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Abstract

Sequential maximization of expected improvement (EI) is one of the most widely used
policies in Bayesian optimization because of its simplicity and ability to handle noisy ob-
servations. In particular, the improvement function often uses the best posterior mean
as the best incumbent in noisy settings. However, the uncertainty associated with the
incumbent solution is often neglected in many analytic EI-type methods: a closed-form
acquisition function is derived in the noise-free setting, but then applied to the setting
with noisy observations. To address this limitation, we propose a modification of EI that
corrects its closed-form expression by incorporating the covariance information provided
by the Gaussian Process (GP) model. This acquisition function specializes to the classical
noise-free result (Jones et al., 1998; Mockus et al., 1978), and we argue should replace that
formula in Bayesian optimization software packages, tutorials, and textbooks. This en-
hanced acquisition provides good generality for noisy and noiseless settings. We show that
our method achieves a sublinear convergence rate on the cumulative regret bound under
heteroscedastic observation noise. Our empirical results demonstrate that our proposed
acquisition function can outperform EI in the presence of noisy observations on benchmark
functions for black-box optimization, as well as on parameter search for neural network
model compression1.

Keywords: Sequential maximization, Bayesian optimization, Expected improvement

1. Introduction

Bayesian optimization (BO) is considered as an effective way to search for a global optimum
sequentially, especially when optimizing complex black-box objective function f(·) under
limited budgets, that is

x∗ = argmax
x∈X

f(x) (1)

where X ∈ Rd represents the bounded input space. Its optimization procedure relies on
a Gaussian Process (GP) model that allows us to relax the assumption of the objective
functions, leading to its popularity in many important applications including experimental

∗ Work was done at KU Leuven prior to joining Amazon.
1. The source code is available at https://github.com/han678/correctedNoisyEI.
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particle physics, material design, and hyper-parameter tuning for machine learning algo-
rithms. Once we have the GP surrogate model, the sequential selection of BO can be made
through a decision function, known as the acquisition function that relies on this model.
Among existing acquisition functions, Expected Improvement (EI) is one of the most widely
used as it preserves a good balance between exploration and exploitation. It is generally
defined as the expectation of the improvement function at iteration t: E[It(x)] where the
improvement function It(x) = max{0, f(x) − ξ} relies on the incumbent solution ξ. Let
us denote the set of sampled points up to iteration t − 1 as Dt−1, then in the noiseless
setting where f(x) can be easily observed, the incumbent best at iteration t is thus given
by ξ = f(x+t ) with the best point x+t = argmaxi≤t−1 f(xi). However, in the framework
of noisy observations i.e. yt = f(xt) + εt, the true value of the objective function is not
exactly known due to the noise term εt on the observations. Several existing works consider
a plug-in estimate as the incumbent best to tailor the improvement function for the noisy
environment. Popular substitutes include the best noisy observation maxi≤t−1 yi (Nguyen
et al., 2017) and the best value of the GP predictive mean argmaxµt−1(xi) over the input
space X (Wang and de Freitas, 2014) or the observation set Dt−1 (Vazquez et al., 2008;
Scott et al., 2011). Then the expectation of those improvement functions can be calculated
as that in the noiseless case.

However, existing analytic EI-type acquisitions (Gupta et al., 2022) often treat that
plug-in estimate as deterministic throughout each iteration and do not consider its un-
certainty when formulating their closed-form expressions, which potentially leads to local
search behavior in some circumstances (see Figure 1). Apart from that, noticing the incum-
bent solution comes with uncertainty, then depending on the type of selected kernel, the
covariance information between x+t and other points may need to be considered as well when
specifying its analytic expression. For example, if we specify our GP model with a white
noise kernel,2 then this issue can be ignored since this kernel simply assumes all covariances
between samples to be zero. However, this assumption does not hold for widely used kernels
such as the Matérn and Squared Exponential kernels, especially when the length scale pa-
rameter is large. To address these challenges, we introduce a novel acquisition function that
effectively incorporates the uncertainty of the incumbent solution. We consider an improve-
ment function with an unknown objective value over the best point that maximizes the GP
predictive mean as the best incumbent, akin to the noiseless scenario. Although lacking a
deterministic incumbent in our improvement function, we derive an analytical expression
for this acquisition function in the presence of noisy observations, which also generalizes
that of the noiseless case. Our acquisition is constructed directly from the correct variance,
allowing us to take full advantage of the covariance information from the GP model and
generate its closed-form representation under noisy observations. Furthermore, we provide
a regret bound for this acquisition function under heteroscedastic observation noise. The
effectiveness of our method is further demonstrated through our empirical experiments.

