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Appendix A. Supplements for Lemmas

Lemma 2 (Generalized version of Lemma 7 of Nguyen et al. (2017)) The sum of
the predictive variances is bounded by the maximum information gain γT . That is for
∀x ∈ X , it holds that
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where υmax = max(υ1, · · · , υT ) is the maximum standard deviation of the additive Gaussian
observation noise.

Proof Let us define G(x) = x
log(1+x) , we notice that G(x) is monotonically increasing when
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υmax = max(υ1, · · · , υT ) as the maximum standard deviation of the additive Gaussian
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where the last inequality is led by the definition of γT .

Lemma 5 Let δ ∈ (0, 1). For x ∈ X , t ∈ N , set ICt (x) = max{0, f(x)− f(x+t )}, then with
probability at least 1− 2δ we have

αC
t (x) ≥ max{ICt (x)−

√
βt
(
σt−1(x) + σt−1(x

+
t )
)
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Proof If σ̃t−1(x) = 0, then we have αC
t (x) = ICt (x) = 0. We now assume σ̃t−1(x) > 0 . Set
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is trivial as αC
t (x) is non-negative. Thus suppose I
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Lemma 6 Let δ ∈ (0, 1). Then with a probability of at least 1− 2δ, we have
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)
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Proof By Lemma 5 and IMt (x) = max{0, f(x)− f(x+t )}, we have that
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where the second inequality is provided by Lemma 5. By the definition of xt = argmaxx∈X αM
t (x),

we obtain
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Thus, we derive the following result by combining the above two inequalities
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This final inequality holds with probability 1− 2δ.

Appendix B. Additional simulation results: Functions sampled from
Gaussian kernel

In this part, we constructed our functions based on the samples drawn from a squared
exponential kernel with length scale ℓ = 3 and amplitude σ = 1. As indicated by Figure 5
(b), the covariances between neighbor samples are not all zero given a relatively large length
scale parameter. We created 30 sample sets S1, · · · , S30 of 4000 data points from this kernel
function as shown in Figure 5(a). For each sample set Si, the function fi is defined as
fi(x) = f(xj)+ ε where xj = argminxj∈Si ∥x− xj∥ and the observation noise ε is Gaussian
distributed with mean 0 and standard deviation υ = 0.16. We deployed BO with EI or
Corrected EI to optimize these functions and the kernel was set to be the same as the
sampled kernel. The performance of the acquisition function is evaluated through f(xt)
corresponding to the same κ that equals 1 percent of the maximum difference over five
samples. A two-sided Wilcoxon sign rank test is performed to test the null hypothesis that
the corrected EI is not different from EI under our noisy settings. The test gave a p-value
equal to 0.013, indicating we should reject our null hypothesis. The scatter plot as shown
in Figure 6 also indicates this fact.
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Figure 5: (Left) Samples from an exponential quadratic kernel with a length scale ℓ = 3 and an amplitude
σ = 1. Each line is formed by 4000 samples. (Right) Visual representation of the kernel matrix for the
samples. The diagonal indicates the variances of the noise terms and the blue oblique region implies a
strong correlation between the neighbor points.

Figure 6: Comparison of EI and corrected EI over f(xt) for same termination criterion κ. The dotted line
represents the function y = x. More points are shown to be above this line, indicating that corrected EI is
more likely to select the point that returns a higher value on the objective function than standard EI.

Appendix C. Supplements for benchmark results

We present additional results in Figure 7 and Figure 8. Figure 7 shows the optimization
performance when the noise standard deviation υt is less than or equal to 15% of the range
of the objective function. Notably, our proposed method shows competitive performance
compared to other acquisition functions. Figure 8 shows the sequential optimization per-
formance of our proposed method relative to other acquisition functions under increasing
noise levels. We observe that all methods experience a decline in performance as the noise
level increases, however, the corrected EI exhibits excellent performance relative to EI even
in the high-noise regime.
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(a) Hartmann3d (b) Griewank(d = 6) (c) Levy(d = 4) (d) Powell(d = 5)

(e) Hartmann3d (f) Griewank(d = 6) (g) Levy(d = 4) (h) Powell(d = 5)

Figure 7: Comparison of methods for Benchmark objective functions under the case that observation noise
standard deviation υt is less than or equal to 15% of the range of the objective function. Figures (a)∼(d)
show how the mean and 95% confidence bound (shaded region) of the distance between the best feasible
objective and the global optimum changes with each iteration of optimization. Figures (e)∼(f) visualize the
variation of the L2 distance between the best point and the global optimizer x∗.

(a) υt ≤ 1% (b) υt ≤ 2% (c) υt ≤ 3% (d) υt ≤ 4%

(e) υt ≤ 5% (f) υt ≤ 10% (g) υt ≤ 15% (h) υt ≤ 20%

Figure 8: Optimization performance under increasing noise levels υt on a Griewank(d = 6) function. We
define the noise level as a percentage of the range of the objective function and evaluate performance by
measuring the L2 distance between the best point and the global optimizer x∗.
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