fully connected layers because activation units in convolutional
layers are spatially correlated so information can still flow through convolutional networks
despite Dropout and so they devised DropBlock which drops units in a contiguous area of
the feature map collectively. This approach was inspired by Devries and Taylor (2017)’s
Cutout, a data augmentation method where parts of the input examples are zeroed out.
DropBlock generalized Cutout by applying Cutout at every feature map in convolutional
networks. Ghiasi et al. (2018) also found that a scheduling scheme of linearly increasing
DropBlock’s zero-out ratio performed better than a fixed ratio.
Dai et al. (2019) extended DropBlock to Batch DropBlock. Their network consists of two
branches; a global branch and a feature-dropping branch. In their feature dropping branch
they randomly zero out the same contiguous area from each feature map in a batch involved
in computing loss function. They suggest zeroing out the same block in each batch allows
the network to learn a more comprehensive and spatially distributed feature representation.
Larsson et al. (2016) proposed DropPath in their work on FractalNets. Just as Dropout
prevents the co-adaptation of activations, DropPath prevents the co-adaptation of parallel
paths in networks such as FractalNets by randomly dropping operands of the join layers.
DropPath provides at least one such path while sampling a subnetwork with many other
paths disabled. DropPath during training alternates between a global sampling strategy
which returns only a single path and a local sampling strategy in which a join drops each
input with fixed probability, but with a guarantee, at least one survives. This encourages
the development of individual columns as performant stand-alone subnetworks.
Cai et al. (2019) proposed DropConv2d as they suggest the failure of standard dropout
is due to conflict between the stochasticity of unstructured dropout and the following
Batch Normalization (BN) step. They propose placing dropout operations right before the
convolutional operation instead of BN or replacing BN with Group Normalization (GN) to
reduce this conflict. Additionally, they devised DropConv2d which draws inspiration from
DropPath and DropChannel, they treat each channel connection as a path between input
and output channels and perform dropout on replicates of each of these paths.
DropBlock, BatchDropBlock, DropPath and DropConv2d are forms of structured Dropout
designed with specific architecture in mind. However, as seen by Cai et al. (2019) DropConv2d
an approach to structured Dropout designed for a given network can still be useful to
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novel network architecture. Aside from being used to improve generalization, structured
Dropout has also been used as an approach to pruning and reducing computational resource
requirements at inference time.
Fan et al. (2019) proposed LayerDrop as a means of regularization for transformers during
training and efficient pruning at inference time reducing the large amount of computation
these models require. This approach is a form of structured Dropout where instead of
deactivating weights independently throughout the network, weights that collectively form a
single structure in the network are deactivated. Attention heads in a transformer are typically
computed in parallel, as a result in the paper the structure they focused on deactivating
where fully connected layers. Using this approach they found that they were able to select
sub-networks of any depth from one large network that without finetuning achieved similar
performance.
Other forms of run-time structured pruning include (Xin et al., 2020; Gao et al., 2018; Wu
et al., 2018), Xin et al. (2020) proposed DeeBERT which accelerates inferencing in BERT
models by allowing samples to exit earlier without passing through the entire model under
certain conditions as they believe that, for BERT, features provided by the intermediate
transformer layers may suffice to classify some input samples. Gao et al. (2018) preserve
the full network structure of CNNs and accelerates convolution by dynamically skipping
unimportant input and output channels determined by a saliency criterion exploiting the fact
that the importance of features computed by convolutional layers is highly input-dependent.
Wu et al. (2018) propose BlockDrop where an RL agent learns which blocks in a ResNet to
select dynamically for a given novel input image. In this work, we are interested in dropping
structured patterns in the spatial dimension and would like to understand how this style of
structured Dropouts can affect current mainstream models such as Transformers and Vision
Transformers. We mainly compare our proposed approach with DropBlock and a revised
version of BatchDropBlock, since these two methods are dropping at the same granularity
as our method.

3. Method

In this section we detail the approach to structured dropout we employed in this paper.
Our approach is a form of adaptive DropBlock we call ProbDropBlock, it is inspired by
DropBlock as it also randomly removes larger blocks from each feature map, but rather
than assigning a uniform probability to each element of being the center point of the block
it assigns higher probability to elements with higher activation values.
As such the block removed depends on the model’s learned representation of the feature map
and we believe this encourages the model to learn a more balanced and diverse feature map.
We also employ a simple linear schedule where we linearly increase the base probability α of
dropping a block. Ghiasi et al. (2018) made an observation in their paper that this approach
can significantly improve performance and is more robust.

