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Abstract

Here we advance a new approach for measuring EEG causal oscillatory connectivity, cap-
italizing on recent advances in causal discovery analysis for skewed time series data and
in spectral parameterization of time-frequency (TF) data. We first parameterize EEG TF
data into separate oscillatory and aperiodic components. We then measure causal inter-
actions between separated oscillatory data with the recently proposed causal connectivity
method Greedy Adjacencies and Non-Gaussian Orientations (GANGO). We apply GANGO
to contemporaneous time series, then we extend the GANGO method to lagged data that
control for temporal autocorrelation. We apply this approach to EEG data acquired in the
context of a clinical trial investigating noninvasive transcranial direct current stimulation
to treat executive dysfunction following mild Traumatic Brain Injury (mTBI). First, we
analyze whole-scalp oscillatory connectivity patterns using community detection. Then we
demonstrate that tDCS increases the effect size of causal theta-band oscillatory connections
between prefrontal sensors and the rest of the scalp, while simultaneously decreasing causal
alpha-band oscillatory connections between prefrontal sensors and the rest of the scalp. Im-
proved executive functioning following tDCS could result from increased prefrontal causal
theta oscillatory influence, and decreased prefrontal alpha-band causal oscillatory influence.

Keywords: EEG, Causal Discovery, Oscillations, Traumatic Brain Injury, Transcranial
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1. Introduction

Neural oscillations coordinate information transfer across distributed networks in the brain,
providing valuable insights into brain functional organization. Oscillatory activity plays a
critical role in cognitive processes (Ward, 2003), and alterations in oscillatory connectiv-
ity are implicated in numerous neurological and psychiatric disorders (Uhlhaas and Singer,
2006; Başar and Güntekin, 2008). However, brain oscillations mix with background activity
that is not rhythmic. This background aperiodic activity forms a characteristic 1/f pattern
in power spectra, with lowest frequencies carrying the highest power, and is potentially
related to excitatory-inhibitory neurotransmitter balance in the brain (Gao et al., 2017).
Aperiodic activity is a major component of electroencephalography (EEG) dynamics, and
its presence can confound detection of oscillatory brain activity (Donoghue et al., 2020a;
Merkin et al., 2023). Thus, methods to assess oscillatory connectivity while removing ape-
riodic confounding are critical for advancing our understanding of the brain’s functional
architecture and its relationship to cognition and behavior.

Current approaches to analyzing EEG connectivity include Granger prediction (Granger,
1969; Geweke, 1984), transfer entropy (Schreiber, 2000), and partial directed coherence
(Baccalá and Sameshima, 2001). While these methods have proven valuable, they are not
without limitations. For example, these prior approaches do not effectively isolate oscillatory
neural activity from background aperiodic activity, which can result in aperiodic activity
masking or confounding neural oscillations (Donoghue et al., 2020b,a; Merkin et al., 2023).
Moreover, existing methods can suffer from the third-variable problem, where two variables
that are jointly caused by a third variable can incorrectly be found to cause each other.
While multivariate Granger prediction (Barnett and Seth, 2014) can address this problem,
it is unable to accurately measure effect sizes of causal connectivity due to conditioning on
the entire temporal history, rather than only the relevant history (Runge et al., 2019).

To address these shortcomings, we present a new framework for assessing multivariate
causal oscillatory connectivity in EEG data. Our method consists of several steps. First,
we apply the surface Laplacian transform (Perrin et al., 1989) to channel-level EEG data
to estimate current at the surface of the dura and remove volume conduction (Nunez and
Srinivasan, 2006). Second, we transform EEG data to time-frequency (TF) surfaces and pa-
rameterize the resulting TF surfaces (Donoghue et al., 2020b), separating oscillatory power
from aperiodic 1/f power. Having isolated TF surfaces containing only time-varying oscil-
latory power estimates, we apply a multivariate causal discovery machine learning method,
Greedy Adjacencies and Non-Gaussian Orientations (GANGO) (Rawls et al., 2022), to un-
cover causal influences between band-limited oscillatory power envelopes. We consider the
case of contemporaneous time series, and we extend the GANGO method to lagged time
series to statistically control for the influence of temporal autocorrelation.

