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Abstract

Hypertrophic obstructive cardiomyopathy (HOCM) is a leading cause of sudden cardiac
death in young people. Septal myectomy surgery has been recognized as the gold standard
for non-pharmacological therapy of HOCM, in which aortic and mitral valves are critical
regions for surgical planning. Currently, manual segmentation of aortic and mitral valves
is widely performed in clinical practice to construct 3D models used for HOCM surgical
planning. Such a process, however, is time-consuming and costly. In this paper, we inte-
grate anatomical prior knowledge into deep learning for automatic segmentation of aortic
and mitral valves. In particular, a two-stage method is proposed: we first obtain the re-
gion of interest (RoI) from a CT image, where heart segmentation is then performed. The
spatial relationship between heart substructures is utilized to identify a valve region that
contains the aortic and mitral valves. Unlike typical two-stage methods, we feed the refined
segmentation of the left ventricle, left atrium, and aorta as additional input for the valve
segmentation. By incorporating this anatomical prior knowledge, deep neural networks
(DNNs) can leverage the surrounding anatomical structures to improve valve segmenta-
tion. We collected a dataset of 27 CT images from patients with a medical history of septal
myectomy surgery. Experimental results show that our method achieves an average Dice
score of 71.2% and an improvement of 4.2% over existing methods. Our dataset and code
will be released to the public Dataset.

Keywords: Hypertrophic obstructive cardiomyopathy, Surgical planning, Segmentation,
Deep neural networks.

1. Introduction

Hypertrophic obstructive cardiomyopathy (HOCM) is a leading cause of sudden cardiac
death in young people Maron and Maron (2013). Septal myectomy surgery is the mainstay
of treatment for relief of left ventricular outflow tract obstruction (LVOT). It is effective in
improving patient survival by removing a small amount of the thickened septal wall. The
surgical treatment always comes with the repair of the mitral valve (MV) and the risk of
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functional injury to the aortic valve (AV) for the reason that HOCM is often associated
with structural abnormalities of MV Afanasyev et al. (2019).

To avoid the recurrence of the patient’s disease after surgery, septal myectomy surgery
requires extensive experience for surgeons, while the thickness and extent of hypertrophic
myocardial resection are not easy to precisely grasp. Preoperative planning is essential for
the surgeon to complete the procedure more smoothly, with the MV and AV being key
areas for pathway planning. In routine operations, surgeons often lack spatial awareness
of the travel a nd position of surgical tools during the process. To address this challenge,
three dimensions (3D) printing can visualize the desired patients’ cardiac structure in 3D
to assist the surgeon in developing an individualized surgical strategy for the patient. Re-
cently, manual 3D segmentation of valves, in addition to the large cardiac structures Xu
et al. (2020)Xu et al. (2019), has been used in clinical applications Ma et al. (2021) for pre-
operative surgical planning. It can successfully assist surgeons in determining the location
and anatomical characteristics of the target to personalize the patient’s surgical strategy.
However, manual segmentation is time-consuming, costly, and laborious Xu et al. (2018)Xu
et al. (2023).

Recently, a variety of deep learning-based methods have been proposed for heart seg-
mentation. In the light of the MICCAI’17 MM-WHS Zhuang and Shen (2016) challenge,
various state-of-the-art heart segmentation models have been proposed and are summarised
in Zhuang et al. (2019). For instance, Yang et al. (2017) proposed a modified 3D U-Net with
a hybrid loss to alleviate the potential imbalance among different cardiac sub-structures to
improve the whole heart segmentation performance. Meanwhile, some two-stage methods
attract more and more attention in cardiac image analysis. Wang Chengjia et al. (2018) in-
troduced a two-stage modified U-Net architecture, which simultaneously detected a region
of interest (RoI) from the full volume and segmented the RoI at the original resolution.
Payer et al. (2017) employed two CNNs in an end-to-end manner including location CNN
and segmentation CNN for the whole heart segmentation. Although these methods achieve
promising performance in large cardiac sub-structure, valves, especially AV and MV, have
not been considered and explored.

