
Multi-Predict: Few Shot Predictors For Efficient Neural
Architecture Search

Yash Akhauri1 Mohamed S. Abdelfattah1

1
Cornell University

Abstract Many hardware-aware neural architecture search (NAS) methods have been developed to

optimize the topology of neural networks (NN) with the joint objectives of higher accuracy

and lower latency. Recently, both accuracy and latency predictors have been used in NAS

with great success, achieving high sample efficiency and accurate modeling of hardware

(HW) device latency respectively. However, a new accuracy predictor needs to be trained for

every new NAS search space or NN task, and a new latency predictor needs to be additionally

trained for every new HW device. In this paper, we explore methods to enable multi-task,

multi-search-space, and multi-HW adaptation of accuracy and latency predictors to reduce

the cost of NAS. We introduce a novel search-space independent NN encoding based on

zero-cost proxies that achieves sample-efficient prediction on multiple tasks and NAS search

spaces, improving the end-to-end sample efficiency of latency and accuracy predictors by

over an order of magnitude in multiple scenarios. For example, our NN encoding enables

multi-search-space transfer of latency predictors from NASBench-201 to FBNet (and vice-

versa) in under 85 HW measurements, a 400× improvement in sample efficiency compared

to a recent meta-learning approach. Our method also improves the total sample efficiency of

accuracy predictors by over an order of magnitude. Finally, we demonstrate the effectiveness

of our method for multi-search-space and multi-task accuracy prediction on 28 NAS search

spaces and tasks.

1 Introduction

101 102 103 104

Total Number Of Hardware Latency Measurements
0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

-

Latency Prediction On NASBench-201 for Raspi4

Vector Description
ZCP+HWL (Ours)
HELP (Meta Learning)
TL ET (Ours)
BRP-NAS

101 102

Total Number Of Trained Model Samples

0.0

0.2

0.4

0.6

0.8

Sp
ea

rm
an

-

Accuracy Prediction On NASBench-201

Vector Description
ZCP+HWL (Ours)
BRP-NAS

Figure 1: Effective NN encodings can improve the mea-

surement & sample efficiency of predictors by over

two orders of magnitude.

Neural architecture search (NAS) has seen great

success in discovering neural network (NN) ar-

chitectures with high accuracy. However, NAS

methods are often costly, requiring several hun-

dreds of hours of compute. Recently, NAS meth-

ods have utilized surrogate models such as neu-

ral accuracy predictors to guide the search pro-

cess [11, 21, 22]. The primary bottleneck with

such methods is the training time needed to

obtain a sufficient number of NN/accuracy sam-

ples used to train a predictor. Hardware-aware

NAS additionally considers hardware (HW) la-

tency as a search objective to find NNs that

are both accurate and efficient [3, 6, 12]. In

this case, a latency predictor is often used to

estimate NN latency, thus incurring additional

training time and on-device measurement sam-

ples [5, 8]. Both accuracy and latency predic-

tors have demonstrated their effectiveness in

the context of sample-based NAS, motivating further investigation of their efficiency, training

method, and accuracy.

AutoML 2023 © 2023 the authors, released under CC BY 4.0

mailto:ya255@cornell.edu
mailto:mohamed@cornell.edu
https://creativecommons.org/licenses/by/4.0/

The key to efficient prediction-based NAS lies in minimizing the number of NN trained models

for accuracy predictors, and HW measurements for latency predictors. In that vein, HELP [8]

utilized metalearning to adapt a latency predictor to multiple devices.While this representative

approach has begun to create generalizable/transferable predictors, it requires a very large number

of NN accuracy or latency samples for pretraining transferable predictors. In this paper, we look

broadly at the problem of generalizable but sample-efficient accuracy, and latency prediction. We

make progress towards efficient multi-search-space, multi-task and multi-device deployment of

NNs on the ever growing catalogue of HW platforms and novel NAS spaces. From Figure 1, we

show that our methods improve the total sample efficiency of both latency and accuracy predictors

by more than an order of magnitude. The main contributions of this paper are:

• Few-Shot Accuracy And Latency Prediction Using Novel NN encodings: We study two

NN encodings (called ZCP and HWL) that enable accuracy and latency prediction in as few as 10

samples. Instead of representing NNs with a search-space dependent vector of its topology, ZCP

and HWL represent NNs with a search-space independent vector of metrics based on zero-cost

proxies or HW latency measurements respectively. Figure 2 shows an overview of our approach.

Neural Task 1
(e.g. NASBench-101

CIFAR-10)

Neural Task 2
(e.g. NASBench-201
ImageNet-16-120)

Neural Task 3
(e.g.

TransNASBench101
AutoEncoder)

Conventional Predictors Multi-Task Predictors With Our NN Encodings

Multi-Task
Predictor

Predictor 3

Predictor 1

Predictor 2

Figure 2: By representing NNs with a vector of their zero-cost

proxies (ZCP) or HW latency measurements (HWL), we can use a

single accuracy/latency predictor for multiple NAS search spaces.

In contrast, we’d need to train multiple predictors for conven-

tional vector (Vec) encodings.

• Multi-Device Latency Predic-
tion Using Transfer Learning: Our
study shows that using learnable HW

embeddings and a simple transfer

learning strategy can double the ef-

ficiency of multi-device latency pre-

diction compared to the latest meta-

learning approach [8].

• Multi-Search-Space Latency &
Accuracy Prediction: We demon-

strate transfer of HW latency predic-

tors from one NAS search space to

another in as few as 4 samples. Fur-

ther, we demonstrate the efficacy of

few-shot transfer of accuracy predic-

tors across over 95 domain (search space + task) transfer pairs.

2 Related Work

Prediction Based NAS: Accuracy predictors are used to efficiently identify promising candidates

from a NAS space as demonstrated by PNAS [11]. NPENAS [21] showed that accuracy predictors

can be integrated with evolutionary search algorithm to perform NAS. Further, NPNAS [22] utilized

an accuracy predictor to identify models with the top-K highest predicted accuracy, which were

fully trained for evaluation. To improve the effectiveness of predictor-based NAS, BRP-NAS [5]

introduced a predictor that learns a binary relation for accuracy prediction, integrating this with

sample-based NAS delivered state of the art NAS results. A recent paper [16] explores transferring

architectures from previously solved, related problems to treat NAS as a few-shot learning problem.

Given the high sample efficiency of predictor-based NAS, we explore the transferability and

generalizability of predictors for domain agnostic NAS with knowledge reuse.

Latency modeling in NAS: The accuracy of latency predictors for HW-aware NAS is prone to

errors, and proxy metrics like FLOPs or model size have been used as alternatives. Previous layer-

wise predictors [17] fail to account for the interactions between layers on actual HW. BRP-NAS [5]

introduced an end-to-end NAS latency predictor based on a GCN. HELP [8] and MAPLE [14] utilize

few-shot latency estimation methods to improve sample efficiency on their target HW, at the cost

of expensive pre-training on existing HW measurements. Our aim is to create sample-efficient

2

Latency MLP Predictor

Accuracy MLP Predictor

Latency

Accuracy

U
niversal H

W
E

m
bedding

N
N

 E
ncoding

G
enerator

Sam
ple E

fficient
A

daptation

Search Space A
gnostic

N
N

 E
ncoding

Adaptation Performance Depends On:
- Input Representation
- Device Embedding
- Training Method

Device Embedding
Improves Sample

Efficiency.