2. In this case, BO degenerates to random search.
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Figure 1: A scenario example illustrates that the utilization of covariance information has the potential
to circumvent local search in a noisy environment. The goal is to locate the maximum of this objective
function. Notably, the corrected EI suggests a point that is closer to the global optimizer x∗ = 10.

2. Related work

For a recent review of Bayesian optimization, we refer interested readers to Garnett (2023).
The expected improvement under noisy data is more complicated than in the noiseless
case (Jones et al., 1998), due to the uncertainty in the noisy observations. Santner et al.
(2003) stressed the importance of measuring the noise variance values and taking them into
account when fitting the GP model. In the noisy setting, the best value of the objective
function is unknown, thus substituting a plug-in estimate is popular in practice, such as the
maximum noisy observation (Nguyen et al., 2017). However, this estimate lacks robustness
as it may have high variance (Picheny et al., 2013). An alternative choice is the best GP
predictive mean maxx∈S µt−1(x) where S can be the search space X (Wang and de Freitas,
2014) or the observation set Dt−1 (Vazquez et al., 2008; Gupta et al., 2022). The addi-
tional computation for the predictive mean adds more cost to the optimization, especially
for a large search space X , but may be acceptable for optimizing functions that are very
expensive to evaluate. With these plug-in estimators, the noiseless EI acquisition function
can be applied also when there are noisy observations. There have been several works that
investigate the convergence properties of the regret bound for EI and improved EI-type al-
gorithms. Bull (2011) established an upper bound of the simple regret for EI in the noiseless
scenario. Wang and de Freitas (2014) derived a regret bound for expected improvement
with the best predictive mean of the GP model as the incumbent best under the noisy
setting. Nguyen et al. (2017) proved a regret bound for EI with the best-observed value
as the incumbent best. Their regret bound relies on a pre-defined termination threshold κ,
which is also assumed in this paper.

Apart from plug-in estimates, Forrester et al. (2006) provided an approximation for EI
through re-interpolation, which relies on a noise-free GP using the predicted data made by
the noisy GP model. More rigorous approaches estimate EI through Monte Carlo (MC) in-
tegration (Williams, 2000; Letham et al., 2019; Balandat et al., 2020), which results in more
expensive computation. In particular, Letham et al. (2019) proposed an MC-based EI-type
acquisition that handles the uncertainty by averaging over the EI values of a number of
noisy-free GP models. On the other hand, Balandat et al. (2020) introduced another MC-
based acquisition that considers the uncertainty stemming from the unknown incumbent
best. They address this uncertainty by averaging the improvement functions on a set of q
test points and previously evaluated points, which allows for parallel (batch-sequential) op-
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timization to accelerate the search process. These methods nevertheless remain significantly
more computationally expensive than closed-form acquisition functions.

There are several other popular acquisition functions including probability of improve-
ment (PI) (Kushner, 1963), upper confidence bound (UCB), knowledge gradient (KG),
entropy search (ES), and predictive entropy search (PES) (Hernández-Lobato et al., 2014).
The last three methods are most useful in exotic problems where the assumptions made by
EI does hold anymore. Similar to EI, the PI acquisition prefers selecting points near the
incumbent best which can potentially result in over-exploitation (Brochu et al., 2010). Re-
cent studies by Ma et al. (2019) combine PI with covariance information from the GP model
under a noisy environment. On the other hand, the UCB acquisition function emphasizes
exploring areas with higher uncertainty, promoting more exploration. Srinivas et al. (2010)
established a regret bound for UCB in the noisy setting using the information capacity γi
and a parameter βi that depends on the reproducing kernel Hilbert space (RKHS).

The main contribution of this paper is a modified expected improvement that leverages
the covariance information from the heteroscedastic GP model (Le et al., 2005), which is
more applicable to noisy environments. In this model, the input measurements are treated
as deterministic, leading to the noise variance varying across the input space and allow-
ing us to utilize more precise prior covariance information for noisy observations. To our
knowledge, we provide the first corrected expected improvement that directly incorporates
the uncertainty of the incumbent solution under noisy observations, along with an upper
bound on the regret associated with this acquisition.

3. Bayesian optimization

As mentioned before, Bayesian optimization aims to find the global optimum of a black-
box function f(·) on a bounded input space X . Drawing noisy samples from the objective
function is typically expensive, making it essential to enhance sampling efficiency. BO
tackles this challenge by utilizing a GP surrogate model that could also help balance the
exploration-exploitation trade-off during the search process.

