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Abstract

Learning causal structures from observational data has recently attracted considerable at-
tention. Although many studies have focused on uncovering the connections between scalar
random variables, estimation algorithms for groups of variables—particularly for multiple
groups of variables—remain scarce. This paper proposes a novel differentiable algebraic
constraint that can be used along with existing continuous optimization-based structure-
learning algorithms to learn the causal relationships among groups of variables. Considering
the complex functional relationships among variables in real-world scenarios, we propose a
structure-learning algorithm for nonlinear time-series data with location-scale noise. Exper-
imental results for synthetic and real-world data indicate that the proposed group acyclicity
constraint significantly increases the estimation accuracy for the causal relationship among
the groups of variables and verify the effectiveness of the proposed structure-learning algo-
rithm.

Keywords: Causal discovery, structural causal models, time series, variable groups, con-
tinuous optimization.

1. Introduction

Numerous methods have been developed for estimating causal relationships using obser-
vational data (Spirtes et al., 2000; Pearl, 2009; Shimizu et al., 2006; Peters et al., 2014).
Although the typical problem involves inferring the relationships between individual random
scalar variables, there are many cases in which the relationships among groups of variables
are of interest. For example, in neuroscience, researchers have focused on the relationships
between brain regions (Smith et al., 2011). In the manufacturing domain, variables with
relatively strong correlations were observed in multiple measurements obtained from the
same machine. The analysis is typically performed by selecting one variable per group
(Marazopoulou et al., 2016) or by calculating, for example, the sum of the variables in
the same group (Scheines and Spirtes, 2008). These approaches can significantly reduce
the computation time by reducing the number of variables, but they generally degrade the
performance of causal discovery methods. This is caused by a change in the conditional de-
pendencies between variables (Scheines and Spirtes, 2008) or the cancellation of dependence
(Wahl et al., 2022).
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Several studies have been performed on structural learning among groups of variables.
Parviainen and Kaski (2017) proposed an estimation method in which a directed acyclic
graph is constructed over the individual variables and used to infer connections between
the groups. This approach uses conditional-independence-based structure-learning meth-
ods; thus, causal relationships cannot be distinguished using the same set of conditional
independencies. In the research regarding on functional causal models, Kawahara et al.
(2010) proposed GroupLiNGAM—an estimation method for discovering the grouping of
variables and the causal relationship among groups of variables. Subsequently, Entner and
Hoyer (2012) proposed GroupDirectLiNGAM, which is an efficient estimation method when
the assignment of groups for each variable is known. These methods have the advantage
that unmeasured confounders can exist in each group; however, they assume that the func-
tional relationship is linear. In the method of Khemakhem et al. (2021), normalizing flows
are used to capture the nonlinearity of the data; however, the method is limited to infer a
causal direction between two groups and is not straightforward to apply to three or more
groups. To the best of our knowledge, no estimation method exists for the class of functional
causal models capable of both multiple groups and beyond linear functional relationships.

Besides the problem of inferring the structure among multiple groups, from the com-
plexity of data observed in real-world, we need to consider temporal dependencies as well
as nonlinear functional relationships and the heteroscedasticity induced by the modulated
variance of the noise (location-scale noise). Existing works (Hyvärinen et al., 2010; Peters
et al., 2013; Immer et al., 2022) partially model these characteristics, while Gong et al.
(2022) proposed Rhino, a functional causal model that addresses all the characteristics to-
gether. However, Rhino does not consider the location-scale noise on the instantaneous
effects that are often observed in practice (Tagasovska et al., 2020).

In this paper, we propose a structure-learning method for groups of variables based
on observational data. Assuming that there is no closed loop in the relationship between
the groups, we derive novel differentiable algebraic constraints that characterize the causal
structure among the groups of variables. This is a natural extension of the well-known
algebraic constraint that characterizes acyclicity over the relationships of individual vari-
ables (Zheng et al., 2018); therefore, the proposed constraint can be applied to continuous
optimization-based structure-learning methods that use continuous optimization. We fur-
ther propose a functional causal model and corresponding estimation method to capture the
nonlinear functional relationships as well as the temporal dependencies, and heteroscedas-
ticity induced by location-scale noise. The remainder of this paper is organized as follows.
In Section 2, we introduce the problem of structure learning among groups of variables and
explain the existing algebraic constraints and structure-learning methods. In Section 3,
we describe the proposed algebraic constraint and estimation method for nonlinear time-
series data with location-scale noise in Section 3. The results for synthetic data as well as
real-world data are presented in Section 4. Finally, Section 5 concludes the paper.