Meta/Transfer Learning Enables
Few Shot Adaptation To New
Tasks/Datasets/Search-Spaces

Our NN Encoding Enables
- Multi Search Space Prediction
- Multi Task Prediction
- Multi Dataset Prediction

Classification

...

C
lassifier

D
ecoder

Encoder

CPUFPGA
...

ASIC

Segmentation

Autoencoding

D
ecoder

Encoder

H
W

 E
m

bedding
G

enerator

Figure 3: Predictors are used for both accuracy and latency to achieve SoTA results on sample-based NAS.

In this work, we explore (a) New DNN encodings for prediction that enable multi-search-space NAS, (b)

Transfer-learning methods to adapt a particular predictor to multiple tasks, devices, data-sets.

multi-HW latency predictors that require much fewer latency measurements for both pre-training,

and on the target device.

Zero Cost Proxies: Zero Cost Proxies (ZCPs) [1] attempt to quantify the trainability and

expressivity of NN architectures without training them. Several zero cost proxies are inspired by

pruning at initialization research to generate scores for architectures [10, 13, 18, 19]. Several data-

independent zero cost proxies have also been proposed [2]. NAS-Bench-Suite-Zero [7] evaluates

13 different zero cost proxies across 28 tasks and makes all of the results available for use. Prior

work [1] has focused on using ZCPs as a weak predictor of accuracy within a NAS search. However,

we utilize ZCPs in a novel way to represent NNs at the input of a predictor, thus enabling the

transfer of predictors across domains more effectively.

3 Method
In this section, we describe our methodology of predicting the latency and accuracy of NN ar-

chitectures. Specifically, we focus on generalizing the task of prediction such that it is agnostic

to task, search-space and HW. Due to the domain agnostic encoding of NNs depicted in Figure

3, we can have one predictor for multiple NAS tasks, search spaces, and HW devices. We utilize

a first order transfer learning (TL) strategy to train and transfer predictors. Note that we train

separate predictors for latency and accuracy respectively. In doing so, we study (1) Learnable HW

Embedding Tables for multi-device latency prediction and (2) Different DNN encoding formats

(ZCP: Zero-Cost Proxies, HWL:HW Latencies) that improve predictor sample-efficiency and enable

multi-task and multi-search-space adaptation.

The task of prediction in NAS can be generally defined by 𝜏 = {X𝜏 ,Y𝜏 }, where X𝜏 ⊂ X is a

set of NN architectures and Y𝜏 ⊂ Y is the quantity to be predicted for X𝜏
, either accuracy Y𝜏

A or

latency Y𝜏
L. We train a four-layer MLP based regression model 𝑓 (𝑥, \) : X → R, parametrized by \

by minimizing the empirical mean-squared differences (or loss L) between the predicted values

𝑓 (X𝜏
;\) and the actual/measured values Y𝜏

as shown here: min\ L(𝑓 (X𝜏
;\),Y𝜏). Typically, a

different predictor needs to be trained for every different NAS search space, task, or HW device. In

the following, we describe how a single predictor that can generalize to all of the above.

1. Expanding the latency prediction problem to also take the HW device ℎ ∈ H as an input

𝑓 (𝑥, ℎ;\) : X ×H → R. This allows us to predict latency for multiple devices using a single

trained predictor. We primarily compare to HELP, who approached this problem with few-shot

metalearning [8]. We show that HELP performs poorly when the task distance is high between

3

different devices, and we describe our simple transfer learning (TL) approach which when

combined with new NN encodings and HW embeddings, performs better in many scenarios.

2. Investigating different input encodings for the NN (𝑥). Most prior work has simply taken a vector
encoding of the NN as input to the predictor. Instead, we experiment with novel NN encodings

that do not reflect the NN topology, but rather a vector of measurements or computations (R)
performed on the NN R(𝑥) : X → R𝑟

, where 𝑟 is the number of elements in the vector. We try

two encodings: a vector of zero-cost proxies (ZCP), and a vector of HW latency measurements

(HWL) on different devices. We will demonstrate that our new encodings improve prediction

accuracy. More importantly, R is independent from the NN topology, and can therefore work for

multiple search spaces, allowing us to train a single predictor for multiple NAS search spaces.

3.1 Hardware Embedding

R1 R2 R3

FA
dv FD GM

Device Set

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sp
ea

rm
an

-

FBNet
ET
Sample
Index

Figure 4: Learned HW Embedding Table improves

latency prediction on FBNet over 5 train-test device

sets. (R1–3: random subsets of FBNet, FAdv: FBNet-

Adversarial, FD: FBNet-Default, GM: Geomean)

For a latency predictor of the form 𝑓 (𝑥, ℎ;\) :

X × H → R, we need to find an appropriate

method of representing ℎ ∈ H. We discuss three

methods we explore for representing HW devices.

(1) Sample: HELP [8] obtains the latencies of a

set of fixed reference NN architectures to repre-

sent the HW device ℎ. For instance, 10 fixed NN

architectures are used to represent a hardware

device in HELP. For each device, these 10 NNs

are benchmarked on the device and their laten-

cies are concatenated into a vector, which is the

HW representation. Since HW devices may be

diverse and heterogeneous, architectures used to

generate this HW embedding may not be repre-

sentative of the true characteristics of the device,

and a larger set of NNs may be required to faith-

fully capture the device behavior. (2) Index: Instead of utilizing a set of latencies to represent the

HW device, we can simply represent devices by the binary form of their index. However, this

would mean that a new device would simply be represented by a binary embedding, which may

be unrelated to the actual characteristics of the HW. (3) Embedding Tables (ET): We initialize a

d-dimensional learnable embedding table to represent the set of training devices. Each embedding

lookup can be interpreted as using a one-hot vector 𝑒𝑖 to represent the 𝑖𝑡ℎ device. Thus, obtaining

the row vector corresponding to the 𝑖𝑡ℎ HW device can be presented as 𝐸ℎ = 𝑒𝑖𝐸, where 𝐸 ∈ R |H |×𝑑

is the embedding table. Figure 4 shows a preview of the results demonstrating that our proposed

Embedding Tables outperforms the “Index" baseline and “Sample" based embeddings on a number

of multi-HW latency prediction datasets.

3.2 NN Encoding

Conventional Vec (Vector) encoding of NN structure typically consists of an adjacency matrix

to describe connectivity and a list of operations [23]. However, Vec encoding (X𝜏
) for different

search spaces may be vastly different in dimensionality and semantics, making it impossible to
create transferable predictors across search spaces as shown in Figure 2. Instead, we propose to

use a vector of NN metrics as an encoding of a NN for training a predictor. Several metrics can

be generated for any NN, irrespective of task and search-space. For instance, the HW latency can

be measured for any NN in a reliable fashion. Further, we can also generate scores for NNs by

utilizing Zero-Cost Proxies [1]. These metrics can be concatenated to generate a continuous vector

encoding for NN architectures. We thus present two novel forms of neural architecture encodings:

4

• HW Latencies (HWL): Suppose we have 𝑙 devices available for measurement of latency

of arbitrary NN architectures. We introduce a function L(𝑥𝜏) : X → R𝑙
, which maps any NN

architecture to a real tensor of 𝑙 elements. Each of the elements of the tensor correspond to the

normalized latency of the architecture on the 𝑙𝑡ℎ device.