3.1. ProbDropBlock

In Algorithm 1 we detail our adaptive DropBlock method, the algorithm takes as input the
output activations from a layer A, a block size B, base drop probability α and the mode of
the network.



Zhao Dada Mullins Gao

Algorithm 1 Adaptive DropBlock

ProbDropBlock (A,B, α,mode)
Input: Layer Output Activations - A, Block Size - B, Base Drop Probability - α, mode
if mode == Inference then
return A

else

γi,j =
∥A∥0 × abs(Ai,j))

∥A∥1
{Compute drop ratio γi,j for each element in A}

qi,j = min((α× γi,j), 1) {Compute drop probabilities qi,j}
M : Mi,j ∼ Bernoulli(1 − qi,j) {Randomly sample mask M}
for Mi,j in M do
if Mi,j == 0 then
store((i, j)) {Store mask indices with zero entries}

end if
end for

βlb = floor

(
B − 1

2

)
{Compute lower bound buffer zone for mask}

βub = round

(
B − 1

2

)
{Compute upper bound buffer zone for mask}

for (i, j) in store do
Mi−βlb:i+βub,j−βlb:j+βub

. = 0 {Set values in square centered at Mi,j to 0}
end for
A = A×M {Apply mask M to A}

A = A× sum(M)

∥M∥0
{Normalize}

return A
end if

When not in inference mode the algorithm computes a drop ratio γi,j for each entry in the
feature map. This is a normalized drop ratio as illustrated in Line 6 of Algorithm 1: this
drop ratio is equal to ratio of the absolute value of the entry abs(Ai,j) and the average of

absolute values of all entries in the feature map
∥A∥0
∥A∥1

.

Each drop ratio γi,j is multiplied with the base drop probability and constrained to range
[0, 1] to give the drop probabilities qi,j for each entry in the feature map as illustrated in Line
7 of Algorithm 1. As a result, entries with values that are higher than the mean absolute
entry value for the feature map have a higher probability of being dropped. Using drop
probabilities qi,j we sample a mask M , we modify the mask by constructing a block of size
B around each zero entry in the mask and setting values in the box to zero to create a larger
contiguous block of zeros. We handle even block sizes by effectively shifting the block’s
center point by half an entry right.
After modification this mask M is applied to the feature map A by element wise matrix
multiplication. Finally, we re-normalize A by the ratio of non-zero entries in M to the
total number of entries in M and return it, this is the same re-normalization technique
used in DropBlock (Ghiasi et al., 2018). The linear scheduling is implemented by gradually
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increasing the base drop probability α over the training cycle. The details and effect of the
linear scheduling are evaluated in details in Section 4.2.

3.2. Theoretical Motivation/Intuitive Explanation

The initial Dropout paper Srivastava et al. (2014b) states we can consider unstructured
Dropout as a way of training exponentially many sparse networks with extensive weight
sharing and then at test time we approximately average this ensemble of networks by
rescaling the weights.
ProbDropBlock is an adaptive and structured approach to Dropout. In ProbDropBlock
instead of uniformly sampling sparse networks from the original network during training we
sample sparse networks with lower activations more often. If we assume activations are a
proxy for containing relevant information the sampled sparse networks are faced with harder
problems are they are missing likely relevant information and so are likely to perform ‘worse’
at the same stage of training. So by sampling these ‘worse’ performing sparse networks
more often during training we provide additional training for these ‘worse’ sparse networks
and improve the overall performance of the approximated average ensemble at test time.

4. Evaluation

In the following section, we lay out the experimental setup and briefly discuss the datasets and
models considered in Section 4.1. We then address the importance of probability scheduling
for both structured and unstructured Dropout methods in Section 4.2. In Section 4.3, we
demonstrate that structured Dropouts generally outperform their unstructured counterpart
for both vision and language tasks.
To properly assess our approach to other structured Dropouts we test on both vision and
language tasks for state-of-the-art models in Section 4.4 and Section 4.5. We compare the
performance of models trained with the proposed ProbDropBlock approach to those trained
with other forms of Dropout and baseline models trained without any forms of Dropout.

Table 1: Structured (BatchDropBlock) and non-structured Dropouts on CIFAR-10. with and
without the linear scheduling on the dropping probability. BDB is BatchDropBlock.
∆ shows the difference between the accuracy compared to baseline, the baseline
accuracy on this task is 94.37%.