2. Background

2.1. Problem Definition

Consider a set of P variables X = {X1, ..., XP } and assume that the data-generating process
of X can be represented by a directed graph G, which induces a joint distribution L(X)
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over X. G is parameterized by the adjacency matrix B ∈ {0, 1}P×P , where [B]i,j = 1 if and
only if a direct connection from Xi to Xj exists.

We assume that each variable belongs to one ofM(M ≤ P ) groups and that the assigned
group of each variable is known. Let K = {K(1), ...,K(M)} be a set of index sets for
each group. Let Y = {Y1, ..., YM} be a supervertex obtained by contracting the variables
belonging to the same group on G. In this paper, we refer to a graph onX as a variable graph
and a graph on Y as a group graph, and we call the corresponding adjacency matrices B ∈
{0, 1}P×P and B

′ ∈ {0, 1}M×M variable adjacency matrices and group adjacency matrices
, respectively. B

′
encapsulates the connections between the groups, where [B

′
]k,l = 1 if and

only if ∃[B]i∈K(k), j∈K(l) = 1. We further assume that the group graph of G is a directed
acyclic graph (DAG), where we call G group-acyclic given the grouping K.

The goal is to estimate B′ from L(X), which we call the corresponding graph, group
DAG. Many existing structure-learning methods perform estimation under M = P , i.e. the
number of groups is equal to that of variables; we call this the corresponding graph, variable
DAG. An example of a variable DAG with grouping K and the corresponding group DAG
is shown in Figure 1. If M < P and fj are linear and Nj represents additive non-Gaussian
noises that are independent of each other over the groups, this problem is equivalent to that
of Entner and Hoyer (2012).

(a) Variable DAG (b) Group DAG

Figure 1: Example of a variable DAG and a group DAG

2.2. Algebraic Characterization of DAGs and NOTEARS Method

A recent breakthrough in the structure learning of variable DAGs is the algebraic charac-
terization of DAGs using the trace of a matrix exponential (Zheng et al., 2018). Zheng et
al. show that a (weighted) adjacency matrix W ∈ RP×P represents a DAG if and only if
the following equation holds:

h(W ) = tr
(
eW◦W )− P = 0, (1)

where ◦ denotes the elementwise product. Using Equation (1) as a constraint, Zheng et
al. formulated a structure-learning problem as a continuous optimization problem and
proposed an estimation algorithm for linear data (NOTEARS). Let X ∈ RN×P be a dataset
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comprising N independent and identically distributed observations. NOTEARS solves the
following constrained optimization problem:

min
W

1

2N
∥X−XW∥2F + λ∥W∥1 subject to h(W ) = 0, (2)

where ∥·∥F is the Frobenius norm, ∥·∥1 = ∥vec(·)∥1 is the vector L1-norm , and λ denotes the
penalty factor. The constrained optimization problem is converted into an unconstrained
optimization problem using the augmented Lagrangian method, followed by optimization
using L-BFGS (Byrd et al., 1995).

2.3. Variants of NOTEARS Method

The optimization problem (2) for linear DAGs can be generalized to nonlinear relationships
(Zheng et al., 2020) as follows:

min
θ
F (X, θ) + ∥θ∥1 subject to h(W (θ)) = 0, (3)

where F (X, θ) is the loss function, θ is the model parameter, and W (θ) is the weighted
adjacency matrix calculated from the model parameter. The choice of F (X, θ) and the
calculation of W (θ) depend on the model. Zheng et al. (2020) proposed NOTEARS-MLP,
which leverages multilayer perceptrons (MLPs) to capture nonlinear relationships. W (θ) for
NOTEARS-MLP was calculated using the weights of the first layers of the MLPs. Sun et al.
(2021) proposed NTS-NOTEARS, which extended NOTEARS-MLP to exploit temporal
and instantaneous dependencies by using convolutional neural networks (CNN). Similarly,
W (θ) for NTS-NOTEARS is calculated using the kernel weights of the CNNs. Kikuchi
(2023) proposed a continuous optimization-based estimation algorithm for the location-
scale noise model (LSNM) (Immer et al., 2022), modeling the conditional expectation as
well as the conditional variance of each variable with an MLP. They reported that the scale
sensitivity of NOTEARS (Reisach et al., 2021) is mitigated by estimating the conditional
variance and utilizing the log-likelihood for the score function.

The key parts of the above methods are the design of the data modeling and the usage
of the algebraic constraint. In Section 3.1, we derive an algebraic constraint for estimating
group DAGs.