• Zero Cost Proxies (ZCP): Suppose we have 𝑧 zero cost proxies available for generating scores
of arbitrary NN architectures. We introduce a function Z(𝑥𝜏) : X → R𝑧

, which maps any NN

architecture to a real tensor of 𝑧 elements. Each of the elements of the tensor correspond to the

normalized score of the architecture on the 𝑧𝑡ℎ ZCP.

3.3 Few-Shot Adaptation

We describe our method of few-shot adaptation of a trained MLP predictor 𝑓 with the latency

measurements or accuracy samples collected from the target HW device or neural task respectively.

Hardware Adaptation: We wish to train on a set of HW devices denoted by 𝜏1. For prediction

on a novel HW device denoted by 𝜏2 = {ℎ𝜏2,X𝜏2,Y𝜏2}, we have |𝜏2 | sample measurements and

|𝜏2 | ≪ |𝜏1 |. For embedding tables, we initialize a new row in our table for a new HW device. The

values of this row are assigned to be the same as a device ℎ𝜏
1

such that the correlation between the

device ℎ𝜏
2

and ℎ𝜏
1

is maximized for a small set of sampled NN latencies {Ỹ𝜏1, Ỹ𝜏2} as shown in Eq.

1. Our method uses the same NNs X̃𝜏2
for embedding initialization as it does for fine-tuning.

𝐸 (ℎ𝜏2) = 𝐸 (argmax

ℎ∈H
𝜌 (Ỹ𝜏1, Ỹ𝜏2)) (1)

For index/sample HW embeddings, we either assign the next available index or collect latency

samples to generate the appropriate embedding for the HW device ℎ𝜏
2

. After initializing the

embedding function 𝐸, we perform simple first order fine-tuning of the NN as shown in Eq. 2,

where {X̃𝜏 , Ỹ𝜏 } refers to a training set.

min

\
L(𝑓 (X̃𝜏2, 𝐸 (ℎ𝜏2);\), Ỹ𝜏2) (2)

Search Space Adaptation When adapting a latency or accuracy prediction model from one

search space to another, it is likely that |𝑥𝜏1 | ≠ |𝑥𝜏2 |. This is depicted in Figure 2, every search

space has its own encoding. As a mapping does not exist between domains, we utilize the ZCP

Z and HWL L embeddings to represent NN architectures across multiple search spaces. Thus,

the model that we train and fine-tune is 𝑓 (R(𝑥);\) : R𝑟 → R. Here, R ⊆ {L(𝑥),Z(𝑥)}. The
functions L and Z are generated by executing NNs on reference devices or calculating a set of

zero cost proxies respectively. The generated latencies and scores are search-space independent

since |𝑅(𝑥𝜏1) | = |𝑅(𝑥𝜏2) |, allowing transfer from one neural search space to another using the same

predictor 𝑓 . Therefore a pre-trained predictor 𝑓 (R(X𝜏1);\) : R𝑟 → R can be fine-tuned on a target

task 𝜏2 = {X𝜏2,Y𝜏2} by minimizing empirical loss on a training set {X̃𝜏2, Ỹ𝜏2}:

min

\
L(𝑓 (R(X̃𝜏2);\), Ỹ𝜏2) (3)

4 Hardware Latency Predictors

In this section, we look at the task of HW latency prediction. We verify the efficacy of our training

and fine-tuning method for few-shot learning of latency predictors on novel HW devices as well

as empirically assess the effectiveness of different methods of encoding these devices. Finally, we

utilize our proposed NN encodings (ZCP and HWL) to transfer knowledge from the FBNet [24]

search space to the NASBench-201 search space and vice versa for latency prediction. Previous

work has defined sample efficiency as the amount of new data required when transferring a pre-

trained predictor to a different hardware device [8, 14]. Although we acknowledge that optimizing

for the number of new samples required for transfer is crucial, we also believe that the number

5

NASBench-201 Default Task

Method Samples GPU CPU Pixel2 Raspi4 ASIC FPGA Mean

FLOPs - 0.95 0.83 0.77 0.85 0.44 0.9 0.79

BRP-NAS 900 0.81 0.8 0.67 0.85 0.81 0.8 0.79

BRP-NAS (+ES) 3200 0.82 0.81 0.69 0.85 0.83 0.83 0.81

HELP 20
∗

0.98 0.99 0.8 0.89 0.94 0.99 0.93

TL Vec Sample 20
∗

0.87 0.92 0.94 0.87 0.82 0.69 0.85

TL Vec Index 10 0.94 0.93 0.87 0.77 0.73 0.9 0.86

TL Vec ET 10 0.99 0.95 0.88 0.9 0.9 0.99 0.94

TL ZCPVec ET 10 0.97 0.96 0.86 0.91 0.95 0.97 0.94
TL HWLVec ET 10 0.95 0.97 0.81 0.88 0.93 0.95 0.91

*20 samples are required, with 10 dedicated to creating the "sample" HW embedding.

Table 1: Spearman-𝜌 of TL and existing methods on NASBench201

for Latency Prediction. (ES: Extra Samples)

NB201-Adversarial Task

Method Samples Mean

HELP 20 0.36

TL Vec ET 20 0.65

TL ZCPVec ET 20 0.78
TL HWLVec ET 20 0.73

FBNet-Adversarial Task

Method Samples Mean

HELP 20 0.37

TL Vec ET 20 0.39

TL ZCPVec ET 20 0.45
TL HWLVec ET 20 0.41

Table 2: Spearman-𝜌 of ad-

versarial device sets.

FBNet Default Task

Method Samples FPGA Raspi ASIC Mean

HELP 20 0.89 0.94 0.89 0.91

TL Sample 20 0.74 0.79 0.81 0.78

TL Index 10 0.92 0.86 0.87 0.88

TL ET 10 0.96 0.95 0.98 0.96

Table 3: Spearman-𝜌 of TL and existing methods on

FBNet for Latency Prediction.

0 10 20 30 40 50
Number Of Hardware Latency Measurements On New Device

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ea

rm
an

-

Latency Estimation On NASBench-201

TL ZCPVec ET
TL ET
HELP

Figure 5: ZCPs with Vec encoding improves latency

prediction on NB201-Adversarial Task.

of pretraining samples should be taken into account. It is important to note that more efficient

predictors will require fewer pretraining samples.

Few-Shot Latency Predictor Transfer: The task of learning a reliable latency predictor for

a neural architecture search space on a specific HW requires a large number of samples to avoid

overfitting [8]. This has to be repeated for every HW and search space. HELP [8] looks at the

task of using meta-learning to transfer a single latency predictor to multiple target devices and

architectures from an unseen space. It utilizes 900/4000 latency samples for a set of training devices

on the NASBench-201/FBNet spaces respectively to train a baseline predictor. The predictor is

then tested on the remaining 14725/1000 latency points for the hardware on NASBench-201/FBNet

spaces respectively. Then, this predictor is transferred to predict latency on a target (test) HW with

only 20 samples. It performs extremely well on the reported train-test device sets (referred to as

Default Tasks) on the NASBench-201 and FBNet NAS spaces. We find that one of the key reasons

for this is the low task distance (high correlation) between the training and test device sets. Task

distance refers to the latency or accuracy correlation between the training and test device/NAS

space respectively. We conduct a deeper investigation of task distance and its effect on latency

predictors in the Appendix. Further, we introduce adversarial device sets, named ‘NB201/FBNet-

Adversarial Task’ for the NASBench-201 and FBNet NAS space, which exhibits low train-test device

correlation.