3.1. Modelling with Gaussian processes

A Gaussian process inherits the elegant mathematical properties of the multivariate normal
distribution and provides a flexible framework for modeling the objective function f(·).
Typically, the model specifies f(x) as a Gaussian process GP (m(x), k(xi, xj)) with a mean
function m(x) and a positive semi-definite covariance matrix (or kernel) k(xi, xj). In the
presence of observation noise εi, we observe yi = f(xi) + εi instead of the objective value.
The noise term is assumed to be εi ∼ N (0, υ2i ) for the purposes of GP regression. Let
Dt−1 = {(xi, yi, υi)}t−1

i=1 be the set of noisy observations with uncertainty estimates up to
iteration (t − 1) of Bayesian optimization. Assuming a prior distribution GP (0, k(xi, xj))
over f , similar to the noiseless case, the posterior distribution also follows a Gaussian
distribution P (f |Dt−1) = GP(µt(x), σ

2
t (x)) where

µt(x) = kt−1(x)
T (Kt−1 +Σt−1)

−1
yt−1

σ2
t (x) = kt−1(x, x)− kt−1(x) (Kt−1 +Σt−1)

−1
kt−1(x)

T
(2)
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with yt−1 = [y1, · · · , yt−1], covariance matrix Kt−1 = [kt−1(xi, xj)]1≤i,j≤t−1 and kt−1(x) =
[kt−1(x1, x), · · · , kt−1(xt−1, x)]. Here Σt−1 = diag(υ21, · · · , υ2t−1) is a diagonal matrix formed
by the variances of the noise terms. In addition, the covariance between xi and xj is

σt−1(xixj) = kt−1(xi, xj)− kt−1(xi) (Kt−1 +Σt−1)
−1

kt−1(xj)
T (3)

which indicates the relationship between these two points. As such, the shape (smoothness,
amplitude of the predictive variance) of the GP model is significantly influenced by the
choice of the kernel as well as the kernel parameters. A large number of covariance kernels
are available in the literature (Santner et al., 2003). The Matérn kernel, as one of the most
widely used kernels, is defined as

kMatérn (xi, xj) =
21−ν

Γ(ν)

(
∥xi − xj∥2

ℓ

)ν

Bν

(
∥xi − xj∥2

ℓ

)
(4)

where Bν is the modified Bessel function, Γ(·) is the Gamma function, ν is the smoothness
parameter, and ℓ is the scale parameter. A popular Matérn kernel is Matérn-52 with ν =
5
2 , which satisfies the twice differentiable property. Another popular kernel is the square

exponential kernel, which is given by kse(xi, xj) = exp(−∥xi−xj∥2
2l2

) with length scale ℓ.

3.2. Expected Improvement

Once we have the GP model built on the observation set, we can employ BO alongside an
appropriate acquisition function αt(x) to identify the next point xt for evaluation. This can-
didate is obtained by maximizing the acquisition function, that is xt = argmaxx∈X αt(x).
The expected improvement balances exploration and exploitation by maximizing the ex-
pectation over the improvement function It(x). Some authors (Močkus, 1975; Lizotte,
2008) have introduced an additional parameter ζ to augment this criterion as It(x) =
max{0, f(x) − ξ − ζ}, but this specific augmentation is out of the scope of this paper
and will not be further discussed. In this paper, we consider the improvement function
It(x) = max{0, f(x)− µt−1(x

+
t )} with x+t = argmaxi≤t−1 µt−1(xi). The incumbent best is

defined as the best GP predictive mean over the observation set. This acquisition function
can be evaluated in closed form as (Wang and de Freitas, 2014):

αt(x) = E
[
max{0, f(x)− µt−1(x

+
t )}
]
= σt−1(x)ϕ(z) +

(
µt−1(x)− µt−1(x

+
t )
)
Φ(z) (5)

where z =
(
µt−1(x)− µt−1(x

+
t )
)
/σt−1(x), ϕ is the standard normal PDF, and Φ is the

standard normal CDF. The computation cost of this acquisition function is far cheaper
than the black box function.

4. Corrected Expected improvement

Our modified expectation improvement aims to maximize the expectation of the improve-
ment function, denoted as ICt (x) = max{0, f(x)− f(x+t )}, s.t.

αC
t (x) = E(max{0, f(x)− f(x+

t )}) (6)

where x+t = argmaxi≤t−1 µt−1(xi). We note that the incumbent best f(x+t ) is defined as the
unknown true objective value of the best point among the observation set that maximizes the
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predictive mean of the GP model. Let us define σ̃2
t−1(x) = σ2

t−1(x)+σ2
t−1(x

+
t )−2σt−1(xx

+
t )

where σ2
t−1(·) is its corresponding variance, and σt−1(xx

+
t ) is the covariance between points

x and x+t . Despite not knowing the incumbent best in our improvement function, we can
still derive a closed-form expression for our acquisition in noisy settings (Section 4.1):

αC
t (x) = σ̃t−1(x)ϕ

(
µt−1(x)− µt−1(x

+
t )

σ̃t−1(x)

)
+
(
µt−1(x)− µt−1(x

+
t )
)
Φ

(
µt−1(x)− µt−1(x

+
t )