Currently, there are a few methods related to valves segmentation in non-contrast CT
images. Jin and Hugo (2021) applied Mask R-CNN and a combination of ResNet and U-Net
respectively to segment chambers and valves, while Finnegan (2020) adopted a traditional
machine learning method, multi-atlas mapping, for efficient segmentation. However, the
performance is still limited, and a possible reason is that they do not take into account
the domain knowledge to assist segmentation. Note that for preoperative surgical planning,
AV and MV segmentation is quite an interesting problem. First, the target is rather small
compared to the CT image as discussed in the background section. Second, based on our
manual segmentation experience Ma et al. (2021) in clinical practice, extensive attention
needs to be paid to the surrounding anatomies including the left ventricle (LV), the left
atrium (LA), and the aorta (AO). Their relative positions help the detailed operation in
the surgery. Such anatomical prior knowledge may help the segmentation of AV and MV.

In this paper, we propose a method that combines anatomical prior knowledge with
deep learning techniques for the automatic segmentation of AV and MV. Our approach is
based on a two-stage process: first, we extract the RoI from the CT image, followed by a
refined segmentation step. A notable feature of our method is the inclusion of the refined
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Figure 1: Background of HOCM including (a) normal heart structure, (b) heart structure
of HOCM patients, and (c) the process of septal myectomy surgery. Note that
the septal myocardium of HOCM patients is significantly thickened and their
intraventricular chambers become smaller. As a result, LVOT becomes narrowed,
leading to obstruction of blood in the heart. During the surgery, surgeons observe
anatomic structures and operate in (c) along the green arrow line, and the relative
positions between the myocardium and AV and MV play an important role in
the surgery operation.

segmentation of the left ventricle, the left atrium, and the aorta as additional input for
valve segmentation. This unique approach allows us to leverage the anatomical context
provided by these surrounding structures during the deep neural network (DNN) training
process. By incorporating this anatomical prior knowledge, we anticipate that the accuracy
of the final valve segmentation can be improved. We collected the first dataset of 27 CT
images from patients with a medical history of septal myectomy surgery. The experimental
results show that our method achieves an average Dice score of 71.2%, representing a 4.2%
improvement over existing methods in terms of segmentation accuracy. Our dataset and
code will be released to the public Dataset.

2. Background

Anatomy: Normal cardiac anatomy is shown in Figure 1(a), showcasing a typical struc-
ture and function of the heart. However, in Figure 1(b), we observe HOCM, which is
characterized by a significantly thickened ventricular wall. In HOCM, the anterior mitral
valve leaflet exhibits anterior systolic motion. The thickened portion of the heart muscle in
HOCM leads to a narrowed LVOT. This obstruction impedes the smooth flow of blood out
of the left ventricle, posing a substantial risk of sudden cardiac death for affected patients.
The obstruction of the LVOT is a prominent symptom of this disease, referred to as left
ventricular outflow tract obstruction.
Septal myectomy surgery: In the clinical setting, patients usually require surgical inter-
vention, specifically septal myectomy. This invasive surgical procedure involves the direct
removal of a portion of the hypertrophied heart muscle. As shown in Figure 1(c), the sur-
geon needs to make an incision in the AO to access LV through AV for myocardial excision.
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Figure 2: Illustration of the anatomy relationship among AO, LA, LV, valves, and the
excision region. (a) 3D view of the anatomy relationship between AO, LV, and
AV, (b) 3D view of the anatomy relationship between LA, LV, and MV, and (c)
3D view of the anatomy relationship between LV, and excised myocardium.