3. Proposed Method

We introduce an algebraic constraint for characterizing group DAGs in Section 3.1. In
Section 3.2, we propose a functional causal model using time-series data with location-scale
noise.

3.1. Group DAG Constraint

We extend the variable adjacency matrix B and group adjacency B
′
given in Section 2.1

to the weighted adjacency matrix. Suppose that we have a weighted adjacency matrix
W ∈ RP×P that represents the connection strength between individual variables. The
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corresponding weighted group adjacency matrix W
′ ∈ RM×M ≥ 0 is calculated as follows:

[W
′
]k,l =

{
0 if k = l,∑

i∈K(k)

∑
j∈K(l)[W ◦W ]i,j else

. (4)

Here, [W
′
]k,l denotes the total amount of squared connection strengths from the variables in

groups k to the variables in group l. We calculate the squared values to avoid cancellation
of the dependencies, because the values of W can be either positive or negative. We do not
claim that this calculation is optimal, we can also use the absolute values of W to calculate
W

′
. The diagonal elements of W

′
are set to zero not to restrict the connections within the

same group. An example of a calculation using Equation (4) is given in Appendix A.
By substituting W

′
into the algebraic constraint h (1), we obtain a constraint for the

group DAGs, which we call the group DAG constraint :

h(W
′
) = tr(eW

′◦W ′
)−M = 0. (5)

Clearly, the group DAG constraint is satisfied if and only if the corresponding variable graph
is group-acyclic.

Corollary 1 (Acyclicity of group DAGs) A variable graph G with grouping K repre-
sented by a weighted adjacency matrix W is group-acyclic if and only if the constraint in
Equation (5) is satisfied.

Proof From Equation (4), we can see that [W
′
]k,l > 0 if and only if ∃[W ]i∈K(k),j∈K(l) ̸= 0;

thus, W
′
represents the weighted adjacency matrix of the group graph of G. From the

results in (Zheng et al., 2018), tr(eW
′◦W ′

)−M = 0 is satisfied if and only if the group graph
of G is acyclic, which implies that G is group-acyclic.

By replacing the group DAG constraint with the algebraic constraint (1), we can estimate
the structure among the groups of variables by using an existing method that uses the
existing algebraic DAG constraint. The group DAG constraint (5) requires the graph to
be group-acyclic but does not constrain the acyclicity within each group. As described in
Appendix B.1, we conducted a numerical experiment for a case with a closed loop in each
group. The estimation accuracy was similar to that for a case without closed loops.

3.2. TS-LSNM: Structure Learning for Nonlinear Time-Series Data with
Location-Scale Noise

3.2.1. Model Formulation

We propose a time-series location-scale noise model (TS-LSNM)—a functional causal model
that extends the LSNM (Immer et al., 2022) to capture temporal dependencies. Suppose
that we have a set of P time series Xt = {Xt

1, X
t
2, ..., X

t
P } with joint distribution L(Xt).

Let PAt
j ⊆ Xt\Xt

j denote a set of instantaneous parents of Xt
j at time t and PAt−τ

j ⊆ Xt−τ

denote a set of lagged parents, which is a set of variables with a direct connection from the
previous timestep Xt−τ

i to Xt
j . TS-LSNM is defined as follows:

Xt
j = fj

(
PAt

j , ...,PA
t−L
j

)
+ sj

(
PAt

j , ...,PA
t−L
j

)
N t

j , j = 1, ..., P (6)
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where L ≥ 0 represents the maximum time lag of the model and N t
j is a noise term that

is mutually independent over j and t, which implies that there are no latent confounders.
N t

j is identically distributed in t. fj and the scaling function sj > 0 are twice differentiable
functions, where sj induces heteroscedasticity by scaling the variance of the noise terms. We
further assume causal stationarity (Runge, 2018), causal minimality (Hoyer et al., 2008), and
joint distribution of Xt satisfy the causal Markov property with respect to the underlying
graph. If L = 0, TS-LSNM is reduced to the LSNM (Immer et al., 2022).

The structural identifiability of TS-LSNM comes from the identifiability results of the
LSNM and the time-series model with independent noise (TiMINo) (Strobl and Lasko,
2022; Immer et al., 2022; Peters et al., 2012). LSNM belongs to an identifiable functional
model class (IFMOC) (Peters et al., 2012), therefore is structurally identifiable under the
assumption of causal minimality, no cycles, and no hidden confounders. TS-LSNM is a
special case of TiMINo. Because we can recover the underlying graph of TiMINo if the
data-generating functions come from the IFMOC (Peters et al. (2013), Theorem 1 (i)),
TS-LSNM is also structurally identifiable from the joint distribution L(Xt).