Our new framework offers several advantages over current methods for EEG directed
connectivity. First, by separating oscillatory and aperiodic activity, our approach mini-
mizes the potential for confounding effects of aperiodic activity on oscillatory connectivity.
Second, GANGO is amenable to skewed data distributions, providing a more appropri-
ate analysis for heavily skewed power spectral oscillatory data. Third, GANGO utilizes a
multivariate approach during network structure learning, more accurately learning global
network characteristics by accounting for indirect causal relationships and third-variable
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problems that can plague bivariate directed connectivity approaches. Fourth, our approach
extends GANGO to lagged time series, to control for autocorrelation. Fifth, our approach
does not condition on the entire history when estimating effect sizes, theoretically producing
a superior estimate by comparison to Granger prediction (Runge et al., 2019).

We apply our framework to data collected during a clinical trial of noninvasive brain
stimulation for mild traumatic brain injury (mTBI). We first analyze the modular commu-
nity structure of our measured oscillatory connectomes. We quantify the stability of the
community structures, as well as their similarity to an established non-causal connectivity
method. We then examine treatment-related effects of transcranial direct current stimu-
lation (tDCS) to the left dorsolateral prefrontal cortex (dlPFC) on the strength of causal
theta- and alpha-band prefrontal connections. Our novel framework for assessing causal
oscillatory connectivity in EEG data addresses key limitations of current methods, provid-
ing an accurate and comprehensive representation of causal oscillatory interactions between
brain regions. By effectively separating oscillatory and aperiodic activity, accommodating
skewed oscillatory data distributions, and employing a multivariate approach, our frame-
work offers a powerful tool for advancing our understanding of the functional architecture
of the human brain and the mechanisms underlying various cognitive processes.

2. Methods & Materials

2.1. Participants

Twenty nine participants enrolled in a double-blind, sham-controlled trial initiated cognitive
training supplemented with either concurrent anodal tDCS targeting the DLPFC or sham
stimulation. Participants were veterans enrolled at the Minneapolis VAHCS, aged 18-65,
who had sustained a mild traumatic brain injury (mTBI) more than 1 year ago. Participant
diagnosis of mTBI was established with a review of the medical record and administration
of the Minnesota Blast Exposure Screening Tool (Nelson et al., 2011). Participants were
excluded if they: had a psychotic disorder, were severely depressed, had a hospitalization
or medication change in the previous 4 weeks, met criteria for substance abuse in the last
month or substance dependence in the last six months, had behavioral problems preventing
participation in a group intervention, had a premorbid IQ below 70, were unable to provide
informed consent, had a guardian of person, had another existing neurological condition
that impacts cognitive functioning, were not fluent enough in English to understand testing
procedures, or have a medical condition or injury such as a lesion or open wound on their
scalp that is incompatible with tDCS (Nitsche et al., 2008). All procedures were approved
by ethical review boards at the Minneapolis VAHCS and the University of Minnesota.

2.2. Definition of Mild Traumatic Brain Injury

We used the definition of mTBI developed by the VA and Department of Defense and
described in the document, VA/DoD Clinical Practice Guideline: Management of concus-
sion/mild traumatic brain injury (2009). mTBI is diagnosed after reported trauma to the
head due to a blunt force trauma, acceleration/deceleration forces, or exposure to blast
with the following injury characteristics: 1) no structural imaging abnormalities, 2) less
than 30 minutes of loss of consciousness, 3) post-traumatic amnesia lasting less than 1 day,
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4) Glasgow Coma Scale (GCS) score within 24 hours of injury in the range of 13-15, and 5)
alteration of consciousness/mental state for less than 24 hours.

2.3. Transcranial Direct Current Stimulation (tDCS) Protocol

Participants, trainers, and the EEG data analyst (ER) were blind to participant condi-
tion assignment. Participants in both tDCS and sham stimulation conditions received 2-3
neuromodulation sessions held on separate days each week. Sessions were approximately
two hours in length, including 20 minutes of tDCS or sham stimulation concurrent with 60
minutes of cognitive training and a 45-minute strategy discussion session. A StarStim neu-
rostimulator administered either tDCS or sham stimulation. Participants in the tDCS con-
dition received 2 mA of stimulation with the anodal electrode placed over F3 (left DLPFC),
and the cathodal electrode placed in the contralateral supraorbital position. Current was
induced through two circular carbon rubber core electrodes in saline-soaked sponges (25
cm2), placed in a neoprene headcap with marked locations based on the 10-10 EEG system.
These are all common stimulation parameters for treatment of psychiatric conditions (Li
et al., 2022) and none of the participants reported adverse effects or discomfort associated
with stimulation. Participants who were in the sham condition received 30 seconds of stim-
ulation to mimic the experience of tDCS. This protocol is recommended for blinded tDCS
administration (Giglia et al., 2011).