Additionally, if necessary, MV repair may also be performed. Additionally, if necessary,
MV repair may also be performed. To ensure optimal surgical outcomes and minimize
risks, preoperative evaluation of MV pathology is crucial. This evaluation helps determine
whether additional MV repair is required in conjunction with the septal myectomy surgery.
Furthermore, planning the surgical path based on the position of the AV is essential to
reduce the risk of abnormal AV function. By assessing MV pathology and planning the
surgical path according to the AV position, surgeons can enhance the effectiveness of pro-
cedures and minimize complications. This comprehensive approach allows for a smoother
surgical process and helps optimize patient outcomes.
Relationships between substructures: Due to the limited contrast of the valve with
its surrounding structures in CT images, the annotation of the valve is dependent on its
anatomical relationship with other relevant structures. As shown in Figure 2, AV is located
between AO and LV, while MV is located at the junction of LA and LV. Additionally, the
myocardium that needs to be excised during the procedure is located on the ventricular
wall within the LV. Considering these anatomical relationships, we regard the AO, LA, and
LV as critical prior knowledge in the segmentation of the valves.

3. Dataset

Our dataset consists of 27 3D CT images captured by a Siemens SOMATOM Definition
Flash machine. The ages of the associated patients range from 38 to 76 years with an average
of 57.6 years. The size of the images is 512× 512×(275−571), and the typical voxel size is
0.25×0.25×0.5mm3. The annotations were performed by two experienced radiologists, and
the time for labeling each image is 0.5-1.5 hours. The labels include seven substructures:
AV, MV, AO, LA, LV, myocardium, and excised myocardium. Figure 3 shows examples
including CT images and their annotations in our dataset.

This work and the collection of data of retrospective data on implied consent received
Research Ethics Committee (REC) approval from Guangdong Provincial People’s Hospital
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Figure 3: Illustration of the annotations in our dataset. including (a) 2D CT slices with
corresponding labels, (b) 3D external views of the label, (c) 3D internal views of
the label, (d) 3D views of combination of MV and AV in two viewpoints, and (e)
3D views of excised myocardium in two viewpoints.

under Protocol No. KY-N-2022-048-01. It complies with all relevant ethical regulations.
Identification was performed in which all CT files are transformed into NIfTI format, and
sensitive information including name, birth day, admission year, admission number, and CT
number is removed. Only de-identified retrospective data were used for research, without
active involvement of patients.

4. Method

4.1. Overview

The proposed method is illustrated in Figure 4, consisting of two main stages: the coarse
stage and the refined stage. Like general two-stage methods Wang Chengjia et al. (2018),
the coarse stage performed segmentation, which operates at a lower resolution, focuses on
obtaining relevant information, such as the RoI. This initial segmentation step provides
a coarse representation of the structures of interest. Moving on to the refined stage, the
segmentation process operates at a higher resolution to achieve more detailed and accurate
results. This stage refines the segmentation by incorporating additional contextual infor-
mation. Unlike general two-stage methods, We specifically extract the valve region, which
includes the junction between LV, LA, and AO, where the heart valves are situated. We
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Figure 4: Overview of the proposed method combining CT image and valves context infor-
mation (anatomical prior knowledge) as input for valves segmentation.

added a valves context segmentation module in the refined stage to obtain detailed segmen-
tation of LV, LA, and AO which is subsequently utilized as extra information or anatomical
prior knowledge for the valves segmentation task.

4.2. Heart region extraction

This step extracts the region that contains the heart and its connected vascular trunk. By
doing so, unrelated areas can be eliminated, resulting in reduced redundant calculations and
improved efficiency. Furthermore, this step contributes to accelerating the convergence of
the model during the refined stage. Particularly, the CT images are resized to 128×128×128
and subsequently fed to a 3D U-Net for segmentation of LA, LV, and AO. Following the
segmentation, some simple post-processing techniques, such as erosion and the removal of
small isolated islands, are applied. The combination of the LA, LV, and AO segmentations
is then utilized to locate the RoI.