3.2.2. Estimation of TS-LSNM

We adopt a negative log-likelihood for the loss function to estimate TS-LSNM. We consider
TS-LSNM (6) and set P̃Aj = ∪L

τ=0PA
t−τ
j and Ñ t

j := sj(P̃Aj)N
t
j . Given N observations, i.e.,

Xt = {xt,(n)}Nn=1, the log-likelihood of TS-LSNM is defined as follows:

logL(Xt) = − 1

N−L

N∑
n=L+1

P∑
j=1

log σ
t,(n)
j +

1

N−L

N∑
n=L+1

P∑
j=1

log p̃j

x
t,(n)
j −fj(P̃A

(n)
j )

σ
t,(n)
j

 , (7)

where p̃j denotes the probability density functions of noise Ñ t
j standardized to unit variance,

and (σ
t,(n)
j )2 represents the conditional variance of the n-th sample before standardization.

To model TS-LSNM, we leverage CNNs to capture temporal dependencies (Sun et al.,
2021) and model each variable’s conditional expectation and variance separately, as pre-

sented in (Kikuchi, 2023). Therefore, we create two CNNs to estimate fj(P̃A
(n)
j ) and σ

t,(n)
j

for each target variable, resulting in 2P CNNs. The first layer of each CNN is a convo-
lutional layer with kernel size S, a stride of 1, and no padding, where the parameters are
expressed as ϕ, which is a set of weight matrices of shape P × (L+ 1). The corresponding
weights with respect to the target variable of the instantaneous step τ = 0 are set to zero
to avoid estimating Xt

j using its own value. The remaining layers are fully connected layers

with parameter ψ, which is a set of weight matrices. The estimations f̂j(P̃A
(n)
j ) and σ̂

t,(n)
j

are given by CNNs with parameters θAj = (ϕAj , ψ
A
j ) and θ

C
j = (ϕCj , ψ

C
j ), respectively:

f̂j(P̃A
(n)
j ) = CNN(xt:t−L,(n); θAj ), (8)

σ̂
t,(n)
j = CNN(xt:t−L,(n); θCj ). (9)

Following (Sun et al., 2021), the weighted adjacency matrix for TS-LSNM is calculated
using the weights of the convolutional layers of CNNs. Let ϕAj (τ) and ϕCj (τ) denote the
collection of the τ -th column of the S convolutional weights. For example, the i-th element
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of each ϕAj (L − τ) represents the connection strength with respect to the conditional ex-

pectation from Xt−τ
i to Xt

j . We calculate two weighted adjacency matrices W τ (θA) and

W τ (θC) for each time lag τ , representing the overall connection strengths with respect
to the conditional expectations and the variances, respectively. W τ (θA) and W τ (θC) are
calculated as follows:

[W τ (θA)]i,j = ∥i-th element across all ϕAj (τ)∥2, (10)

[W τ (θC)]i,j = ∥i-th element across all ϕCj (τ)∥2. (11)

To obtain a weighted adjacency matrixW τ (θA, θC) that represents the connection strengths
of both the conditional expectation and the variance, we calculate W τ (θA, θC) =W τ (θA)+
W τ (θC). Element i, j of W τ (θA, θC) indicates the overall connection strength from Xt−τ

i

to Xt
j . W 0(θA, θC) represents the dependency structure of the current timestep t, and

W τ (θA, θC) (0 < τ <= L) represent the time-lagged dependencies from time t − τ to t.
Because we only constrain the connections of the instantaneous step to be acyclic, we use
W 0(θA, θC) as the input of the algebraic constraint. Finally, using the log-likelihood (7) with
constraint (1) and regularization terms with respect to the model weights θA = (θA1 , ..., θ

A
P )

and θC = (θC1 , ..., θ
C
P ), we obtain the following constrained optimization problem for TS-

LSNM:

min
θA,θC

F (Xt, θA, θC) subject to h(W 0(θA, θC)) = 0, (12)

where

F (Xt, θA, θC) =
1

N − L

N∑
n=L+1

P∑
j=1

log CNN(xt:t−L,(n); θCj )

− 1

N − L

N∑
n=L+1

P∑
j=1

log p̃j

(
x
t:t−L,(n)
j − CNN(xt:t−L,(n); θAj )

CNN(xt:t−L,(n); θCj )

)

+
P∑

j=1

(
λ1∥ϕAj ∥1 + λ1∥ϕCj ∥1 +

1

2
λ2∥θAj ∥2 +

1

2
λ2∥θCj ∥2

)
.