2.4. EEG Collection and Preprocessing

Resting-state EEG was collected at three time points: 1) at baseline, prior to the first
tDCS training session (EEG Baseline), 2) immediately after the first training session (EEG
Session 1), and 3) following the complete course of 24 intervention sessions (EEG Session
2). Participants sat quietly with eyes closed while continuous EEG were recorded for three
minutes using a 32-channel BioSemi ActiveTwo system. Data were preprocessed using
EEGLAB (Delorme and Makeig, 2004). Following data preparation, we selected the first
one minute (15,000 samples at 250 Hz) of recording without voltage exceeding ±100 µV for
further processing. We high-pass filtered the data at 0.5 Hz, low-pass filtered the data at 40
Hz, calculated independent components analysis (ICA) (Makeig et al., 1996), and removed
artifact components using ICLabel (Pion-Tonachini et al., 2019).

2.5. EEG Time-frequency Analysis and Parameterization

We applied the surface Laplacian transformation (Perrin et al., 1989), attenuating vol-
ume conduction. While some prior approaches have used inverse source reconstruction,
source localization with such sparse montages (32 channels) is associated with high local-
ization errors and large remaining volume conduction artifacts (Song et al., 2015). In-
stead, we calculate channel-level connectivity, a common approach for EEG connectiv-
ity (Miskovic et al., 2015). TF transformation used the lead author’s NeuroFreq toolbox
(https://github.com/erawls-neuro/NeuroFreq_public. We transformed the EEG to a
TF representation using short time Fourier transform (STFTs) with a one second Hamming
window, 80% overlap, and averaging of three adjacent segments to increase signal-to-noise
ratio. These are very similar parameters to those reported to produce high-quality results in
(Wilson et al., 2022) and are common parameters for TF analysis (Keil et al., 2022), as well
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as enabling accurate resolution of all frequencies of interest because a 1-s window produces
a Rayleigh frequency (lowest measurable frequency) of 1 Hz. This analysis returned 29
frequencies spanning approximately 1.95 Hz to 29.3 Hz and 300 time points sampled every
200 ms. We followed the approach outlined in (Wilson et al., 2022) to parameterize each
time-resolved power spectrum using default parameters from specparam (peak widths = [0.5
12], peak detection threshold = 2.0 SD, no max number of peaks, no minimum peak height,
aperiodic mode = fixed) (Donoghue et al., 2020b). TF parameterization used BrainStorm
software (Tadel et al., 2011). We averaged the parameterized oscillatory power into two
canonical frequency bands (theta = 3.91-7.81 Hz, alpha = 8.79-13.67 Hz) for causal oscilla-
tory connectivity analyses. For a visual comparison of total (unparameterized), aperiodic,
and oscillatory power estimates, see Figure 1.

Figure 1: Laplacian-transformed TF data were parameterized to separate aperiodic and os-
cillatory contributions. A. Panels illustrate spectral parameterization for a single
participant, averaged over all channels. B. Panels represent the average of theta-
band total, aperiodic, and oscillatory spectral power. Note the enhanced spatial
focus of oscillatory theta power over mediofrontal sensors. C. Panels represent
the average of alpha-band total, aperiodic, and oscillatory spectral power. Note
the enhanced spatial focus of oscillatory alpha power over posterior sensors.
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2.6. EEG Causal Connectivity Analysis