From Table 1 and Table 3, we can see that our method is able to perform on par or better than

HELP [8] with half as many samples—this is on the "default" hardware set defined in the HELP

paper [8]. One of the reasons why the sample efficiency is doubled is due to the embedding table

that is utilized to represent the HW which improves Spearman-𝜌 from 0.85 to 0.94 in Table 1.

6

101 102 103 104

Total Number Of Hardware Latency Measurements
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Sp
ea

rm
an

-

Latency Prediction On NASBench-201 FPGA

Vanilla (Vec)
ZCP
HWL
HWLVec
TL ET
HELP [8]
BRP-NAS [5]

Figure 6: Training from scratch with ZCP/HWL en-

codings achieves a similar Spearman-𝜌 to HELP in

under 80 total measurements, a 100× improvement.

FBNet Default Task

Pre-Train Samples HELP TL ET

4000 0.91 0.96

1000 0.85 0.91

NASBench201 Default Task

Pre-Train Samples HELP TL ET

900 0.93 0.94

50 0.91 0.91

Table 4: Reducing number of samples from pre-

training device set can negatively impact prediction

spearman-𝜌 .

Figure 4 shows consistent benefit of using a learned device embedding on the FBNet space on the

adversarial task. Table 2 compares our method to HELP on a new Adversarial Task. Since the

default hardware set had a high input output correlation, we define an adversarial task as one

where the test devices have low spearman-𝜌 correlation between train and test devices. We use

20 samples for tests here to emphasize on the importance of the ZCP and HWL representation in

improving spearman-𝜌 . For this task, the task distance between the pretraining set and the test

set is much higher than the default set. In this more challenging task, we observe a much higher

improvement in Spearman-𝜌 using TL ZCPVec compared to HELP for both NASBench-201 and

FBNet search spaces, demonstrating the superiority of our approach on a more challenging task.

Figure 5 plots more details for the NASBench-201 Adversarial Task, showing that HELP requires a

much higher number of samples to catch up to our TL methods, especially when ZCP is used.

Few-Shot Latency Predictor Pre-training: While Transfer Learning and HELP [8] are effective

ways of transferring latency predictors while minimizing the number of samples required on the

new device, they need to first train a predictor on a large set of training devices. As discussed in the

previous section, the effectiveness of such methods highly depend upon the task distance (train-test

device correlation). Further, to train the predictor, 900 and 4000 latency samples are required for

18 devices on NASBench-201 and FBNet respectively. Table 4 shows that the prediction accuracy

decreases when the number of pretrain samples are decreased, however, our TL ET method is

impacted less than the HELP baseline. In general, the number of total HW latency measurements of

these methods are very high, as several training devices are required to minimize the task distance

when adding a new hardware device.

The TL ZCPVec ET method depicted in Figure 5 and Table 1 inputs the Vec (vector) description

of an architecture along with its ZCP description. This simple change significantly improves the

accuracy of the latency predictor without increasing the number of HW latency measurements

required. We go one step further and look at training latency predictors from scratch using the

ZCP and HWL encodings. In Figure 6, we train latency predictors from scratch with the Vec, ZCP,

HWL and HWLVec encodings. We find that the total number (both pretraining and target device)

of HW latency measurements required for latency predictors with the ZCP and HWL encoding is

significantly lower compared to methods like BRP-NAS [5], HELP [8], and our TL variants. Thus,

we find that ZCP and HWL are not only a search space agnostic encoding of NNs, but also ones

that can do effective few-shot latency prediction from scratch.

Multi-Search-Space Latency Prediction: A search-space agnostic encoding of NNs akin to

the one depicted in Figure 2, can not only enable few-shot training of predictors from scratch,

but also enable transfer of a latency predictor from one neural search space to another. Since the

vector (Vec) encoding of candidate architectures from the FBNet space is different from that of

the NASBench-201 space, it is not possible to transfer knowledge from one predictor to another.

7

0 2 4 6 8 10 12 14
Number Of HW Latency Measurements On Target Search Space

0.4

0.6

0.8

1.0

Sp
ea

rm
an

-

Mean Spearman- Over 20 Devices For NASBench201

HWL Transfer (FBNet NB201)
HWL NB201 Train From Scratch
Vec Train From Scratch

0 2 4 6 8 10 12 14
Number Of HW Latency Measurements On Target Search Space

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

-

Mean Spearman- Over 20 Devices For FBNet

HWL Transfer (NB201 FBNet)
HWL FBNet Train From Scratch
Vec Train From Scratch

Figure 7: Using the HWL encoding to transfer a predictor from a source search space to a target search space

demonstrates superior performance than training from scratch.

However, the HWL encoding is independent from the NN search-space. We thus utilize the HWL

encoding to train on 15% of the architectures on one space, and then transfer to the other space

with very few samples (X-axis of Figure 7). Note that this transfer across search spaces is different

from the transfer across hardware devices presented in HELP [8] and in our previous sections.

Figure 7 reinforces our results from the previous section, that training from scratch with the HWL

requires far fewer samples than Vec to train an accurate predictor. Furthermore, when transferring

a trained predictor from one search space to another, HWL proves to be advantageous. We believe

that this is first time that knowledge from one NAS search space was utilized for a different NAS

search space for latency prediction—our results look promising. In the Appendix, we demonstrate

predictor transfer for 21 devices, from FBNet to NASBench-201 and vice versa.

5 Accuracy Predictors

101 102 103

Total Number Of Trained Model Samples
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

-

NASBench-201 Validation Accuracy Prediction

Vanilla (Vec)
ZCP
ZCP+Vec
HWL
BRP-NAS

Figure 8: ZCP is more measurement efficient than other

encodings for accuracy prediction.

In this section, we study few-shot accu-

racy prediction. First, we study the im-

pact of our proposed NN encodings (ZCP

and HWL) on training accuracy predic-

tors from scratch. We then investigate the

transfer of accuracy predictors across mul-

tiple search-spaces and multiple tasks in

TransNASBench-101, and across both the

Micro and Macro search spaces that are

available in the benchmark [4]. Finally,

we transfer an accuracy predictor from

NASBench-201 to NASBench-301 [26] and

vice versa for further empirical results.

Few Shot Accuracy Prediction from
Scratch: We train a predictor from scratch

on the NASBench-201 space to predict the validation accuracy on the CIFAR-10 data-set. Figure 8

depicts the trained model sample efficiency of the ZCP encoding with respect to other NN encodings.

We find that ZCP is able to approximately match the Spearman-𝜌 of BRP-NAS with less than half

the samples. To understand why ZCP works better than the simple Vec encoding, we study the

effect of incrementally removing zero cost proxies from the encoding in the Appendix. We show

that prediction accuracy is resilient to the removal of multiple ZCPs from our NN encoding.

Multi Search-Space and Task Accuracy Prediction: We train individual predictors from scratch

on every task from TransNASBench-101 Micro search space using 15% of the architectures, and

transfer it to every other task on the TransNASBench-101 Micro and Macro search space with

only 10 samples. This transfer task uses the ZCP NN encoding, and is compared with a train from

8

Figure 9: We train accuracy predictors on the ‘Train Space’ and transfer it to the ‘Transfer Space’ with

the ZCP NN encoding (ZCP Transfer), and compare it with Vec train-from-scratch. (Left) 1 indicates an

improvement in accuracy prediction. (Right) Numbers represent the improvement in accuracy prediction.