σ̃t−1(x)

)
(7)

where ϕ and Φ are the density and cumulative distribution functions of the standard normal
distribution, respectively. When σ̃t−1(x) = 0, we set αC

t (x) = 0. In the noiseless case where
∀x ̸= x+t , σt−1(x

+
t ) = σt−1(xx

+
t ) = 0, we recover the expression for EI. In addition, let us

define the function zt−1(x) =
µt−1(x)−µt−1(x

+
t )

σ̃t−1(x)
and the function τ(z) = zΦ(z) + ϕ(z), then

we derive another expression of this acquisition function

αC
t (x) = σ̃t−1(x)τ(zt−1(x)) (8)

where σ̃t−1(x) is non-negative and it reaches zero at x+t even in the noisy setting. From
this expression, the corrected variance term σ̃t−1(x) tends to zero when x → x+t . As a
result, the corrected expected improvement of points next to the current best point would
be relatively small, avoiding over-exploration around this region. It makes intuitive sense
that this acquisition function would search more globally than EI. An example in Figure 1
illustrates this fact.

4.1. Derivation of the Modified Expected Improvement

When f(x)− f(x+t ) is non-negative, the variable ICt (x) is Gaussian distributed with mean
ut−1(x) = µt−1(x) − µt−1(x

+
t ) and variance σ̃2

t−1(x) = σ2
t−1(x) + σ2

t−1(x
+
t ) − 2σt−1(xx

+
t )

where µt−1(x) is the mean of the GP evaluated at x, σ2
t−1(x) is its corresponding variance

at x, and σt−1(xx
+
t ) is the covariance between points x and x+t . Thus using the likelihood of

ICt (x) (for simplicity, we write I), we obtain the expectation of our improvement function:

αC
t (x) =

∫ ∞

0

I√
2πσ̃t(x)

exp

(
−1

2

(
I − ut−1(x)

σ̃t−1(x)

)2
)
dI (9)

Let s = I−ut−1(x)
σ̃t−1(x)

, then I = sσ̃t−1(x) + ut−1(x) and ds = 1
σ̃t−1(x)

dI. Using the above

likelihood (9), we obtain our modified expected improvement

αC
t (x) =

∫ ∞

−ut−1(x)

σ̃t−1(x)

sσ̃t−1(x) + ut−1(x)√
2πσ̃t−1(x)

exp

(
−s2

2

)
σ̃t−1(x)ds

=
σ̃t−1(x)√

2π

∫ ∞

−ut−1(x)

σ̃t−1(x)

se−
s2

2 ds+ ut−1(x)

∫ ∞

−ut−1(x)

σ̃t−1(x)

e−
s2

2

√
2π

ds

=
σ̃t−1(x)√

2π
(−e−

s2

2 )|∞
−ut−1(x)

σ̃t−1(x)

+ ut−1(x)Φ

(
ut−1(x)

σ̃t−1(x)

)
= σ̃t−1(x)ϕ

(
ut−1(x)

σ̃t−1(x)

)
+ ut−1(x)Φ

(
ut−1(x)

σ̃t−1(x)

)
.

(10)
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4.2. Termination Criterion

Similar to Nguyen et al. (2017, Lemma 2), the value of our acquisition function is set to be
greater than a positive value κ that is maxt α

C(xt) ≥ κ. This termination criterion guaran-
tees the convergence of the regret bound for our acquisition function. We will utilize this
property to show our regret bound in Section 4.3. We additionally show here a connection
to classical results in economics, thereby giving an interpretation of the value of κ and its
scale relative to f(·).

4.2.1. Profit-Cost curve

Let us denote tκ as the minimum number of iterations to reach the termination criterion
κ. Since the improvement function is defined over the best feasible objective, we define the
profit as

profit(κ) = f(x+
tκ)− κ · tκ

tκ = min t s.t. αt(xt) < κ
(11)

where x+tκ = argmaxi≤tκ−1 µtκ−1(xi) and κ can be viewed as a cost of evaluating the function
set for the optimization routine. A small κ implies the computation cost for the objective
function is trivial compared with the improvement in the target function. Meanwhile, with
a small κ, the termination will occur after a large number of iterations but also bring an
accurate estimation of the target value. Figure 2 presents an empirical profit curve for
varying values of κ, showing a consistently higher profit for our proposed acquisition when
using a κ threshold termination criterion.

Figure 2: Comparison of EI (blue line) and corrected EI (green line) over the profit for same termination
criterion κ on the Sphere 3d function. In our simulations, the standard deviation of the Gaussian noise term
is set to be 20. The average profit is measured over 15 experiments for each κ.