We generated individualized causal oscillatory connectomes using GANGO (Greedy Adja-
cencies and Non-Gaussian Orientations), a causal discovery method we proposed in (Rawls
et al., 2022). We initially developed this method to be suitable for resting-state fMRI
data, so we tested whether our resting-state oscillatory EEG met the assumptions of the
GANGO algorithm - specifically, skewness with reference to Gaussian data. We simulated
Gaussian data and tested whether the observed EEG data passed the 95th percentile of
the skewness of the surrogate Gaussian data. Following assumption checks, we calculated
individualized causal connectomes as described in (Rawls et al., 2022). We used causal-cmd
(Version 1.3.0; https://github.com/bd2kccd/causal-cmd) to generate data-driven connec-
tomes with Fast Greedy Equivalence Search (FGES). FGES includes a penalty term, which
we set to 1 for consistency with our previous work (Rawls et al., 2022; Camchong et al.,
2022) and because a penalty discount of 1 corresponds to the standard Bayesian Information
Criterion (Schwarz, 1978). We then used a robust skewness-based method to reorient the
edges (Hyvärinen and Smith, 2013). For more details on the GANGO algorithm see (Rawls
et al., 2022). Following structure learning, we fit structural equation models (SEMs) using
semopy (Igolkina and Meshcheryakov, 2020) to each causal connectome to recover standard-
ized effect sizes for each causal connection (Camchong et al., 2022). Here, we consider both
the original GANGO method which does not consider temporal information (Rawls et al.,
2022), as well as documenting an extension of the GANGO method that factors out effects
of temporal autocorrelation. This is achieved by conditioning on the entire set of observed
variables with a temporal lag, which as noted by (Ramsey et al., 2010) statistically removes
the impact of autocorrelation even when the causal relationship is undersampled. First, we
apply FGES with tiered knowledge forbidding back-in-time causality. Then, having learned
each contemporaneous variables time-lagged direct causes, we regress these time-lagged di-
rect causes out and apply robust skew-based reorientation to the residuals. In the following,
we present results calculated using both approaches.

2.7. EEG Magnitude-Squared Coherence Connectivity Analysis

For comparison to causal connectomes, we used magnitude-squared coherence (MSC) (Nunez
et al., 1997), often simply called coherence, a field-standard approach to measuring EEG
connectivity that produces undirected connectomes. MSC requires only the parameters
used for short-time Fourier transform, which we set to the same values as the causal con-
nectivity analysis for consistency (one second Hamming windows and 80% segment overlap).
MSC was calculated using the MATLAB function mscohere. We thresholded the contin-
uous coherence values to include the n strongest edges where n is equal to the number
of edges in the individual’s causal connectome. MSC must be applied to raw time series
as it first calculates STFT then measures coherence using both power and phase, while
spectral parameterization at present applies only to power spectra (not phase) (Donoghue
et al., 2020b). Thus, since MSC cannot be applied to parameterized EEG oscillations it
could suffer from contamination by aperiodic activity, a problem specifically solved by our
proposed framework. Note that this comparison is not intended to show ”correctness” of
the proposed approach, but instead to quantitatively assess the similarity of the resulting
connectomes with those produced by a field-standard method.
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2.8. Louvain Modularity Analysis

We examined the community structure of theta and alpha oscillatory causal connectomes
using Louvain community detection (Blondel et al., 2008). We used the approach outlined
in a recent fMRI network analysis (Ji et al., 2019). Specifically, we applied the Louvain
algorithm to the weighted adjacency matrix (averaged over all participants/sessions) with
1000 repetitions. We calculated the similarity of each individual partition with each other
partition using the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985), an empiri-
cal measure of cluster similarity. Finally, we selected as representative the partition that
showed the highest mean ARI with all other partitions. We ran this same analysis for MSC
connectomes. We characterize these community structures in several ways. First, we com-
pared network structures between unlagged, lagged, and MSC connectomes quantitatively
using ARI. We tested whether these similarity metrics were more similar than expected
under chance using permutation testing that randomized the community structures every
run (1000 runs) to estimate a null distribution of similarity values. Second, we compared
the stability of community structures estimated using our framework to the stability of
MSC communities by comparing pairwise ARIs from all 1000 Louvain runs using a Mann-
Whitney U test. Together, these analyses allow us to determine 1) whether our framework
returns community partitions that are similar to previously described results, 2) whether
the community affiliations measured from our framework are more stable over repeated
Louvain runs than those returned by MSC, and 3) whether the community affiliations mea-
sured from our framework are more similar than expected by chance to those returned by
MSC.