Here, λ1 and λ2 are regularization parameters. Following Kikuchi (2023), we leverage the
approximation of log probability log p̃j . We choose the approximated function from the two
candidates according to whether the variable is super-Gaussian or sub-Gaussian (Hyvärinen
et al., 2001; Hyvärinen and Oja, 1998) during the optimization. Although the approximation
assumes that the noise terms follow a non-Gaussian distribution and that the probability
density functions are symmetric, the results of the numerical experiments presented in
Section 4.1.3 indicate that a relatively high estimation accuracy can be obtained even when
the noise terms follow a Gaussian or Gumbel distribution.

We convert the constrained optimization problem (12) into an unconstrained optimiza-
tion problem using the augmented Lagrangian method and employ L-BFGS (Byrd et al.,
1995) for optimization. After optimization, we estimate the weighted adjacency matrix as
W̃ τ (θA, θC) = 1/2(W τ (θA) + W τ (θC)) and round the small values to zero with a small
threshold w > 0 to remove redundant edges and the remaining cycles in the graph (Zhou,
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2009). Note that we can estimate group DAGs by TS-LSNM using the DAG constraint (5),
where we calculate W

′0(θA, θC) using Equation (4) and replace the constraint on Equation
(12) to h(W

′0(θA, θC)) = 0.

4. Numerical Experiments

We performed numerical experiments to evaluate our method on synthetic data as well as
real-world data. The results of the numerical experiments using synthetic data are presented
in Section 4.1. Next, we compare the results of different models for real-world data collected
from a manufacturing process in Section 4.2.

4.1. Synthetic Data

4.1.1. Setup

We generated synthetic data with the grouped variables as follows. Given the number of
variables P and the number of groups M , we randomly assigned group l ∈ {1, ...,M} to
each variable such that the groups had an equal number of variables. We then randomly
selected a parent variable for each group and generated an intragroup DAG with a tree
structure having a depth of 1. This operation simulated the observation that variables in
the same group had similar values. Subsequently, starting from the first group k = 1, we
assigned a connection from the variables in subsequent groups l (l > k) to the variables
in group k with a probability of 0.1, where at least one connection from group l to group
k was established. Thus, we obtained an adjacency matrix B ∈ {0, 1}P×P representing a
group-acyclic graph. An example of a simulated variable DAG and the corresponding group
DAG for P = 12 and M = 3 are shown in Figure 2. For the time-lagged effects, following
Sun et al. (2021), we created a connection from Xt−τ

i to Xt
j with a probability of 1/P ,

which indicates that on average, there was one connection from each Xt−τ
i to Xt

j .
After generating the connections between the variables, each variable was generated

using the following function based on the index models:

Xt
j = tanh

(
f
(1)
j (P̃Aj)

)
+ cos

(
f
(2)
j (P̃Aj)

)
+ sin

(
f
(3)
j (P̃Aj)

)
+ sj

(
P̃Aj

)
N t

j , (13)

where f
(1)
j =

∑L
τ=0

∑
i∈paτ (j)[W

(1)
τ ]i,jX

t−τ
i , f

(2)
j =

∑L
τ=0

∑
i∈paτ (j)[W

(2)
τ ]i,jX

t−τ
i and f

(3)
j =∑L

τ=0

∑
i∈paτ (j)[W

(3)
τ ]i,jX

t−τ
i . paτ (j) denotes the index set of PAt−τ

j . For the scaling func-
tion sj , for each j, we randomly selected a strictly positive nonlinear function from a set
{1/(1 + exp g(P̃Aj)) + 0.5, exp (g(P̃Aj)), tanh(g(P̃Aj)) + 1.5}, where g(P̃Aj)) =∑L

τ=0

∑
i∈paτ (j)[Cτ ]i,jX

t−τ
i . The connection weights W

(1)
τ ,W

(2)
τ ,W

(3)
τ were sampled from

±U(0.5, 2.0), and Cτ was sampled from ±U(0.4, 0.8). Unless otherwise stated, the noise
terms N t

j were generated from the standard Gaussian distribution. We generated 2000 data
points in total, scaled all the variables to zero-mean unit variance, and shuffled the column
order.

We used the structural Hamming distance (SHD) between the true and estimated group
DAGs as an evaluation metric. Structural intervention distance (Peters and Bühlmann,
2015) showed similar results as SHD (Appendix B.2). As methods without a group DAG
constraint do not necessarily return a group-acyclic DAG, we recursively remove edges with
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the smallest absolute value from the estimated group adjacency matrix until we obtain a
group-acyclic graph, which is analogous to the postprocessing in (Ng et al., 2020). Each
experiment was performed 20 times.