4.3. Theoretical Properties

In this section, we present the theoretical properties of corrected EI under heteroskedastic
noisy outputs, i.e. yt = f(xt) + εt, which are more natural for real-world applications.
The noise term εt is assumed to be Gaussian distributed with a known variance proxy
υ2t . The objective function f is assumed to be smooth according to the reproducing kernel
Hilbert space (RKHS) associated with a GP kernel. Similar to Srinivas et al. (2010); Wang
and de Freitas (2014), the kernel is assumed to be bounded as k(x, x) ≤ 1. We draw
inspiration from Nguyen et al. (2017) and derived the regret bound in a similar way for
our proposed acquisition function. We begin this section with a brief introduction to some
important lemmas from existing works. Then we show that, under some mild assumptions,
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our acquisition function reaches a sublinear convergence rate for the squared exponential
kernel similar to the standard EI.

4.3.1. Auxiliary Definitions and Lemmas

Definition 1 The maximum information gain after T rounds, namely γT , is defined as:

γT := max
A⊂D:|A|=T

I (yA;fA) = max
A⊂D:|A|=T

H (yA)−H (yA | fA) (12)

where H (yA) is the marginal entropy of the observations yA = (y1, · · · , yT ) and H (yA | fA)
is the conditional entropy of the observations yA given the corresponding function values
fA.

Lemma 1 [Theorem 6 of Srinivas et al. (2010)]. Let δ ∈ (0, 1) and assume that the noise
variables εt are uniformly bounded by the maximum standard deviation of the observation
noise υmax = max(υ1, · · · , υT ). Define βt = 2∥f∥2k + 300γt ln

3
(
t
δ

)
, then

p
(
∀t, ∀x ∈ X , |µt−1(x)− f(x)| ≤

√
βtσt−1(x)

)
≥ 1− δ (13)

Lemma 7 of Nguyen et al. (2017) has provided the regret bound for the variance of any
arbitrary set of points (not just for selected points xt) with γT under the homoskedastic
noise setting. In the following lemma, we generalize their findings to accommodate scenarios
involving bounded heteroskedastic additive Gaussian observation noise (detailed proof in
Appendix A).

Lemma 2 The sum of the predictive variances is bounded by the maximum information
gain γT . That is for ∀x ∈ X , it holds that

T∑
t=1

σ2
t−1(x) ≤

2

log(1 + υ−2
max)

γT (14)

where υmax = max(υ1, · · · , υT ) is the maximum standard deviation of the additive Gaussian
observation noise.

4.3.2. Upper bound for simple regret rt

Let xt be the point selected by our acquisition function, then the cumulative regret Rt is
the sum of the instantaneous regrets rt: Rt =

∑t
i=1 rt where rt = f(x∗)− f(xt). We start

the proof sketch by considering breaking down rt into:

rt = f(x∗)− f(x+
t )︸ ︷︷ ︸

term 1

−(f(xt)− f(x+
t )︸ ︷︷ ︸

term 2

)
(15)

Lemma 3 Let κ > 0 be a pre-defined stopping threshold on the acquisition function αC
t (x),

if µt−1(xt) ≤ µt−1(x
+
t ), then we have that

µt−1(x
+
t )− µt−1(xt) ≤

√
Cσ̃t−1(xt). (16)

where C = log
[

2
πκ2

]
.
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Proof Set ut−1(xt) = µt−1(xt)− µt−1(x
+
t ), using our assumption we have ut−1(xt) ≤ 0 by

the definition of x+t . Using Equation (8), we obtain

αC
t (xt) = σ̃t−1(xt)τ

(
ut−1(xt)

σ̃t−1(xt)

)
≤ σ̃t−1(xt)ϕ

(
ut−1(xt)

σ̃t−1(xt)

)
(17)

where the inequality is led by the fact that τ(z) ≤ ϕ(z),∀z < 0. Thus we obtain that

u2
t−1(xt)

σ̃2
t−1(xt)

≤ log

[
σ̃2
t−1(xt)

2πκ2

]
≤ log

[
2

πκ2

]
(18)

where the second inequality is led by the fact that σ̃2
t−1(x) ≤ σ2

t−1(x)+σ2
t−1(x

+
t )−2σt−1(xx

+
t ) ≤

4 since the kernel satisfies k(x, x) ≤ 1. Define C = log
[

2
πκ2

]
≥ 0, thus we conclude the

proof that
0 ≤ µt−1(x

+
t )− µt−1(xt) ≤

√
Cσ̃t−1(xt). (19)

Lemma 4 Let κ > 0 be a pre-defined stopping threshold on the acquisition function αC
t (x),

zt−1(x) =
µt−1(x)−µt−1(x

+
t )

σ̃t−1(x)
and τ(z) = zΦ(z) + ϕ(z), we have τ(−zt−1(xt)) ≤ 1 +

√
C where

C = log
[

1
πκ2

]
.