Method Dropout Dropout-Schedule BDB BDB-Schedule

Resnet50 Acc ↑ 94.50 ± 0.04 94.70 ± 0.14 93.11 ± 0.22 94.77 ± 0.29
∆ ↑ +0.13 +0.33 −1.26 +0.41

4.1. Experiment Setup

In this work, we considered 6 datasets, 3 NLP (natural language processing) datasets and
3 CV (computer vision) datasets. The NLP datasets considered are all part of GLUE -
the multitask benchmark and analysis platform for natural language understanding (Wang
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Table 2: A comparison of the performance of Dropout and various Structured Dropout
schemes. BDB is BatchDropBlock. DropBlock is not channel consistent (blocks
deactivated are not consistent between channels), ProbDropBlock additionally has
dropping probabilities correlated to pixel-wise saliency. RoBERTa is evaluated on
MNLI with a baseline accuracy of 87.60%, and ResNet50 is evaluated on CIFAR10
with a baseline accuracy of 94.37%. ∆ is the difference between the current accuracy
and baseline.

Method Dropout BDB DropBlock ProbDropBlock

Resnet50 Acc ↑ 94.70 ± 0.14 94.77 ± 0.29 95.05 ± 0.21 94.73 ± 0.19
∆ ↑ +0.33 +0.41 +0.68 +0 .35

RoBERTa Acc ↑ 87.51 ± 0.08 87.39 ± 0.29 87.71 ± 0.24 87.83 ± 0.15
∆ ↑ −0.09 −0.21 +0 .11 +0.22

et al., 2018), we consider MNLI, QNLI and RTE in our evaluation. For the CV datasets, we
consider CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009)
classification.
For finetuning the RoBERTa model, we use the hyperparameter setup in Liu et al. (2019).
For training the ResNet family models, we train all models using the Adam optimizer Kingma
and Ba (2014) and pick the best learning rate from {1e−5, 5e−5, 1e−4}. For the pyramid vision
transformer (PVT-V2) model, we use the standard setup described in Wang et al. (2022).
We slightly changed the augmentations in the original PVT-V2 setup, removing Mixup and
Random Erasing, so that it is more aligned with the ResNet training setup for a better
comparison. In the ResNet family and PVT-V2 models, we insert the Dropout mechanism
after each residual block. For RoBERTa, we add Dropout, DropBlock or ProbDropblock to
the end of each encoder layer. We run each data point 3 times with different random seeds,
and report both the average and standard deviations.We picked the dropping Block Size (B)
to be B = 4, and show an ablation of this parameter in Appendix E.

4.2. Probability scheduling

Ghiasi et al. mentioned in their experiments that DropBlock with a linear dropping scheme
that decreases the value of keep probability from 1 to 1 − α can significantly improve the
performance. We test α ∈ {0.1, 0.2, 0.3, 0.5}, and pick the best performing α (α = 0.2 in
this case). A detailed explanation of these keep probability is in Appendix D.
In Table 1, we apply this linear dropping scheme to both the standard Dropout (Srivastava
et al., 2014b) and BatchDropBlock (Dai et al., 2019). We consider a modified version
of BatchDropBlock, where all channels of a single input are dropped consistently, but
datapoints in a batch can drop independently. One major observation from Table 1 is that
an appropriate probability scheduling improves the performance of both structured and
unstructured methods. The scheduling shows a greater impact on structured Dropout.
Intuitively, Dropout servers as a regularization method, and applying it at the start of
the training interferes with the optimization; this type of regularization method should be
introduced at a later stage of training when the training accuracy starts to become larger
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than the validation accuracy, or in other words when overfitting starts to arise. In general,
we observed that:

• Structured Dropout (eg. DropBlock) with a linear dropping scheme of decreasing the
value of keep probability can significantly improve the performance, this aligns with
the observation made by Ghiasi et al..

• Non-structured Dropout also benefits from the linear dropping scheme,
although it is a less significant improvement than the structured Dropout.

4.3. Structured and non-structured Dropouts

In this section, we compare the performance of the standard Dropout, various structured
Dropout schemes (BatchDropBlock and DropBlock) and ProbDropBlock. All methods have
a linear dropping scheme of decreasing the value of the keep probability from 1 to 1−α. We
experimented also α ∈ {0.1, 0.2, 0.3, 0.5}, and used α = 0.2 for ResNet and 0.1 for RoBERTa
models, an ablation study of different dropping probabilities can be found in Appendix D.