2.9. Effects of Noninvasive Brain Stimulation - EEG Connectivity Metrics

Our analysis of brain stimulation effects focused on causal connectivity edge effect sizes
(measured via SEM) of a cluster of sensors including and immediately surrounding the
stimulation site, F3 (included sensors: F3, AF3, F7, FC5, FC1, Fz). GANGO provides
separate estimates of the presence of incoming and outgoing causal connections, as well as
the sign (positive or negative) of those edges. Thus, we ran separate analyses examining
the edge strength of incoming/outgoing and positive/negative edges. Our primary analysis
focused on lateral prefrontal connectivity with all other scalp sensors as an average measure
of prefrontal brain connectivity strength. We applied the surface Laplacian transform to the
EEG data, modeling out volume conduction effects. Nevertheless, our 32-channel montage
is at the low end of what is recommended for surface Laplacian analysis so it is possible
some volume conduction could remain in the data. Thus we examined average prefrontal
causal connectivity with a cluster of parietal-occipital sensors that were spatially separated
by at least one sensor from the prefrontal cluster (included sensors: P7, CP5, P3, PO3,
CP1, Pz, O1, Oz, O2, P8, CP2, P4, PO4, CP6, O2). This separation further reduces
the likelihood of volume conduction impacting our results. For comparison, we examined
prefrontal MSC in the same way. For an illustration of the channel clusters see Figure
4. We calculated prefrontal causal connectivity averages for each participant and session
(baseline, post-treatment 1, post-treatment 2) separately, and exported these estimates for
statistical analysis.
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2.10. Statistical Analysis

Statistical analyses were conducted in R (version 4.1.1). We examined averaged prefrontal
band-limited oscillatory causal connectivity using restricted maximum likelihood (REML)-
based Mixed Model Repeated Measures (MMRMs), which outperform imputation methods
for clinical trial designs with missing data (Siddiqui, 2011; Ashbeck and Bell, 2016). We
ran MMRMs using generalized least squares fit with nlme (Version 3.1-161). Within-patient
errors used an unstructured (co)variance matrix shared across treatment groups. We con-
ducted separate MMRMs modeling Treatment (stim/sham) X Session (session 1/session 2)
effects for incoming/outgoing and positive/negative prefrontal connection strengths. All
models estimated treatment effects while covarying for baseline (Session 0) connectivity.
We assessed significance using type III F-tests. Significant model effects were characterized
using emmeans (Version 1.8.4-1) with Satterthwaite’s approximation to correct post hoc de-
grees of freedom. We focus on main effects of Treatment that do not interact with Session,
since these main effects indicate long-lasting connectivity changes following treatment.

3. Results

3.1. EEG Oscillatory Time Series Meet Assumptions for Causal Connectivity
Analysis

Across all participants, sessions, sensors, and frequency bands (total n = 9728), every
single time series was significantly more skewed (p < .05) than surrogate Gaussian data.
All skews were positive, avoiding potential pitfalls of skew-based reorientation mentioned
in (Hyvärinen and Smith, 2013). As such, the parameterized oscillatory data meet the
assumptions of the GANGO method (Figure 2).

Figure 2: Following removal of aperiodic contributions, oscillatory power spectra were sta-
tistically skewed in all frequency bands, for each participant, session, and channel.
A: Distribution of oscillatory power values for one randomly-chosen participant.
B: Skewness values for theta and alpha oscillatory power, for all participants,
sessions, and channels.

3.2. The Causal Oscillatory Community Structure of Resting-State EEG

For theta-band causal oscillatory connectivity, Louvain modularity analysis revealed four
functional modules for both contemporaneous and time-lagged connectomes. These mod-
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ules were dominated by a large frontal network that was identical across lagged and un-
lagged connectomes. Both connectomes additionally showed a central module and right- and
left-lateralized parietal-occipital modules. (Figure 3). Applying this same analysis to the
MSC connectomes demonstrated a network partition with three modules: a large prefrontal
module and two lateralized central-parietal-occipital modules. The unlagged and lagged
connectomes were more similar than expected by chance (ARI = 0.77, p < .001), implying
that autocorrelation did not fundamentally confound our network estimations. Lagged and
unlagged causal connectomes were both more similar to MSC connectomes than expected
by chance (lagged ARI = 0.57, unlagged ARI = 0.64, both p < .001). Considering stability
over repeated decompositions, unlagged connectomes had a mean pairwise ARI of 0.99,
and lagged connectomes had a mean pairwise ARI of 0.88. MSC had an ARI of 0.70 over
repeated runs, significantly less stable than both lagged and unlagged causal connectomes
(both Z > 40, p < .001).