Proof Notice that function τ(z) has nice properties depending on the sign of z: τ(z) ≤
1 + z,∀z ≥ 0; τ(z) ≤ ϕ(z),∀z ≤ 0. Thus, we consider two possible cases for zt−1(xt):
Case 1: Assume µt−1(xt) ≥ µt−1(x

+
t ) which implies zt−1(xt) ≥ 0, thus

τ(−zt−1(xt)) ≤ ϕ(−zt−1(xt)) ≤ 1 (20)

Case 2: Assume µt−1(xt) ≤ µt−1(x
+
t ) which implies zt−1(xt) ≤ 0, thus using Lemma 3, we

have that

τ(−zt−1(xt)) ≤ 1 +
µt−1(x

+
t )− µt−1(xt)

σ̃t−1(xt)
≤ 1 +

√
C (21)

Clearly, for both cases, we have τ(−zt−1(xt)) ≤ 1 +
√
C.

The lemma 5 below considers the lower bound for the acquisition function αC
t under the

noisy setting (detailed proof in Appendix A).

Lemma 5 Let δ ∈ (0, 1). For x ∈ X , t ∈ N , set ICt (x) = max{0, f(x)− f(x+t )}, then with
probability at least 1− 2δ we have

αC
t (x) ≥ max{ICt (x)−

√
βt

(
σt−1(x) + σt−1(x

+
t )
)
, 0}. (22)

Then we consider finding an upper bound for term 1 and term 2 in simple regret given by
Equation (15). Lemma 6 (see Appendix A) provides an upper bound for term 1.

Lemma 6 Let δ ∈ (0, 1). Then with a probability of at least 1− 2δ, we have

f(x∗)− f(x+
t ) ≤

√
βt

(
σt−1 (x

∗) + σt−1(x
+
t )
)
+ σ̃t−1(xt)τ(zt−1(xt)). (23)
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For term 2, we have that

f(x+
t )− f(xt) = σ̃t−1(xt) [−zt−1(xt)] by z = τ(z)− τ(−z)

= σ̃t−1(xt) (τ (−zt−1(xt))− τ (zt−1(xt))) .
(24)

Finally, by Lemma 4 and 6, we obtain

rt ≤ f(x∗)− f(x+
t ) + f(x+

t )− f(xt) ≤ σ̃t−1(xt)τ (−zt−1(xt)) +
√
βt

(
σt−1(x

∗) + σt−1(x
+
t )
)

≤ (1 +
√
C)σ̃t−1(xt) +

√
βt

(
σt−1(x

∗) + σt−1(x
+
t )
)
.

(25)

Furthermore, we note that σ2
t−1(xt)σ

2
t−1(x

+
t )−σ2

t−1(xtx
+
t ) ≥ 0 because of the positive semi-

definiteness of the kernel matrix. Thus we have that

σ̃t−1(xt) =
√
σ2
t−1(xt) + σ2

t−1(x
+
t )− 2σt−1(xtx

+
t ) ≤

√
σ2
t−1(xt) + σ2

t−1(x
+
t ) + 2σt−1(xt)σt−1(x

+
t )

≤ σt−1(xt) + σt−1(x
+
t ).

(26)

Then we can write an upper bound of the simple regret as

rt ≤ (
√
1 +

√
C)σt−1(xt)︸ ︷︷ ︸
At

+
√
βtσt−1(x

∗)︸ ︷︷ ︸
Bt

+(1 +
√
C +

√
βt)σt−1(x

+
t )︸ ︷︷ ︸

Ct

.
(27)

4.3.3. Upper bounding the cumulative regret RT

We now look at the cumulative regret RT =
∑T

t=1 rt

RT ≤
T∑

t=1

At +

T∑
t=1

Bt +

T∑
t=1

Ct. (28)

Using the Cauchy-Schwartz inequality that
∑n

i=1 a
2
i ≤ n

(∑n
i=1 a

2
i

)
, βT ≥ βt,∀T ≥ t, and

Lemma 2, we can bound
∑T

t=1Bt with the following

T∑
t=1

Bt ≤

√√√√T

T∑
t=1

B2
t ≤

√
2βTTγT

log(1 + υ−2
max)

. (29)

Similarly, we can bound
∑T

t=1Ct and
∑T

t=1At with the following

T∑
t=1

A2
t ≤ 2(1 + C)

T∑
t=1

σ2
t−1(xt) ≤

4(1 + C)γT

log(1 + υ−2
max)

,

T∑
t=1

C2
t ≤ 3(1 + C + βT )

T∑
t=1

σ2
t−1(xt) ≤

6(1 + C + βT )γT

log(1 + υ−2
max)

.