Improvement is the difference in spearman-𝜌 for the predictors.

Figure 10: We compare the sample efficiency of Vec and ZCP in neural architecture search.

scratch strategy with the Vec NN encoding on every TransNASBench-101 Micro and Macro space.

From Figure 9 (left), we see a benefit of multi-search-space and multi-task transfer learning in over

85% of the cases. We also do the same for three data-sets of NASBench201 and two data-sets of

NASBench301, and find a consistent improvement in Spearman-𝜌 for ZCP with transfer learning

in Figure 9 (right). We have demonstrated effective transfer of accuracy predictors across tasks and

search-spaces, utilizing previously learned knowledge to drastically reduce the number of samples

on the new task or search space while considerably outperforming conventional train-from-scratch

predictors.

NAS Search Effectiveness: To assess the efficacy of accuracy predictors utilizing ZCP input

representation, we develop a straightforward search algorithm akin to [5]. For the NASBench-101

and NASBench-201 search spaces, we generate ZCP representations for all 423k and 15k neural

network architectures, respectively. At each step, we sample 10 neural network architectures

from the search space and train the accuracy predictor using these points. Subsequently, the

accuracy predictor is employed to predict the accuracy of every neural network in the search

space, and the top 10 points are selected as new samples. Accuracies of previously sampled neural

network architectures are excluded when sampling new points. From Figure 10, we see that on the

NASBench-101 search space, ZCP finds a near-optimal architecture in 40 samples, whereas Vec

representation requires over 100 samples. A similar improvement in sample efficiency is observed

for NASBench-201.

9

6 Discussion and Conclusion

In this paper, we introduced Multi-Predict, a first step towards search-space, task and device

agnostic predictors for neural architecture search.

We studied two NN encodings (ZCP and HWL) that can enable few-shot transfer of knowledge
from one search-space to another for the first time. We performed extensive experiments on many

NAS search spaces, tasks, and devices that consistently show significant improvements in sample

efficiency compared to training a conventional accuracy/latency predictor from scratch. We hope

that our work can be a first step in developing NAS methods for much larger and more open-ended

search spaces. Furthermore, such NN encodings enable NAS predictors that can continuously learn

from prior NAS runs, even on different search spaces or tasks. While our initial results seem very

promising, we believe that a more rigorous and extensive evaluation of these new NN encodings is

warranted, for example, our investigation in the Appendix has already identified a failure scenario,

when our ZCP NN encoding loses the most highly-correlated proxies. Developing more robust

search-space independent NN encodings, and evaluating their encoding ability in a principled way

is therefore a key challenge moving forward to enable our vision of extending NAS beyond a single

search space.

Our paper has also identified methods to more accurately train HW latency predictors for

multiple devices, including learnable HW embeddings that outperform previous metalearning

approaches [8]. We made a key observation, that task distance or device latency correlation in

this case, plays a large role in enabling such multi-device predictors. Further, we showed that our

first-order transfer learning method with our HW embedding performs better than prior work in

adversarial scenarios when the task distance is high.

The objective of our paper was to enable re-use of knowledge across existing HW latency

and accuracy samples for a generalizable, few-shot approach to prediction-based NAS. We obtain

over an order of magnitude improvement in the sample and measurement efficiency of latency

and accuracy prediction. We also demonstrated multi-search-space and multi-task transfer of

accuracy predictors over 28 NAS search spaces and tasks. Further, we enabled multi-search-space

adaptation of HW latency predictors in under 5 samples. In the future, we intend to conduct deeper

investigations of search-space agnostic encodings for NN and HW, and new training techniques to

improve the sample efficiency and generalizability of predictors for NAS.

7 Broader Impact Statement

The pursuit of better representations for neural architecture search (NAS) can yield more efficient

and high-performing neural network designs while also reducing the carbon footprint. Our research

emphasizes the effectiveness of two computationally efficient methodologies for representing neural

architectures, which represents a significant step towards achieving sample-efficient NAS. The

HWL representation requires dedicated hardware infrastructure, but its sample efficiency through

hardware inference would greatly reduce the number of architectures that require training. We

are optimistic that this and other efforts to efficiently represent neural architectures can have a

positive environmental impact by decreasing the cost of NAS.

10

References

[1] Abdelfattah, M. S., Mehrotra, A., Dudziak, Ł., and Lane, N. D. (2021). Zero-cost proxies for

lightweight nas. arXiv preprint arXiv:2101.08134.

[2] Akhauri, Y., Munoz, J. P., Jain, N., and Iyer, R. (2022). Eznas: Evolving zero-cost proxies for

neural architecture scoring. In Advances in Neural Information Processing Systems.

[3] Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu, Y., Jia, Y., et al.

(2019). Chamnet: Towards efficient network design through platform-aware model adaptation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11398–11407.

[4] Duan, Y., Chen, X., Xu, H., Chen, Z., Liang, X., Zhang, T., and Li, Z. (2021). Transnas-bench-

101: Improving transferability and generalizability of cross-task neural architecture search.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5251–5260.

[5] Dudziak, L., Chau, T., Abdelfattah, M., Lee, R., Kim, H., and Lane, N. (2020). Brp-nas: Prediction-

based nas using gcns. volume 33, pages 10480–10490.

[6] Fu, C., Chen, H., Yang, Z., Koushanfar, F., Tian, Y., and Zhao, J. (2020). Enhancing model

parallelism in neural architecture search for multidevice system. IEEE Micro, 40(5):46–55.

[7] Krishnakumar, A., White, C., Zela, A., Tu, R., Safari, M., and Hutter, F. (2022). Nas-bench-

suite-zero: Accelerating research on zero cost proxies. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track.

[8] Lee, H., Lee, S., Chong, S., and Hwang, S. J. (2021). Help: Hardware-adaptive efficient latency

prediction for nas via meta-learning. In 35th Conference on Neural Information Processing Systems
(NeurIPS) 2021. Conference on Neural Information Processing Systems (NeurIPS).

[9] Li, C., Yu, Z., Fu, Y., Zhang, Y., Zhao, Y., You, H., Yu, Q., Wang, Y., Hao, C., and Lin, Y. (2021).

{HW}-{nas}-bench: Hardware-aware neural architecture search benchmark. In International
Conference on Learning Representations.

[10] Lin, M., Wang, P., Sun, Z., Chen, H., Sun, X., Qian, Q., Li, H., and Jin, R. (2021). Zen-nas: A

zero-shot nas for high-performance image recognition. In 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 337–346. IEEE.

[11] Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J.,

and Murphy, K. (2018). Progressive neural architecture search. In Proceedings of the European
conference on computer vision (ECCV), pages 19–34.

[12] Lu, Z., Deb, K., Goodman, E., Banzhaf, W., and Boddeti, V. N. (2020). Nsganetv2: Evolutionary

multi-objective surrogate-assisted neural architecture search. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pages 35–51.

[13] Mellor, J., Turner, J., Storkey, A., and Crowley, E. J. (2021). Neural architecture search without

training. In International Conference on Machine Learning, pages 7588–7598. PMLR.

[14] Nair, S., Abbasi, S., Wong, A., and Shafiee, M. J. (2022). Maple-edge: A runtime latency predictor

for edge devices. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 3659–3667. IEEE.

11

[15] Ning, X., Tang, C., Li, W., Zhou, Z., Liang, S., Yang, H., andWang, Y. (2021). Evaluating efficient

performance estimators of neural architectures. Advances in Neural Information Processing
Systems, 34.