Table 3: Different Structured Dropout schemes. DropBlock is channel independent (chan-
nels are not dropped independently), ProbDropBlock additionally has dropping
probabilities correlated to element-wise saliency. The RoBERTa model is first
pretrained on a large unlabeled text corpus and subsequently finetuned on these
tasks, which is the same setup in Liu et al..

Method Metric MNLI QNLI RTE

Baseline Accuracy ↑ 87.60 ± 0.04 92.75 ± 0.03 73.28 ± 0.02

BatchDropBlock
Accuracy ↑ 87.39 ± 0.29 92.70 ± 0.06 70.64 ± 0.07

∆ ↑ −0.21 −0.05 −2.64

DropBlock
Accuracy ↑ 87.71 ± 0.24 92.81 ± 0.11 72.51 ± 0.08

∆ ↑ +0.11 +0.06 −0.77

ProbDropBlock
Accuracy ↑ 87.83 ± 0.15 92.90 ± 0.12 74.25 ± 0.03

∆ ↑ +0.22 +0.15 +0.97

Language models such as BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) are
based on the multi-head attention mechanism (Vaswani et al., 2017). Prior work has not
studied how to apply coarse-grained Dropout techniques on transformer-based architectures.
We apply these structured Dropouts in a head-wise manner, this means for BatchDropBlock,
we drop the same pattern across heads in multi-head attention. DropBlock, in contrast,
then drops each head independently.
The original RoBERTa used a Dropout with α = 0.1, and we replaced all of these Dropouts
with the regularization strategies shown in Table 2. Notice, in this case, our baseline
considered is a standard RoBERTa without any Dropouts. Our RoBERTa baseline on MNLI
achieves 87.60%. The baseline accuracy for ResNet50 on CIFAR10 is 94.37%.
The ReNet50 model is evaluated on CIFAR10. The striding of the network is adjusted to
fit into this smaller image size of CIFAR10. The details of this network architecture are
summarized in Appendix A. Table 2 confirmed with the observation made by Ghiasi et al.
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(2018) that structured Dropouts are generally better than standard, unstructured Dropouts
on vision tasks. In addition, our results in Table 2 also suggest that structured Dropout is
better on MNLI.
Another interesting observation is that unstructured Dropout does not provide any perfor-
mance gains for language models (−0.09 on RoBERTa). In the meantime, we see that BDB,
although works reasonably well on ResNet50, has a detrimental impact on the performance
of RoBERTa. This means that applying structured Dropout methods to each Transformer
head independently is important for these methods to improve the performance of language
models. We will investigate this phenomenon in greater detail in Section 4.4. In general, we
saw that:

• In addition to what was originally shown by Ghiasi et al., we observed structured
Dropout techniques are generally better not only on vision tasks but also
on language tasks.

• Structured Dropout techniques are more advantageous on language tasks compared to
vision tasks.

4.4. Language tasks

Table 3 demonstrates the performance of RoBERTa finetuned on three GLUE tasks (MNLI,
QNLI, RTE) using different structured Dropout techniques. To our best knowledge, we are
the first to investigate the effect of block-wise structured Dropout methods on Transformer-
based models.
We observe that both DropBlock and ProbDropBlock consistently outperform BatchDrop-
Block (BDB) and that ProbDropBlock is the best performing method. Both DropBlock and
ProbDropBlock can significantly help RoBERTa achieve better performance, while BDB has
a negative impact on its accuracy.
The major difference with BDB is that each head drops blocks with the same pattern across
heads, we observe this is having a negative effect on the performance of RoBERTa.
The proposed strategy, ProbDropBlock, is able to achieve the best performance on all tasks
and is able to outperform the original RoBERTa model by a significant margin. This is
a clear indication that dropping structured patterns based on the saliency values of the
attention maps is advantageous.

We made the following observations from Table 3:

• BatchDropBlock generally has a negative impact on the performance of language
models.

• Structured Dropout applied identically per head (BatchDropBlock) does not improve
model performance on language tasks, both DropBlock and ProbDropBlock outperform
BDB by a significant margin. Dropping heads independently is critical for better
performance on language models.