4.3. Heart segmentation

In this step, we aim to obtain the large heart substructures that are crucial for preoperative
planning. These structures serve as the basis for extracting the spatial location of critical
areas required for valve segmentation. Additionally, we make an effort to perform surgical
resection site segmentation, although this task is subjective and relies heavily on the sur-
geon’s experience. To achieve this, we utilize a 3D U-Net to segment several key structures
in high resolution, including the AO, LA, LV, myocardium and excised myocardium. Since
the size of RoI extracted from different patients varies, we normalize the RoI and divide it
into a number of patches with a size of 128×128×128 in a sliding window manner. In this
way, we can obtain the context segmentation of large structures in the same resolution as
the input image. By leveraging the anatomical spatial relationship between the AO, LA,
and LV, we can then determine the valve region required for the refined stage of segmenta-
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tion. This utilization of anatomical relationships helps ensure that the valve segmentation
is performed accurately and effectively.

4.4. Valves region extraction

We use distance maps to crop the region of interest between AO, LA, and LV on CT images
of the heart region as the valve region. The distance map is constructed as follows. First,
euclidean distance is calculated between each pixel and target pixels belonging to AO, LV
or LA, and the shortest distance is assigned. As a result, each pixel obtains three values
corresponding to the shortest distance to AO, LV or LA, respectively. Then, a simple rule
is used to crop the data. Particularly, pixels with a distance of [0, 60] to the AO and
LV, and [0, 30] to LA are included. This distance effectively encompasses the aortic root
and the junction of the LA and LV, which are the locations of AV and MV, respectively.
The cropping of valve region and the 3D display of its annotation are shown in Figure 5.
This visualization showcases the extracted valve region and its corresponding annotations,
highlighting the effectiveness of the proposed method in accurately delineating the valve
region of interest.

4.5. Valves context segmentation

The valves exhibit a distinct relationship with the surrounding structures, including the AO,
LV, and LA as shown in Figure 6 in which the results of the heart segmentation module are
presented with the ground truth of AV and MV. We can see that in the valve region, the
AV part is roughly between AO and LV, and the MV part is between LA and LV. Though
there exist intensive segmentation errors in the boundaries, the information on positions of
related anatomic structures, i.e., valve context, can help localize the position of AV and MV.
The valves region is divided into multiple patches with a size of 128×128×128 in a sliding
window manner and then put into U-Net for segmentation. By employing this approach,
we aim to enhance the accuracy and precision of the valve segmentation results, taking into
account the contextual information provided by the neighboring structures.

4.6. Valves segmentation

The valves region and the segmentation of AO, LA, and LV from the context segmen-
tation module are combined first and then divided into multiple patches with a size of
128×128×128 in a sliding window manner. In this way, two benefits are obtained. First,
the resolution of the patches can be as high as the input CT image, and the sliding window
can be regarded as some kind of ensemble to improve the segmentation performance. Sec-
ond, a sliding window on a large RoI including AO, LV, and LA can extract a number of
patches to ensure that AV and MV are included in the input.

5. Experiments

5.1. Experiment Setup

In the coarse stage, we use 3D U-Net to implement heart region extraction and large struc-
tures segmentation. To evaluate the effectiveness of incorporating anatomical prior knowl-
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Figure 5: Details of valves context segmentation including (a) cropping of valve region using
distance transform maps and (b) visualization of valve region annotations.
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Figure 6: Illustration of valves context information. (a) The segmentation results of the
heart segmentation module and its details for (b) AV and (c) MV show a close
relationship between valves and surrounding anatomic structures.

edge in the refined stage, we conduct experiments using different types of inputs in various
U-Net models. Additionally, in the refined stage, we aim to segment structures of differ-
ent sizes together, which differs from the step-wise segmentation approach proposed in our
method. All experiments were run on Nvidia A40 GPU with 48GB memory. As the data
size is limited, three-fold cross-validation is adopted. The dataset is divided equally into
three parts, two of which are used for training set and the remaining one for testing set. In
the training set we randomly select two CT images as the validation set, and its Dice coeffi-
cient similarity(DSC) is used to adjust the learning rate. We set 0.003 as the initial learning
rate and then adopt an adaptive adjustment strategy to modify the learning rate. DSC is
used for evaluation. Both dice loss and focal loss are utilized in the training process, with
60 epochs for RoI segmentation and 40 epochs for valves segmentation. The window level
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and window width are adjusted for contrast adjustment, and the min-max normalization
method was used for data normalization.