[16] Shala, G., Elsken, T., Hutter, F., and Grabocka, J. (2022). Transfer NAS with meta-learned

bayesian surrogates. In Sixth Workshop on Meta-Learning at the Conference on Neural Information
Processing Systems.

[17] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V. (2019).

Mnasnet: Platform-aware neural architecture search for mobile. pages 2820–2828.

[18] Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. (2020). Pruning neural networks without

any data by iteratively conserving synaptic flow. Advances in neural information processing
systems, 33:6377–6389.

[19] Turner, J., Crowley, E. J., O’Boyle, M., Storkey, A., and Gray, G. (2020). Blockswap: Fisher-

guided block substitution for network compression on a budget. In International Conference on
Learning Representations.

[20] Wang, C., Zhang, G., and Grosse, R. (2020). Picking winning tickets before training by

preserving gradient flow. In International Conference on Learning Representations.

[21] Wei, C., Niu, C., Tang, Y., Wang, Y., Hu, H., and Liang, J. (2022). Npenas: Neural predictor

guided evolution for neural architecture search. IEEE.

[22] Wen, W., Liu, H., Chen, Y., Li, H., Bender, G., and Kindermans, P.-J. (2020). Neural predictor for

neural architecture search. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIX, pages 660–676. Springer.

[23] White, C., Neiswanger, W., Nolen, S., and Savani, Y. (2020). A study on encodings for neural

architecture search. In Advances in Neural Information Processing Systems.

[24] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer, K.

(2019). Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture

search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10734–10742.

[25] Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F. (2019). Nas-bench-

101: Towards reproducible neural architecture search. In International Conference on Machine
Learning, pages 7105–7114. PMLR.

[26] Zela, A., Siems, J., Zimmer, L., Lukasik, J., Keuper, M., and Hutter, F. (2020). Surrogate nas

benchmarks: Going beyond the limited search spaces of tabular nas benchmarks.

12

8 Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We discuss the importance of input-

output correlation for predictor effectiveness and also introduce adversarial tasks to effec-

tively demonstrate the difficulty of hardware latency prediction.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] We will also release the code upon publication.

(b) Did you include the raw results of running the given instructions on the given code and

data? [No] We will release the code with instructions upon publication.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes] We

have included all information to generate our results in the submission code.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces,

fixed hyperparameter settings, and how they were chosen)? [Yes] We have included this

information in the appendix.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] We adapt the BRP-NAS and HELP code to standardize

our experiments.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We study adversarial task distance and input-output correlation of representations.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]

(i) Did you compare performance over time? [N/A]

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes]

13

https://automl.cc/ethics-accessibility/

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We use

NASBench-301 for one of the accuracy transfer experiments.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [No]

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a url? [No]

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

14

A Supplementary Materials for Multi-Predict: Few Shot Predictors For Efficient Neural
Architecture Search.

A.1 Neural Architecture Search Spaces

In this paper, we utilize several different neural architecture design spaces. NASBench-101 and

NASBench-201 are cell based search spaces, consisting of 423,624 and 15,625 architectures re-

spectively. NASBench-101 is trained on CIFAR-10, and NASBench-201 is trained on CIFAR-10,

CIFAR-100 and ImageNet16-120. NASBench-301 is a surrogate NAS benchmark with 10
18
total

architectures. TransNAS-Bench-101 is a NAS benchmark with a micro (cell based) search space

with 4096 architectures, and a macro search space with 3256 architectures. Each of these networks

are trained on seven tasks from the Taskonomy data-set. These search spaces are unified within

the NASLib framework. This space has further been extended by NAS-Bench-Suite-Zero, adding

two data-sets from NAS-Bench-360, SVHN and four data-sets from Taskonomy. FBNet constructs a

layer-wise search space which is more hardware-friendly than NAS-Bench-201, with 10
21
unique

architectures.

Figure 11: Sample efficiency of Transfer Learning

(FSP) with respect to HELP on the FBNet search

space for the FBNet-Adversarial Task.

Name Type

fisher [19] Pruning-at-init

flops [15] Baseline

grad-norm [1] Pruning-at-init

grasp [20] Pruning-at-init

l2-norm [1] Baseline

jacov [13] Jacobian

nwot [13] Jacobian

params [15] Baseline

plain [1] Baseline

snip Pruning-at-init

synflow [18] Pruning-at-init

zen-score [10] Piece. Lin.

Table 6: List of ZC proxies in NAS-Bench-Suite-

Zero [7]. These are used in our ZCP description.

A.2 Hardware Latency Benchmarks

One of the key challenges of hardware aware neural architecture search is the collection of reliable

hardware resource metrics for neural networks on the target search space. Several methods utilize

simple metrics such as FLOPs as a metric for resource aware NAS, but it has been shown that design

spaces with comparable FLOPs can have vastly different behavior on hardware [9]. HW-NAS-Bench

introduces a public hardware latency data-set of two SoTA NAS search spaces (NAS-Bench-201

and FBNet). HW-NAS-Bench provides the measured/estimated hardware cost on six devices for all

Table 5: NAS Search Spaces and their respective metrics utilized in our paper.

Search Space HW Latency (HWL) ZC Proxies (ZCP) Num Architectures

NASBench101 [25] ✗ ✓ 10000

NASBench201 ✓ ✓ 15625

NASBench301 [26] ✗ ✓ 11221

TransNASBench101 Micro [4] ✗ ✓ 3256

TransNASBench101 Macro [4] ✗ ✓ 4096

Additional (NASBenchSuiteZero) [7] ✗ ✓ 600

FBNet [24] ✓ ✗ 5000

15

Device Type NASBench-201 FBNet

HELP & HW-NAS-Bench [8, 9]

1080ti_1 GPU ✓ ✓
2080ti_1 GPU ✓ ✓
1080ti_32 GPU ✓ ✓
2080ti_32 GPU ✓ ✓
1080ti_256 GPU ✓ ✓
2080ti_256 GPU ✓ ✓
titan_rtx_1 GPU ✓ ✓
titanx_1 GPU ✓ ✓
titanxp_1 GPU ✓ ✓
titan_rtx_32 GPU ✓ ✓
titanx_32 GPU ✓ ✓
titanxp_32 GPU ✓ ✓
titan_rtx_256 GPU ✓ ✓
titanx_256 GPU ✓ ✓
titanxp_256 GPU ✓ ✓

gold_6240 CPU ✓ ✓
silver_4114 CPU ✓ ✓
silver_4210r CPU ✓ ✓
gold_6226 CPU ✓ ✓

samsung_a50 Mobile ✓ ✓
pixel3 Mobile ✓ ✓
samsung_s7 Mobile ✓ ✓
essential_ph_1 Mobile ✓ ✓
pixel2 Mobile ✓ ✓

fpga FPGA ✓ ✓
raspi4 RasPi ✓ ✓
eyeriss ASIC ✓ ✓

EAGLE[5]

core_i7_7820x_fp32 Desktop CPU ✓ ✗

snapdragon_675_kryo_460_int8 Mobile CPU ✓ ✗
snapdragon_855_kryo_485_int8 Mobile CPU ✓ ✗
snapdragon_450_cortex_a53_int8 Mobile CPU ✓ ✗

edge_tpu_int8 Embedded TPU ✓ ✗

gtx_1080ti_fp32 Desktop GPU ✓ ✗

jetson_nano_fp16 Embedded GPU ✓ ✗
jetson_nano_fp32 Embedded GPU ✓ ✗

snapdragon_855_adreno_640_int8 Mobile GPU ✓ ✗
snapdragon_450_adreno_506_int8 Mobile GPU ✓ ✗
snapdragon_675_adreno_612_int8 Mobile GPU ✓ ✗

snapdragon_675_hexagon_685_int8 Mobile DSP ✓ ✗
snapdragon_855_hexagon_690_int8 Mobile DSP ✓ ✗