For alpha-band causal oscillatory connectivity, Louvain modularity analysis revealed six
functional modules for both contemporaneous and time-lagged connectomes. These mod-
ules showed central, right and left parietal-occipital, and right-central modules across both
lagged and unlagged connectomes. Lagged and unlagged connectomes showed slight differ-
ences in the location and lateralization of frontal modules (Figure 3). Applying this same
analysis to the MSC connectomes demonstrated a network partition with four functional
modules: a single bilateral frontal network, a single central network, and two lateralized
parietal-occipital networks. The unlagged and lagged connectomes were more similar than
expected by chance (ARI = 0.74, p < .001), implying that autocorrelation did not fun-
damentally confound our network estimations. Lagged and unlagged causal connectomes
were both more similar to MSC connectomes than expected by chance (lagged ARI = 0.31,
unlagged ARI = 0.28, both p < .001). Considering stability over repeated decompositions,
unlagged connectomes had a mean pairwise ARI of 0.82, and lagged connectomes had a
mean pairwise ARI of 0.998. MSC had an ARI of 0.97 over repeated runs, significantly
more stable than unlagged causal connectomes, but significantly less stable than lagged
causal connectomes (both |Z| > 35, p < .001).

Overall, our analysis of causal oscillatory connectivity returns connectomes with a mod-
ular community structure. Our causal connectomes are quantitatively similar to connec-
tomes based on classical methods (MSC). Results from stability analysis generally favored
causal connectomes over undirected connectomes. Relative to classical methods theta-band
oscillatory causal connectomes had improved stability for both lagged and unlagged connec-
tomes, while alpha-band oscillatory causal connectomes had decreased stability for unlagged
connectomes but increased stability for lagged connectomes.

3.3. tDCS Noninvasively Rewires Prefrontal Causal Connectivity

We examined effects of Treatment (stim/sham) and Session (post-treatment session 1, post-
treatment session 2) on EEG causal oscillatory connectivity effect sizes, while controlling
for pre-treatment causal connectivity estimates. Results are summarized in Table 1 and in
Figure 4. All causal connectomes (lagged/unlagged/theta/alpha) showed significant effects
of Treatment (Table 1).
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Figure 3: The causal oscillatory community structure of resting-state EEG. A: Unlagged
theta-band communities revealed by our causal connectivity framework. B: Time-
lagged theta-band communities revealed by our causal connectivity framework.
C: Theta-band communities revealed by MSC. D: Pairwise ARI values compar-
ing theta community structures for different network learning approaches. E:
Unlagged alpha-band communities revealed by our causal connectivity frame-
work. F: Time-lagged alpha-band communities revealed by our causal connec-
tivity framework. G: Alpha-band communities revealed by MSC. H: Pairwise
ARI values comparing alpha community structures for different network learning
approaches.

Unlagged Lagged

Theta-Incoming
F(1,39) = 4.71, p = .036* F(1,39) = 4.02, p = .052ˆ
t(14.1) = 2.17, p = .047* t(14.1) = 2.00, p = .063ˆ

Theta-Outgoing
n.s. F(1,39) = 4.73, p = .036*
n.s. t(17.6) = 2.18, p = .044*

Alpha-Incoming
F(1,39) = 6.61, p = .014* n.s.
t(17) = -2.57, p = .020* n.s.

Alpha-Outgoing
n.s. n.s.
n.s. n.s.