(30)

Using the Cauchy-Schwartz inequality again, we get

T∑
t=1

At ≤

√√√√T

T∑
t=1

A2
t ≤

√
4(1 + C)TγT

log(1 + υ−2
max)

and

T∑
t=1

Ct ≤

√√√√T

T∑
t=1

C2
t ≤

√
6(1 + C + βT )TγT

log(1 + υ−2
max)

. (31)

Combining the above equations, we obtain our regret bound

RT ≤

√
2TγT

log(1 + υ−2
max)

(√
βT +

√
2(1 + C) +

√
3(1 + C + βT )

)
, (32)
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where C = log
[

2
πκ2

]
, κ is a pre-defined constant to terminate the optimization, βT is in the

form of O
(
(log T )

3
)
, and υmax = max(υ1, · · · , υT ) is the maximum standard deviation of

the noise. We can see that the regret bound for our proposed acquisition is equivalent to

that of standard EI. The bound for γT relies on the chosen kernel i.e. γT ∼ O
(
(log T )

d+1
)

for squared exponential kernel. Therefore, when choosing a squared exponential kernel for

the GP model, we achieve a sublinear rate RT ∼ O
(√

T (log T )
d+4

)
.

5. Experiments

In this section, we present our empirical results using the experiments on the benchmark,
synthetic functions, and compression tasks.

5.1. Benchmark objective functions

(a) Hartmann3d (b) Griewank(d = 6) (c) Levy(d = 4) (d) Powell(d = 5)

(e) Hartmann3d (f) Griewank(d = 6) (g) Levy(d = 4) (h) Powell(d = 5)

Figure 3: Comparison of methods for Benchmark objective functions. Figures (a)-(d) show how the mean
and 95% confidence bound (shaded region) of the distance between the best feasible objective and the
global optimum changes with each iteration of optimization. Figures (e)-(f) visualize the variation of the L2

distance between the best point and the global optimizer x∗.

In this section, we compare our acquisition method with other methods including Corrected-
PI (Ma et al., 2019), UCB, EI, PI, MC-based noisy EI (Letham et al., 2019), and parallel
MC-based noisy EI (Balandat et al., 2020) on several benchmark objective functions includ-
ing Hartmann3d, Griewank(d = 6), Levy(d = 4), and Powell(d = 5). Our objective is to
identify the optimizer that minimizes the values of these functions. We use the framework
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of BoTorch3 for implementing those acquisition functions. Two evaluation metrics are con-
sidered: the log distance to the global optimum log10

(
f (x∗)− f

(
x+t
))

and the L2 distance
to the global optimizer x∗. We employed the Matérn kernel for our GP model and set the
total number of iterations (T ) to 150. The length scale parameter of the kernel is optimized
by maximum likelihood. To introduce noise in our experiments, each observation noise εt
was sampled from a Gaussian distribution with mean 0 and standard deviation υt less than
or equal to 10% of the range of the objective function (max f (x)−min f (x)). Before fitting
the model, the outputs along with observation noises are standardized, and the inputs are
normalized to [0, 1]d based on the minimum and maximum values. All experiments were
repeated 15 times for each benchmark function with a quasirandom sequence of size 3d as
the initialization for our GP model.

Results in Figure 3 indicate that the corrected EI outperforms EI for those benchmark
objective functions under our noisy settings. For Powell function, the corrected PI slightly
outperforms our proposed method. Overall, our proposed method demonstrates good per-
formance on those benchmark functions. Furthermore, we assess the computational cost
associated with these acquisition functions. Typically, this cost involves inferring the hyper-
parameters of the GP model, and maximizing the acquisition function in order to propose a
candidate point. With analytic acquisition functions, the objective function can be approx-
imated using just one GP model, enabling direct computation of the acquisition value from
this model. Consequently, working with this kind of acquisition function is considerably
inexpensive. In contrast, MC-type methods are more computationally expensive. For ex-
ample, MC-based noisy EI relies on multiple noiseless GP models and performs integration
by averaging the expected improvement across these models, resulting in higher compu-
tational costs. Moreover, parallel MC-based noisy EI assumes that the incumbent best is
unknown and uses samples from the joint posterior over the q test points and previously
observed points. The integration is computed by averaging the improvements on those
samples. In our experiment, we set the number of noiseless models to be 20 (by default) for
MC-based noisy EI, and a quasirandom sequence of size q = 256 for parallel MC-based noisy
EI, resulting in significantly higher computational costs for these two methods compared to
analytic acquisition functions.