(a) Variable DAG (b) Group DAG

Figure 2: Example of the simulated variable DAG and group DAG for P = 12 and M = 3

4.1.2. Nonlinear Data

We first performed an experiment to examine the effect of the group DAG constraint
on nonlinear data with additive noise and no temporal dependencies, where we set L =
0 and sj = 1 in Eq. (13). We compared the following four methods: NOTEARS-
MLP (Zheng et al., 2020), NOTEARS-MLP using randomly selected variables for each
group (NOTEARS-MLP-SEL), NOTEARS-MLP using the average value of the variables
for each group (NOTEARS-MLP-AVE), and NOTEARS-MLP with a group DAG constraint
(NOTEARS-MLP-ACY). All four methods had the same parameter settings of NOTEARS-
MLP given in the original paper, i.e., λ1 = λ2 = 0.01, and w = 0.3, and the MLPs consisted
of a single hidden layer with 10 nodes.

The results for different numbers of variables P = {10, 20, 30, 40} and number of groups
M = {5, 10} are presented in Figure 3. As shown, NOTEARS-MLP-ACY outperformed
the other methods, indicating the effectiveness of the group DAG constraint. Interest-
ingly, NOTEARS-MLP-AVE and NOTEARS-MLP-SEL exhibited worse performance than
NOTEARS-MLP, which indicates that aggregating the information of the groups leads to
inferior results. The cases of P = 10 and M = 10 corresponded to the estimation of the
group DAGs; thus, the four methods exhibited identical results.

4.1.3. Nonlinear Time-Series Data with Location-Scale Noise

Next, we performed an experiment on time-series data with location-scale noise to assess the
performance of TS-LSNM and TS-LSNM with the group DAG constraint. We compared
the following three methods: NTS-NOTEARS (Sun et al., 2021), the proposed TS-LSNM,
and TS-LSNM with the group DAG constraint (TS-LSNM-ACY). The parameters for each
method were determined by performing a grid search in the condition of P = 20, M =
10, and N t

j ∼ U(−1/
√
3, 1/

√
3) with parameter space λ1 = λ2 ∈ {0.05, 0.01, 0.005}, w ∈

{0.3, 0.2, 0.1}, resulting in λ1 = λ2 = 0.01 for all methods, w = 0.2 for NTS-NOTEARS

28



Structure Learning for Groups of Variables

and TS-LSNM-ACY, and w = 0.3 for TS-LSNM. The number of hidden layers was set to
1, and the kernel size was set to 10. The maximum length L of the temporal dependencies
of the data and models was set to 1.

M=5 M=10
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Figure 3: Results for nonlinear data obtained using different numbers of variables P and
numbers of groups M
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Figure 4: Results for nonlinear time-series data with location-scale noise obtained using
different numbers of variables P , numbers of groups M , and noise distributions

29



Kikuchi Shimizu

The results for different numbers of variables P = {10, 20, 30, 40}, numbers of groups
M = {5, 10}, and noise distributions N t

j ∼ {U(−1/
√
3, 1/

√
3),N (0, 1), Gumbel(0,

√
6/π)}

are shown in Figure 4. Among the methods, TS-LSNM-ACY generally exhibited the best
performance, followed by TS-LSNM. TS-LSNM outperformed NTS-NOTEARS because it
captured the induced noise variances. Because of the DAG constraint, TS-LSNM-ACY
achieved a relatively low SHD even if the number of variables increases. TS-LSNM-ACY
is defeated only when P = M , indicating that the task involves estimation of the variable
DAG. This suggests that the parameters should be adjusted according to the task to be
solved.

4.2. Ceramic Substrate Manufacturing Process Data

We compared the group DAGs obtained using NTS-NOTEARS and TS-LSNM-ACY with
real-world data collected from the kneading process of a ceramic substrate manufacturing
line. This process consisted of two kneaders (upper and middle) to mix the ingredients of
the ceramic, each of which was cooled using a separate water-cooled chiller. The kneaded
ingredients were cut to the same length and subjected to the baking process. The cutting
torque is an important characteristic of the viscosity of the ceramic and is closely related
to crack failure. The temperature, electricity (voltage and frequency), and pressure were
measured at several positions of the kneaders and chillers, with a total of 19 variables and
2000 data points. We assigned groups to each variable according to domain knowledge and
used them as groupings for TS-LSNM-ACY. Details regarding these groups are presented
in Table 1. We incorporated prior knowledge that the cutter torque is the sink variable for
both methods by restricting the corresponding kernel weights to zero (Sun et al., 2021).
We used the parameter set obtained in Section 4.1.3. For the maximum time lag L, we
used L = 1. We first fitted the models to L = 5 and then selected the value using the
Frobenius norms of the estimated adjacency matrix for each time lag. Details are presented
in Appendix C.