5.2. Evaluation metrics

Dice similarity coefficient (DSC): DSC is commonly used to measure the effectiveness
of medical image segmentation tasks, and it is an ensemble similarity metric that is usually
used to calculate the similarity of two samples with a value threshold of [0, 1]. We used
it to assess the agreement between the result of automatic segmentation and the manual
labeling by the radiologist. DSC is defined as:

DSC = 2
|A| ∩ |B|
|A|+ |B|

, (1)

where A is the result of automatic segmentation and B is the manual labeling by the
radiologist.
True Positive Rate(TPR): True positive rate, also known as sensitivity, can reflect the
extent to which the target structure is completely segmented with a value threshold of [0,
1]. TPR is defined as:

TPR =
TP

TP + FN
, (2)

where TP is the correctly identified part of the automatic segmentation, and (TP+FN) is
the ground truth.
Precision: Precision reflects the degree to which the target structure is correctly seg-
mented with a value threshold of [0, 1]. Precision is defined as:

Precision =
TP

TP + FP
, (3)

where (TP+FP) is the automatic segmentation.
Surface overlap (SO): The Surface Overlap (SO) metric is commonly used to evaluate
the coverage or agreement between the segmentation results of a thin film-like structure
and ground truth, with a value threshold of [0, 1]. It measures the overlapping region
between the two segmentations. The metric considers a tolerable error distance, usually
set to a certain value such as 1 mm, to account for small discrepancies in the thickness
or position of the segmented valve. The surface within this tolerable error distance is
considered as the overlapping part, indicating regions where the segmented valve and the
reference segmentation agree. By using the SO metric, we can assess the accuracy and
agreement of the valve segmentation results, taking into account the thin and complex
structure of the valve. A higher SO value indicates better coverage and agreement between
the segmentation results and the reference segmentation, while a lower SO value suggests
discrepancies or errors in the segmentation.
Hausdorff Distance95 (HD95): We used the Hausdorff distance to assess the maximum
mismatch between segmentation and manual annotation, which reflects the accuracy of the
boundary. To calculate HD95, we ranked the distances between corresponding points on the
segmented boundary and the manual annotation in descending order. Then, we identified
the distance at the 5% of the ranked list, which represents the maximum mismatch tolerated
for 95% of the boundary points.
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Table 1: Mean and standard deviation (std) of DSC (in %) among various networks in
different methods for AV and MV segmentation. Method A: Two-stage meth-
ods Wang Chengjia et al. (2018) in which five cardiac structures, (LA, LV, AO,
MV, AV) are segmented simultaneously in the valve region. Method B: one-stage
method Yang et al. (2017) in which MV and AV are segmented directly.

Backbones Method AV MV LV LA AO

Attention
3D U-Net

Our proposed 72.1±9.7 70.2±6.0 94.7±2.1 96.5±1.6 93.4±3.6
Method A 67.3±14.2 68.5±8.8 94.5±2.5 96.3±1.7 93.0±3.9
Method B 65.9±14.2 68.5±8.3 - - -

3D U-Net
Our proposed 71.2±8.6 69.7±6.0 92.1±8.5 95.8±2.6 92.9±3.6
Method A 69.2±8.4 68.8±7.2 91.8±7.8 95.8±1.9 92.7±4.6
Method B 68.3±9.7 66.3±13.9 - - -

Table 2: Mean and standard deviation (std) of DSC (in %) of the results in the heart
segmentation module.

AO LA LV Myocardium Excised myocardium

89.8±7.1 91.7±3.1 92.1±3.3 87.0±3.9 62.9±11.3

Mean Surface Distance (MSD): For the valves, we also calculated the average surface
distance between the segmentation results of the valves and the ground truth, reflecting the
difference in thickness between them. This metric can provide the accuracy of reproducing
the true thickness of the valves and be used to evaluate the performance in capturing the
variations in thickness.