• The multi-head attention modules in the transformer benefit the most from ProbDrop-
Block.
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Table 4: Different Structured Dropout schemes. DropBlock is channel independent (chan-
nels are not dropped independently), ProbDropBlock additionally has dropping
probabilities correlated to element-wise saliency. ResNet50 and WideResNet28 are
from the ResNet family with adjusted striding to match the CIFAR image size.
PVTv2-B1 is the pyramid vision transformer.

Method Metric
CIFAR10 CIFAR100

ResNet50 PVTv2-B1 WideResNet28 PVTv2-B1

Baseline Accuracy ↑ 94.37 ± 0.32 95.59 ± 1.00 74.72 ± 0.08 82.38 ± 0.19

BatchDropBlock
Accuracy ↑ 94.77 ± 0.29 95.99 ± 0.15 74.97 ± 0.26 82.22 ± 0.34

∆ ↑ +0.41 +0.40 +0.25 −0.16

DropBlock
Accuracy ↑ 95.05 ± 0.21 95.89 ± 0.09 74.99 ± 0.08 82.26 ± 0.35

∆ ↑ +0.68 +0.30 +0.27 −0.12

ProbDropBlock
Accuracy ↑ 94.73 ± 0.19 96.15 ± 0.01 75.13 ± 0.27 82.44 ± 0.16

∆ ↑ +0.35 +0.56 +0.41 +0.06

Table 5: ProbDropBlock and baseline for ImageNet classification.

Method Metric
ImageNet

ResNet50 PVTv2-B1

Baseline Accuracy ↑ 74.22 ± 0.06 78.27 ± 0.04

ProbDropBlock
Accuracy ↑ 74.50 ± 0.17 78.88 ± 0.22

∆ ↑ +0.28 +0.61

4.5. Vision tasks

Table 4 and Table 5 demonstrate the results of applying different structured Dropout
methods on CIFAR10, CIFAR100 and ImageNet. Vision Transformers (ViTs) recently have
demonstrated great capabilities on major vision benchmarks (Liu et al., 2021; Wang et al.,
2022), so we consider both the ResNet family (He et al., 2016; Zagoruyko and Komodakis,
2016) and Pyramid Vision Transformer Wang et al. (2022) in our experiment. Prior research
has hardly systematically studied the effect of structured Dropouts on Vision Transformer
models.
We observe that in general ProbDropBlock shows the best performance on all dataset
network combinations, except for one outlier which is ResNet50 on CIFAR10. Interestingly,
we observe a phenomenon that BDB (BatchDropBlock) in general improves the performance
of both CNNs and ViTs according to Table 4. This is very different from the phenomenon
observed in Section 4.4 that BDB generally decreases the performance of language models.
We also notice that only ProbDropBlock can slightly increase the accuracy of PVTv2-B1 on
CIFAR100. We then realised that PVTv2-B1 has a validation accuracy that is not greatly
larger than its training accuracy, meaning that this model does not overfit the dataset by a
significant margin. For instance, ResNet50 on CIFAR10 overfits heavily on the CIFAR10
task and thus it benefits the most from regularization methods. The PVTv2-B1 model
architecture used for both CIFAR10 and CIFAR100 is significantly smaller than the original
model, the details of this model architecture difference are explained in Appendix A. In
addition, CIFAR100 is a harder task than CIFAR10, we see PVTv2-B1 benefits less from
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regularization methods such as structured Dropouts when the model is not overfitting.
Table 4 generally demonstrate that ProbDropBlock is the best regularization method on
three out of the four model-dataset combinations. When we train PVTv2-B1 on CIFAR100,
both BDB and DropBlock fail to improve the model performance since the model does not
overfit greatly to the dataset; but, ProbDropBlock still makes a positive impact on model
performance. We further tested the effect of ProbDropBlock on ImageNet and Table 5
summarizes our results. We demonstrate that ProbDropBlock is an effective regularization
method, it provides us +0.28% and +0.61% accuracy gains for ResNet50 and PVTv2-B1
respectively. Structured Dropout techniques in general can help vision models based on our
observations on Table 4 and Table 5. We make the following observations:

• BatchDropBlock has a positive impact on computer vision models, this is different
from what we have observed in Section 4.4.

• Models that are not overfitting benefit less from structured Dropouts.

• Structured Dropout methods generally help vision models to learn better, the proposed
ProbDropBlock is effective on both CNNs and ViTs.