Table 1: Assigned groups for the ceramic manufacturing process data

Group ID Name Description # of variables

1 U chiller T Upper chiller temperature 1
2 U kneader T Upper kneader temperature 3
3 U kneader E Upper kneader electricity 3
4 M chiller IN Water entering middle chiller 3
5 M chiller OUT Water exiting middle chiller 2
6 M kneader T Middle kneader temperature 3
7 M kneader E Middle kneader electricity 3
8 Cutter torque Cutting torque 1

The obtained group DAGs are shown in Figure 5, where groups irrelevant to the cut-
ter torque are omitted. Both methods succeeded in recovering the connection between
the temperature of the kneader (U kneader T) and the cutter torque, and their results
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matched the domain knowledge. The result of TS-LSNM-ACY, which revealed an arrow
from U kneader T to the cooling water flowing into the chiller (M chiller IN), was more con-
sistent with the domain knowledge than the result of NTS-NOTEARS, which revealed a con-
nection from U kneader T to the cooling water flowing out of the chiller (M chiller OUT),
because M chiller OUT is expected to be controlled by the chiller. Moreover, the result
of TS-LSNM-ACY revealed the correct physical phenomenon in which the chillers cool the
kneaders, whereas the result of NTS-NOTEARS revealed no connection between the chillers
and kneaders, which disagrees with expectations. Therefore, we conclude that TS-LSNM
with the DAG constraint obtained better estimation results than NTS-NOTEARS.

(a) TS-LSNM-ACY (b) NTS-NOTEARS

Figure 5: Estimated group DAGs for ceramic substrate manufacturing process data

5. Conclusions and Remarks

We propose group DAG constraint—a novel differentiable algebraic constraint—to perform
structure learning on groups of variables, assuming that the relationship among the groups
is acyclic and the assignment of the groups is known in advance. The group DAG constraint
offers not only the use of prior knowledge about the variable groups, but also can give more
simplified results that are more comprehensive by estimating group DAGs. Furthermore, we
propose TS-LSNM—a functional causal model that can handle nonlinear time-series data
with location-scale noise. A corresponding estimation algorithm was developed and tested.
We evaluated the performance of the group DAG constraint and TS-LSNM by performing
numerical experiments on synthetic and real-world data acquired from the kneading process
of a ceramic substrate manufacturing line, and the results indicated the effectiveness of the
proposed methods. The effect when the assignment of the groups is incorrect, and the
impact of the imbalance on group size is left to be our future work.
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Appendix A. An Example of the Weighted Group Adjacency Matrix (4)

We give an example of the weighted group adjacency matrix calculated by Equation (4).
Suppose we have a graph G on 5 variables with groupingK(1) = {1, 2},K(2) = {3, 4},K(3) =
{5}, and a corresponding weighted adjacency matrix D:

D =


0 1 2 0 0
0 0 0 −2 4
0 0 0 3 0
0 0 0 0 −5
0 0 0 0 0

 .
Figure 6 shows the variable DAG and a group DAG with corresponding adjacency matrix B,
weighted adjacency matrix D, group adjacency matrix B

′
, and weighted group adjacency

matrix D
′
. The connection strengths are shown as the edge labels.

We will show that we get D
′
by substituting D to Equation (4):

[D
′
]k,l =

{
0 if k = l,∑

i∈K(k)

∑
j∈K(l)[D̄]i,j else

,

where

D̄ = D ◦D =


0 1 4 0 0
0 0 0 4 16
0 0 0 9 0
0 0 0 0 25
0 0 0 0 0

 .
For the off-diagonal elements (k ̸= l), we get:

[D
′
]1,2 =

∑
i∈K(1)={1,2}

∑
j∈K(2)={3,4}

[D̄]i,j = [D̄]1,3 + [D̄]1,4 + [D̄]2,3 + [D̄]2,4 = 4 + 0 + 0 + 4 = 8,

[D
′
]2,1 =

∑
i∈K(2)={3,4}

∑
j∈K(1)={1,2}

[D̄]i,j = [D̄]3,1 + [D̄]3,2 + [D̄]4,1 + [D̄]4,2 = 0 + 0 + 0 + 0 = 0,

[D
′
]1,3 =

∑
i∈K(1)={1,2}

∑
j∈K(3)={5}

[D̄]i,j = [D̄]1,5 + [D̄]2,5 = 0 + 16 = 16,

[D
′
]3,1 =

∑
i∈K(3)={5}

∑
j∈K(1)={1,2}

[D̄]i,j = [D̄]5,1 + [D̄]5,2 = 0 + 0 = 0,

[D
′
]2,3 =

∑
i∈K(2)={3,4}

∑
j∈K(3)={5}

[D̄]i,j = [D̄]3,5 + [D̄]4,5 = 0 + 25 = 25,

[D
′
]3,2 =

∑
i∈K(3)={5}

∑
j∈K(2)={3,4}

[D̄]i,j = [D̄]5,3 + [D̄]5,4 = 0 + 0 = 0.

Since the diagonal elements (k = l) of D
′
are zero, we obtain:

D
′
=

0 8 16
0 0 25
0 0 0

 .
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(a) Variable DAG (b) Group DAG

Figure 6: A variable DAG and a group DAG

Appendix B. Additional Experiments

B.1. Results for Data with Cycles in Each Group

We report the results for data with cycles in each group. We generate a binary adjacency
matrix B by creating connections between the variables using the procedure described in
Section 4.1.1, except for the cyclic data, for which we created a single loop consisting of all
the variables in the same group. A simple example of a variable DAG and the corresponding
group DAG for P = 12 and M = 4 is shown in Figure 7.

By replacing the nonzero elements of B with independent realizations of ±U(0.5, 2.0),
we generate data X using the following linear equation:

X = XB + e

⇔ X = (I −B)−1e, (14)

where I is an P ×P identity matrix, and e = (e1, ..., eP ) denotes the noise terms generated
independently from U(−1/

√
3, 1/

√
3). We generated 2000 data points and standardized

all the columns to zero-mean unit variance. We compared TS-LSNM and TS-LSNM-ACY
with L = 0, using the parameter settings presented in Section 4.1.2. NOTEARS-MLP
was not used as the base model, because it exhibits unsatisfactory performance when we
standardized the variables generated from the linear model owing to the assumption of
Gaussian noise with equal variance.

The results for different numbers of variables P = {10, 20, 30, 40} and graph types
{acyclic, cyclic} with M = 10 groups are presented in Figure 8. There was no significant
difference in SHD between the acyclic and cyclic cases, indicating that the connections
between the variables in the same group did not necessarily affect the estimation accuracy
for the connections among the groups. Using the DAG constraint makes the estimation
more robust to the number of variables in each group for both acyclic and cyclic cases.
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(a) Variable DAG (b) Group DAG

Figure 7: Example of simulated variable DAG with cycles and corresponding group DAG
for P = 12 and M = 3
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Figure 8: Results for acyclic and cyclic data generated from a linear model, with different
numbers of variables: P = {10, 20, 30, 40}. The number of groups M was set to
10.

B.2. Structural Intervention Distance

We conducted a numerical experiment on nonlinear time-series data with location-scale
noise with the same setting as Section 4.1.3, but only for the number of groups M = 10,
number of variables p = 40, and uniform noise distribution. Here we used the structural
intervention distance (SID) (Peters and Bühlmann, 2015) for the evaluation, where SID
evaluates the number of wrongly estimated interventional distributions. Compared to SHD,
SID prioritizes the causal order of the variables. The result is shown in Figure 9. We can
see that the proposed TS-LSNM-ACY show the smallest SID followed by TS-LSNM, which
is the same as the result of SHD shown in Figure 4.
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Figure 9: Structural intervention distance for time-series data with location-scale noise,
on number of groups M = 5, number of variables P = 40, and uniform noise
distribution

Appendix C. Selection of Maximum Time Lags L

In the numerical experiments on synthetic data, we assumed that the true time lags L were
known in advance. However, in a real-world scenario, we must select an appropriate L value
from the data. For the ceramic manufacturing process data described in Section 4.2, we
fitted each model with a large time-lag value of L = 5 and estimated the weighted adjacency
matrix W̃ τ (θA, θC) (τ = 0, ..., L). We then calculated the Frobenius norm of the estimated
weighted adjacency matrix for each time lag τ .

The results are presented in Figure 10, where plateaus are observed for L > 1 for both
methods. Therefore, we selected L = 1 for both methods and fitted the model again with
L = 1. An alternative approach for determining L is to determine the value of the objective
function F , although we must fit the model multiple times.
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Figure 10: Frobenius norm of the estimated weighted adjacency matrix on each time lag τ
(∥W̃ τ (θA, θC)∥F )
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