5.3. Quantitative result

The quantitative results of valves segmentation are shown in Table 1. Two backbones are
also used for analysis. We can find that our method achieves the optimal DSC in the two
backbones. Method A obtains a higher performance than Method B which is expected as
Method A adopts two-stage methods which can better localize the region of interest than
Method B. For the backbone using attention 3D U-Net, our method showed a 4.8% and
1.7% improvement in DSC in AV and MV, respectively, compared with Method A. While
the backbone using 3D U-Net, our method showed a 2.0% and 0.9% improvement in DSC
in AV and MV, respectively, compared with Method A. Thus, the average improvements
achieved by our method over two-stage methods Wang Chengjia et al. (2018) are 3.4% and
1.3% for AV and MV, respectively.

The quantitative segmentation result of the heart segmentation module is shown in
Table 2. For LV, LA, and AO, the average DSC can reach above 90%, which is quite high
for preoperative spatial path planning. DSC for the excised myocardium is much lower
than others which is because excised myocardium is largely subjective to the surgeons.
Considering there are three surgeons for labeling for our dataset and there is no guidance in
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clinical practice for precise segmentation of the excision region currently, high segmentation
performance is relatively more challenging to achieve.
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Figure 7: Visualization comparison of MV and AV segmentation by our method and the
two-stage method Wang Chengjia et al. (2018).

5.4. Qualitative result

Qualitative comparison of MV and AV segmentation between our proposed method and the
two-stage method Wang Chengjia et al. (2018) is shown in Figure 7. For many cases, both
our method and the two-stage method can segment the valves quite well compared to the
two-stage method as shown in Figure 7(a-d). However, we can also notice that there are
some missing parts in the segmentation results of the two-stage method as shown in Figure
7(e-h), which is relatively hard to recognize. While our method can tackle the errors well
especially for the case in Figure 7(h).

Qualitative illustration of the good and bad MV and AV segmentation by our method
is shown in Figure 8. For good segmentation in Figure 8(a) and (e), median segmentation
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Figure 8: 3D visualization of our segmentation results with (a) and (e) best, (b-c) and (f-g)
median, and (d) and (h) worst DSC among all the test images.

in Figure 8(b-c) and (g), and bad segmentation in Figure 8(h), most of the segmentation
errors locate at the edges. A possible reason is that the boundary of the valve has low
contrast with the surrounding tissues. In addition, the shape of valves features a thin
and complex shape which also introduces difficulty in segmentation. For example, the
aortic annulus is the connection of the lowest points of the valve leaflets, whereas the
mitral annulus is a complex nonplanar saddle-shaped structure, which contributes to the
complexity of segmentation. The segmentation error is also distributed in the inner area
as shown in Figure 8(d) and (f), which is because of the difference in thickness between
the segmentation and the ground truth. This is due to the fact that AV and MV are
relatively small and thin membrane-like substructures in the heart. Thus, noise during the
acquisition process and the imaging process can easily affect the image resulting in missing
pixels of valves. These qualitative examples highlight the challenges associated with valve
segmentation, including low contrast boundaries, complex valve shapes, and susceptibility
to noise during image acquisition. Despite these challenges, our method demonstrates both
successful segmentations and areas for potential improvement.

Qualitative illustration of the good and bad segmentation in the heart segmentation
module is shown in Figure 9 and Figure 5.4. Overall, the main structures of AO, LV, LA,
and myocardium are well segmented. The errors mainly come from thin structures and
boundaries. For example, the thin vessels connected to the aorta (i.e., coronary vessels)
as shown in Figure 9(a) are not well detected. The same error happens to LA where



Segmentation of Aortic and Mitral Valves for Heart Surgical Planning

thin pulmonary veins are not well detected. The boundaries of LV (Figure 5.4(c)) and
myocardium (Figure 5.4(d)) are not well segmented which is due to the low contrast, making
it challenging to accurately identify the boundaries. In Figure 5.4, it can be found that DSC
of the excised myocardium range from 33.7% to 77.7%, which is due to the fact that excised
region is largely subjective to the surgeon. Note that a rough initial segmentation can also
provide the surgeon with a rough scope of the excision region thus helping the surgeon with
surgical planning.