5.2. Model Compression

Various compression techniques have been proposed for DNN models, leading to a smaller
model that can be deployed on edge devices with limited memory and computational re-
sources. Low-rank factorization techniques like Singular Value Decomposition (SVD) and
Tensor Decomposition can be utilized to construct the compressed network with a low-rank
approximation of the original weight matrices. Their rank parameters denoted as θ can be
selected via the BO procedure in order to find a balance between the size and performance
of the compressed networks. A scaling scheme proposed by Ma et al. (2019) is applied to
transform the rank parameter from discrete space to continuous domain [0, 1]d where d rep-
resents the number of dimensions in the parameterization. Let us define f∗ as the original
model and f̂θ as the compressed model, then the objective function with respect to θ can

3. BoTorch (Balandat et al., 2020) is a state-of-the-art open-source Bayesian optimization software package
with support for various acquisition functions.
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be specified as
γL(f̂θ) +R(f̂θ, f

∗) (33)

where R(f̂θ, f
∗) is the compression ratio which is calculated by dividing the size of the

compressed network by the size of the original network, and L(f̂θ) is the error rate of
the compressed network. A smaller model with good generalization performance is thus
preferred in order to minimize this objective function and γ is the trade-off parameter.

(a) FC3: all iterations (b) ResNet50: all iterations (c) VGG-16: all iterations

(d) FC3: best of all iterations (e) ResNet50: best of all iterations (f) VGG-16: best of all iterations

Figure 4: Comparison results on the compression tasks of the pre-trained FC3, ResNet50, and VGG-16
model using BO with different acquisition functions. The results are obtained from 10 independent runs.
The plots in the first rows show how the mean of the best observation changes over the iterations of BO
together with its 95% confidence interval. The second row shows the best results among all iterations.

In our experiments, we compare our approach with other acquisition functions on the
compression tasks of several representative neural networks including a 3-layer fully con-
nected network (FC3, Ma et al. (2019)), ResNet50 (He et al., 2016), and VGG-16 (Simonyan
and Zisserman, 2014). We compress all the layers of FC3 using SVD as proposed in Denton
et al. (2014). While for the latter two models, we only compress the weights of their con-
volution layers using tensor decomposition (Tai et al., 2016). Thus there are 3 compression
parameters in the compression task of FC3, 13 parameters in that of VGG-16, and 16 pa-
rameters for ResNet50. The FC3 model is pre-trained on the MNIST dataset (Deng, 2012)
while the latter two models are pre-trained on the ImageNet dataset (Russakovsky et al.,
2015). The trade-off parameter γ is set to be 1. During each iteration of optimization, we
consistently measure the top-1 error rate on nt randomly selected samples (20 ≤ nt ≤ 50),
resulting in a noisy evaluation of the objective. For each observation, its noise variance
υ2t is inversely proportional to the sample size nt. For FC3, those samples are randomly
drawn from the 10,000 testing images of the MNIST dataset. For the latter two models,
the samples are selected from 50,000 validation images of the ILSVRC2012 dataset. We
continue using the previous settings for the GP model and the acquisition functions. We
run all algorithms for 300 iterations with the first 30 iterations being random initialization.
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The compression results in Figure 4 show our proposed method gives better performance
than standard EI under the noisy setting.

6. Discussion and Conclusions

In this paper, we propose a novel acquisition function that addresses the limitation of the
analytic EI-type methods in the presence of noise. We correct the closed-form expression
of EI to account for the uncertainty introduced by the incumbent best —a result that has
not previously been published despite EI being nearly half a century old (Mockus et al.,
1978) and one of the most popular acquisition functions even in the presence of observation
noise. Additionally, we show that this modified EI retains a convergence rate similar to that
of the standard EI, and results in a profit-maximizing convergence criterion under a linear
cost model. Our empirical experiments provide evidence that this approach is effective and
competitive compared with some popular acquisition functions when dealing with noisy
observations. Although there may be cases where our method underperforms corrected-PI
or MC-based methods, we believe that it offers valuable insights into the behavior of EI-
type methods under noisy observations. One notable contribution of our work is that it
fills a gap in the analytic EI-type approaches by directly incorporating the uncertainty of
the incumbent best without relying on MC integration when formulating the closed-form
expression. This enhancement improves both the efficiency and performance of BO by
leveraging the available covariance information from the GP model.

We also notice that the differences in performance among those acquisitions might be
negligible for functions in high dimensions (Ma et al., 2019) or extremely noisy observa-
tions (Garnett, 2023). In more complex settings of real-world problems, some details about
the data information such as the scale of the observation noise are still unknown to us thus it
can be challenging to intuit suitable parameters i.e. prior distribution for the heteroscedastic
GP model without a great deal of knowledge about the data. In the worst case with in-
creasing levels of noise, the GP inference reflects more uncertainty in the objective function
regardless of the choice of the acquisition functions. Our work also reflects the importance
of combining the covariance information provided by this model in Bayesian optimization.
Therefore, we expect more advanced techniques for characterizing and capturing the nature
of observation noise, which can be instrumental in constructing a more precise GP model.
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