Table 1: Summary of statistical tests for Treatment effects on causal oscillatory connectiv-
ity. F-tests reflect main MMRM effects, while t-statistics reflect post hoc estimated
marginal means. Note that the signs of post hoc testing differ for theta and alpha,
reflecting Treatment-related increases in theta connectivity and decreases in alpha
connectivity. * = p < .05, ˆ = p < .10, n.s. = not significant (p > .10).
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For unlagged theta-band connectomes, Treatment effect included increased prefrontal
causal indegree weights from parietal/occipital sensors. For lagged theta connectomes, this
Treatment effect was present at a trend level, in addition to treatment-related increases in
prefrontal causal outdegree weights to parietal/occipital sensors. All increases were seen in
the Stim group compared to the Sham group, consistent with an effect of tDCS strength-
ening both incoming and outgoing prefrontal theta causal connections.

For unlagged alpha-band connectomes, Treatment effect included decreased prefrontal
causal indegree weights from parietal/occipital sensors for stim (compared to sham), con-
sistent with an effect of tDCS weakening incoming alpha connections. For lagged alpha
connectomes, this Treatment effect did not replicate (Figure 4).

Figure 4: tDCS treatment effects on causal oscillatory connectivity. A: Sensor clusters for
analyses, depicting prefrontal indegree. Prefrontal sensors (red) were used as
seed regions for all analyses. B: tDCS increased the average strength of incoming
theta-band positive causal connections from prefrontal sensors, both with and
without controlling for autocorrelation using a time lag. C: tDCS decreased the
average strength of incoming alpha connections, but not when data contained a
time lag that controlled for autocorrelation. D: Sensor clusters for analyses, de-
picting prefrontal outdegree. E: tDCS increased the average strength of outgoing
connections for theta data when using a time lag controlling for autocorrelation.
C: tDCS did not impact alpha connectomes when controlling for autocorrelation
using a time lag. * = p < .05, ˆ = p < .10, n.s. = not significant (p > .10).

We did not observe any significant Treatment effects for connections other than positive
edges. In a control analysis using MSC, a standard undirected measure of connectivity, we
did not observe any significant Treatment effects in any frequency band. As such, only our
causal analysis of tDCS effects on prefrontal causal oscillatory connectivity revealed that
noninvasive prefrontal brain stimulation upregulates the strength of theta-band oscillatory
connections from the stimulated area of PFC, while simultaneously downregulating the
strength of alpha-band causal oscillatory connectivity in the same area.
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4. Discussion

This appears to be the first framework that estimates causal connectivity in EEG follow-
ing removal of aperiodic contributions which can confound EEG oscillatory measurements
(Merkin et al., 2023; Donoghue et al., 2020a). The modular structure of resting-state causal
oscillatory connectivity was more stable than that of field-standard coherence (Nunez et al.,
1997), particularly when controlling for autocorrelation using time-lagged data. Brain stim-
ulation led to increased strength of incoming prefrontal theta connections, and to decreased
strength of outgoing alpha-band connections. When controlling for autocorrelation, we
noted stimulation-related increases in outgoing theta-band effect sizes, while controlling
for autocorrelation reduced alpha-band effects to non-significance. This suggests that non-
invasive brain stimulation can modulate these frequencies in a targeted manner. Future
work will tie these neurophysiological modulations to cognitive outcomes, informing the
development of personalized tDCS protocols for cognitive enhancement. Limitations to be
addressed by future work include validating our framework using simulations with a known
ground-truth network oscillatory connectivity pattern, incorporating individualized alpha
and theta frequency band definitions (Klimesch, 1999), estimating total causal effects which
include indirect and direct effects (Runge et al., 2019) rather than only the direct effects
presented here, and including more than one time lag to estimate long-memory neural
causal effects that cross multiple temporal lags. In summary, we demonstrate a new frame-
work measuring causal EEG oscillatory connectivity. The method and findings enhance our
understanding of the neurophysiological mechanisms underlying noninvasive brain stimula-
tion, providing valuable insights for the design and implementation of tDCS protocols in
therapeutic contexts.
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Causal discovery analysis used the causal-cmd program (https://github.com/bd2kccd/
causal-cmd) which calls Tetrad routines (https://github.com/cmu-phil/tetrad), and
non-Gaussian pairwise reorientation of contemporaneous edges used code made available
by A. Hyvärinen (https://www.cs.helsinki.fi/u/ahyvarin/code/pwcausal/). Future
versions of the NeuroFreq toolbox will incorporate code to automate these causal oscillatory
connectivity analyses.
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