Ground truth

The best result

(a) (c)(b)

Ground truth 

The worst result

(d)

DSC: 97.7% DSC: 95.8%

DSC: 74.5% DSC: 88.6% DSC: 83.1%

DSC: 92.3%DSC: 96.6%

DSC: 78.8%

Figure 9: Visualization of (a) AO, (b) LA, (c) LV, and (d) myocardium segmentation with
the best, median, and worst DSC in the heart segmentation module.

5.5. Comparison with related works

Comparison of AV and MV segmentation with related works is shown in Table 3, and the
corresponding target applications and dataset size are shown in Table 4. Note that all
existing methods use in-house datasets which cannot be compared fairly, and the datasets
and target applications vary. In addition, the details of their code are also not easy to im-
plement. Thus, we just list the segmentation performance in existing works here for a rough
discussion. Our method obtains the optimal performance on almost all metrics except pre-
cision. Note that almost all methods achieve similar performance on precision. Considering
the standard deviation, our method obtains the smallest values on all metrics compared
with existing methods indicating that the proposed method is more stable. The dataset
size in most existing studies is relatively small, typically consisting of around 30 samples.
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Figure 10: Visualization of the excised myocardium segmentation with the best, median,
and worst DSC in the heart segmentation module.

In contrast, our dataset is comparable in scale to the existing works. This phenomenon
arises primarily due to the inherent limitations in the number of surgeries conducted within
clinical practice, which is significantly fewer compared to other general examinations.

Table 3: Mean and standard deviation (std) of DSC, TPR, Precision, and SO (in %) and
HD95, MSD(in mm) of existing methods and our method for AV and MV seg-
mentation. Note that all existing methods use in-house datasets which cannot be
compared fairly and a rough discussion is presented here. In addition, the dataset
and target applications vary for existing works and our method. Our work has
published our dataset to facilitate related searches.

Method DSC TPR Precision SO HD95 MSD

Finnegan (2020) 41.3 - - - - 2.6
std ±15.9 - - - - ±1.1

Jin and Hugo (2021) 39.0 - - - - 8.6
std ±10.0 - - - - ±3.2

Pak et al. (2020) 65.6 - - - - -

Our proposed method 71.4 79.5 67.0 73.8 8.0 1.6
std ±8.0 ±10.5 ±13.9 ±9.8 ±5.1 ±1.0

6. Conclusion

In this paper, we integrated anatomical prior knowledge into deep learning for automatic AV
and MV segmentation. Unlike general two-stage methods, we feed the refined segmentation
of the left ventricle, the left atrium, and the aorta as an extra input for valves segmentation.
In this way, the anatomical prior knowledge, i.e., the surrounding anatomic structures of
valves, are fed into DNNs. We collected the first dataset of 27 CT images from patients with
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Table 4: Target applications and dataset size of existing works and our method.
Method Target applications Dataset size

Finnegan (2020) Cardiotoxic dose estimation for breast
cancer patients

20 CT images

Jin and Hugo (2021) Breast cancer radiotherapy for breast can-
cer patients

129 CT images

Pak et al. (2020) Surgical planning for transcatheter aortic
valve replacement

35 CT images

Our proposed method Surgical planning for septal myectomy 27 CT images

a medical history of septal myectomy surgery. Experimental results show that our method
achieves an average DSC of 71.4% and 70.0% for MV and AV, respectively, and an average
improvement of 3.4% and 1.3% for MV and AV, respectively, over the existing methods.
However, the segmentation is still limited for clinical practice, and there still exist cases
that a major part of valves cannot be detected, and boundaries cannot be well segmented
due to low contrast. Thus, we have released our dataset and code to the public Dataset.
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