5. Conclusion

In this paper, we revisit the ideas of structured Dropout for current state-of-the-art models,
we devise our form of adaptive structured Dropout - ProbDropBlock and compare preexisting
structured and unstructured Dropout approaches to ours on vision and language tasks. We
demonstrated the utility of a simple linear dropping schedule for both structured and
unstructured Dropouts supporting a similar observation made by Ghiasi et al. (2018).
Our approach, ProbDropBlock was able to achieve improvements in performance for all
networks and task combinations and outperformed other forms of Dropout considered for the
majority of combinations we evaluated. In particular, ProbDropBlock improved RoBERTa
finetuning on MNLI by 0.22%, and training of ResNet50 on ImageNet by 0.28%.
This work demonstrates the utility of structured Dropout approaches not just on residual
networks and CNNs, but on language and vision transformers. However, there is a limit
to the gains achievable through Dropout alone, as demonstrated by the results of the
PVTv2-B1 model on the CIFAR-100 dataset, when there is minimal overfitting in the model
regularization only provides minimal gain.
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Appendix A. Networks

A.1. RoBERTa

The RoBERTa model is kept the same as its original form proposed by Liu et al. (2019). In
our experiment, we consider the RoBERTa-base model only. The base model contains 12
layers, with a hidden size of 768, an FFN inner hidden size of 3072 and 12 attention heads.
The original model uses Dropout and we replace all of the original Dropouts to structured
Dropout methods.

A.2. ResNet

We consider both the original ResNet (He et al., 2016) and its wider alternative (WideResNet)
(Zagoruyko and Komodakis, 2016). These networks normally have one convolutional layer
(named stem) and four other residual blocks. For the CIFAR10 and CIFAR100 classification,
we change the striding of the first convolution to 1 and deleted the first max pooling. These
adaptions help the network to operate with the 32 × 32 image size on CIFAR datasets

A.3. PVT-V2

Table 6 demonstrates the detailed setup of the PVT-V2 structure used for CIFAR and
ImageNet tasks. The rest of the setup parameters are the same as Wang et al. (2022), and
the setup is the same as the PVTV2-B1 model.

Table 6: PVT-V2 setup for vision datasets, e is the embedding dimension and s is the
striding used for the overlapping patch embedding.

Layer name CIFAR10/CIFAR1000 ImageNet

Stage 1 e = 16, s = 4 e = 64, s = 4
Stage 2 e = 32, s = 2 e = 128, s = 2
Stage 3 e = 64, s = 1 e = 256, s = 2
Stage 2 e = 128, s = 2 e = 512, s = 2

Appendix B. Additional results on Machine Translation

To illustrate that the proposed dropout scheme also works on Sequence to Sequence tasks,
we performed an evaluation of it on IWSLT’14 English (EN) to German (DE) and German
(DE) to English (EN).
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Table 7: Machine Translation Task (IWSLT’14) using a RoBERTa model, results are reported
as BLEU scores.

EN → DE DE → EN

Baseline 27.24 33.21

ProbDropBlock 27.84 (+0.60) 33.44 (+0.23)

Appendix C. Hardware System

We used a variety of hardware systems, our initial testing and CIFAR10 results are generated
on a hardware system with 4 x NVIDIA GeForce RTX 2080 Ti GPUs. The ImageNet
training and RoBERTa training are performed on 4 x Nvidia A100 SXM4 80GB GPUs.
The total amount of GPU training cost for all the expriments in this paper is around 20
GPU-days.

Appendix D. Picking the dropping probability

Table 8: Different Dropping probabilities for ProbDropBlock.

Probability ResNet50 on CIFAR10 PVT-V2 on CIFAR100 RoBERTa on MNLI

0.0 94.37 ± 0.32 82.38 ± 0.19 87.60 ± 0.04
0.1 94.70 ± 0.14 82.44± 0.16 87.83± 0.15
0.2 94.73± 0.19 82.21 ± 0.13 87.32 ± 0.11
0.3 94.20 ± 0.30 82.10 ± 0.16 69.45 ± 0.16

Appendix E. Picking the block size

The block size for DropBlock is a hyperparameter that needs to be tuned. We test B ∈
{2, 4, 6, 8, 10}, and pick the best performing B (B = 4 in this case) as shown in Figure 2.

2 3 4 5 6 7 8 9 10
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93.4

93.6

93.8
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Figure 2: The effect of block size on the performance of DropBlock.
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