Table 7: Device List and their availability for

NASBench-201 and FBNet

Name Type

NASBENCH101 CIFAR10 NB1_CF10

NASBENCH201 CIFAR10 NB2_CF10

NASBENCH201 CIFAR100 NB2_CF100

NASBENCH201 IMAGENET16-120 NB2_IM16

NASBENCH201 NINAPRO NB2_NP

NASBENCH201 SVHN NB2_SVHN

NASBENCH201 SCIFAR100 NB2_SC100

NASBENCH301 CIFAR10 NB3_CF10

NASBENCH301 NINAPRO NB3_NP

NASBENCH301 SVHN NB3_SVHN

NASBENCH301 SCIFAR100 NB3_SC100

TRANSBENCH101 MACRO CLASS SCENE ma_CS

TRANSBENCH101 MACRO CLASS OBJECT ma_CO

TRANSBENCH101 MACRO AUTOENCODER ma_AE

TRANSBENCH101 MACRO NORMAL ma_N

TRANSBENCH101 MACRO JIGSAW ma_J

TRANSBENCH101 MACRO ROOM LAYOUT ma_RL

TRANSBENCH101 MACRO SEGMENTSEMANTIC ma_SS

TRANSBENCH101 MICRO CLASS SCENE mi_CS

TRANSBENCH101 MICRO CLASS OBJECT mi_CO

TRANSBENCH101 MICRO AUTOENCODER mi_AE

TRANSBENCH101 MICRO NORMAL mi_N

TRANSBENCH101 MICRO JIGSAW mi_J

TRANSBENCH101 MICRO ROOM LAYOUT mi_RL

TRANSBENCH101 MICRO SEGMENTSEMANTIC mi_SS

TRANSBENCH101 MICRO NINAPRO mi_NP

TRANSBENCH101 MICRO SVHN mi_SV

TRANSBENCH101 MICRO SCIFAR100 mi_SC

Table 8: Short-hand names for NAS Search Spaces used

in the correlation diagrams.

46875 architectures on NAS-Bench-201 across CIFAR-10, CIFAR-100 and ImageNet16-120. Further,

the measured/estimated hardware-cost on these devices is also provided for all 10
21
architectures

in the FBNet search space. HELP [8] considers a hardware latency data-set of 7 representative

platforms on the NAS-Bench-201, FBNet and MobileNetV3 search spaces. BRP-NAS [5] further

provides LatBench/Eagle, a latency data-set for NAS-Bench-201 on six devices.

In Table 5, we summarize the search spaces we used in our paper. Further, in Table 7, we detail

the hardware platform we used in our paper for analysis, as well as which search spaces their

latency is available on.

A.3 Zero Cost Proxies

We utilize the zero cost proxies listed in Table 6. The correlations between different Zero Cost

Proxies for the NASBench-201 CIFAR-10 search space are provided in Figure 13 (a).

A.4 Hardware Devices And Correlations

We present the correlation between hardware device latencies on the NASBench-201 search space

with respect to ZC Proxies in Figure 13 (b). Further, in Figure 14, we present device correlations in

three categories. 1 represents the device correlation is greater than 0.7, 0.5 indicates that the device

correlation is greater than 0.5, but lesser than 0.7, finally, 0 indicates that the device correlation

is less than 0.5. We find that most devices have a high correlation alternative. This indicates that

16

our HWL encoding can be an effective tool to map to arbitrary hardware platforms with high

confidence.

A.5 Importance of train-test device correlation
Meta-Learning performs extremely well when the task distance is low. One of the reasons for the

success of HELP [8] in building accurate latency predictors is the low task distance. A low task

distance can be established by measuring the Spearman-𝜌 between the training and test devices.

We take the default FBNet and NASBench-201 device sets reported by HELP and study their task

distance. Table 11 indicates that in most cases, simply choosing a highly correlated device would

perform better than utilizing transfer learning. However, it is important to note that establishing

correlation between devices can be a tricky task, and a higher variance may be observed with

different architecture samples. From Table 12, we find that if we remove devices with high train-test

correlation from the training set, the performance of transfer learning falls extremely fast. Thus,

while HELP and Transfer Learning are sample efficient methods of building hardware latency

predictors, there exists a trade-off between training device correlation and sample efficiency. The

higher the task distance, the more samples are likely to be needed to build a robust latency predictor.

A.6 True Sample Efficiency Of HELP and BRP-NAS
In Appendix A.5, we discuss that Table 11 demonstrates a Spearman rank correlation between 0.83

and 0.97 for the training devices of the FPGA device. This indicates that scaling the total number

of hardware measurements is not an efficient method for evaluating sample efficiency on the

default device set. To augment Figure 6, we create an adversarial device set with train-test device

correlations ranging from 0.5 to 0.7 for HELP. From Figure 16, it is evident that ZCP significantly

enhances the total number of hardware latency measurements. It is worth mentioning that our

HWL and HWLVec perform exceptionally well due to high train-test device correlations, akin to

those observed for HELP in Figure 6.

A.7 Multi-Search-Space Latency Predictor Transfer
In Figure 20 and 21, we present the per-device result of transferring a latency predictor from FBNet

to NASBench201 and NASBench201 to FBNet respectively. In almost all cases, there is a benefit to

HWL Transfer in the extremely low sample regime.

Figure 12: Correlation between zero cost proxies

utilized in our ZCP encoding for the NASBench-201

CIFAR-10 search space.

Figure 13: Correlation between Zero Cost Proxies

and device latencies.

17

Figure 14: Correlation between hardware device latencies on the NASBench-201 search space. 1

represents the device correlation is greater than 0.7, 0.5 indicates that the device correlation

is greater than 0.5, but lesser than 0.7, finally, 0 indicates that the device correlation is less

than 0.5. We find that most devices have a corresponding highly correlated device.

FBNet Default Train-Test Device Correlations

Test Device

Train Device eyeriss fpga raspi4

1080ti_1 0.25 0.23 0.26

1080ti_32 0.53 0.42 0.52

silver_4114 0.62 0.67 0.64

silver_4210r 0.63 0.68 0.65

essential_ph_1 0.68 0.7 0.66

samsung_s7 0.69 0.71 0.68

1080ti_64 0.76 0.61 0.72

samsung_a50 0.86 0.86 0.84

pixel3 0.98 0.91 0.96

𝜌 Of Closest Train Device 0.98 0.91 0.96
HELP Predictor 𝜌 0.94 0.89 0.90

Table 9: The default task training device set of

FBNet has devices whose correlation is higher

than predictor 𝜌 .

NB201 Default Train-Test Device Correlations

Test Device

Train Device eyeriss fpga raspi4

1080ti_1 0.42 0.83 0.65

1080ti_32 0.43 0.84 0.67

samsung_s7 0.52 0.89 0.76

essential_ph_1 0.62 0.92 0.81

silver_4114 0.59 0.94 0.84

samsung_a50 0.63 0.96 0.87

silver_4210r 0.62 0.97 0.88

1080ti_256 0.89 0.89 0.73

pixel3 0.72 0.87 0.97

𝜌 Of Closest Train Device 0.89 0.97 0.97
HELP Predictor 𝜌 0.94 0.99 0.89

Table 10: The default task training device set of

NASBench-201 has devices whose correlation is

very close to predictor 𝜌 .

Table 11: The default device set has a high training-test device correlation (low task distance).

18

Figure 15: We train accuracy predictors with ZCP NN representation. We remove certain ZCPs from the NN

representation and observe its effect on Spearman-𝜌 of the accuracy predictor. We find that removing good

ZCPs can have a worse impact over removing bad ZCPs for accuracy prediction on NASBench-201.

Figure 16: Training from scratch with ZCP/HWL encodings and comparing it with BRP-NAS and HELP

A.8 Few Shot Latency and Accuracy Prediction

In Figure 17, we present the entire graphs for different NN encodings. We find that ZCP and

HWL are generally the most sample efficient. Eyeriss has a low ZCP-latency correlation, thus Vec

performs better in this case. However, we still see significant benefit from using ZCPVec, which

indicates that modifying the NN encoding in exisiting tasks to include zero cost proxy evaluation

can help us train better predictors at almost no extra cost.

A.9 Multi-Search-Space-Task Accuracy Predictor Transfer

We train individual predictors from scratch on every task from TransNASBench-101 and NASBench

search space using 15% of the architectures on the individual train space, and transfer it to every

other task on the TransNASBench-101 and NASBench search space with only 10 samples. This

transfer task utilizes the ZCP NN encoding, and is compared with a train from scratch strategy

(on the new task only) with the Vec NN encoding. From Figure 19 (Left), we see a benefit of

multi-search-space and multi-task transfer learning, the exact improvement is depicted in Figure

19 (Right).

A.10 Limitations

Representation Correlation. We find that the domain agnostic NN encoding works extremely well

for building few-shot predictors for latency and accuracy. However, our test in Figure 15 indicates

that the effectiveness of this encoding is somewhat dependent on the correlation of the entries

of ZCP and HWL with the predictor output. Fortunately, there exist several effective ZCPs that

can serve as proxies for few-shot learning. Further, this highlights the importance of building a

robust hardware benchmark such that new hardware can be adapted from predictors of previous

benchmarks, as such encodings can be transferred across tasks and search-spaces.

19

FPGA RasPi4 Eyeriss Average

Default Set 0.886 0.895 0.939 0.91

Spearman < 0.7 0.663 0.689 0.727 0.69

Spearman < 0.6 0.328 0.395 0.437 0.39

Spearman < 0.3 0.146 0.159 0.201 0.17

Table 12: In this test, we remove devices with high correlation such that remaining devices have

correlation lesser than the specific number. We find that removing highly correlated devices

causes predictor performance to decrease extremely fast on the FBNet search space.

NB201-Adversarial Task. FBNet-Adversarial Task

Train

titan_rtx_1,titan_rtx_32,titanxp_1,2080ti_1,titanx_1,1080ti_1,

Train

1080ti_1,1080ti_32,1080ti_64,2080ti_1,2080ti_32,2080ti_64„

titanx_32,titanxp_32,2080ti_32,1080ti_32,gold_6226,samsung_s7, titan_rtx_1,titan_rtx_32,titan_rtx_64,titanx_1,

silver_4114,gold_6240,silver_4210r,samsung_a50,pixel2 titanx_32,titanx_64,titanxp_1,titanxp_32,titanxp_64

Test eyeriss,desktop_gpu_gtx_1080ti_fp32,embedded_tpu_edge_tpu_int8 Test gold_6226,essential_ph_1,samsung_s7,pixel2

Table 13: Adversarial device sets for the NASBench and FBNet search spaces. As seen here, most of

the training devices for FBNet are GPU, as they exhibit low correlation with the test devices.

Our NB201-Adversarial Task exhibits more diversity, as we combine the EAGLE [5] and

HELP [8] HW latency data-sets.

HW Embedding Correlation. While we introduce a sample-free method of representing

hardware devices, the effectiveness of these embeddings largely rely on the diversity of the HW-NN

samples that the predictor is trained on. Further, the additional sample efficiency offered by our

embedding initializer in Eq. 1 depends on the diversity of the hardware platforms the predictor

was trained on.

Transfer Learning Architecture and Hyper Parameters

Cross Domain Network Layer Size 128

Cross Domain Network Depth 4

Optimizer AdamW

Pre-Training Optimizer LR 0.004

Scheduler CosineAnnealingLR

Training Epochs 250

Transfer Epochs 50

Transfer Optimizer LR 0.0004

Optimizer Weight Decay 0.0005

Table 14: Hyper-parameter configuration for Accuracy

Transfer Learning results.

Transfer Learning Architecture and Hyper Parameters

Source Hardware Samples 900 (NB201)/4000 (FBNet)

Batch Size 128

Source Hardware Epochs 250

Target Hardware Epochs 50

HW Embedding Size 8

GCN Layer Size (NB201) 200

GCN Layer Depth (NB201) 3

GCN FC Layer Size 200

GCN FC Layer Depth 3

NN Layer Size (FBNet) 100

NN Layer Depth 3

NN Embedding Dimension 30

Interaction Feature Size 1000

Interaction Feature Depth 2

Optimizer AdamW

Source Optimizer LR 0.0004

Target Optimizer LR 0.001

Optimizer WD 0.0005

Table 15: Hyper-parameter configuration for Hard-

ware Transfer Learning results.

20

Figure 17: Total number of HW Measurements and Trained Model Samples required to predict latency

and accuracy on NASBench-201 for various NN encodings, with respect to HELP and

Trasnfer Learning (FSP).

Figure 18: The white boxes indicate improvement in

performancewhen using ZCPwith transfer learning.

Figure 19: Presents the heatmap for the improve-

ment in performance when using ZCP with transfer

learning over Vec train-from scratch.

21

Figure 20: For FBNet to NASBench-201, HWL Transfer improves sample efficiency, indicating that

we can leverage transfer learning for multi-search-space latency prediction. (Vec line not

visible in some graphs as its performance is too poor, and we set the Y scale to focus on

HWL and HWL Transfer.

22

Figure 21: For NASBench-201 to FBNet, HWL Transfer improves sample efficiency, indicating that

we can leverage transfer learning for multi-search-space latency prediction. (Vec line not

visible in some graphs as its performance is too poor, and we set the Y scale to focus on

HWL and HWL Transfer.

23

	Introduction
	Related Work
	Method
	Hardware Embedding
	NN Encoding
	Few-Shot Adaptation

	Hardware Latency Predictors
	Accuracy Predictors
	Discussion and Conclusion
	Broader Impact Statement
	Submission Checklist
	Supplementary Materials for Multi-Predict: Few Shot Predictors For Efficient Neural Architecture Search.
	Neural Architecture Search Spaces
	Hardware Latency Benchmarks
	Zero Cost Proxies
	Hardware Devices And Correlations
	Importance of train-test device correlation
	True Sample Efficiency Of HELP and BRP-NAS
	Multi-Search-Space Latency Predictor Transfer
	Few Shot Latency and Accuracy Prediction
	Multi-Search-Space-Task Accuracy Predictor Transfer
	Limitations

