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Abstract Many state-of-the-art automated machine learning (AutoML) systems use greedy ensemble

selection (GES) by Caruana et al. (2004) to ensemble models found during model selection

post hoc. Thereby, boosting predictive performance and likely following Auto-Sklearn

1’s insight that alternatives, like stacking or gradient-free numerical optimization, overfit.

Overfitting in Auto-Sklearn 1 is much more likely than in other AutoML systems because it

uses only low-quality validation data for post hoc ensembling. Therefore, we were motivated

to analyze whether Auto-Sklearn 1’s insight holds true for systems with higher-quality vali-

dation data. Consequently, we compared the performance of covariance matrix adaptation

evolution strategy (CMA-ES), state-of-the-art gradient-free numerical optimization, to GES

on the 71 classification datasets from the AutoML benchmark for AutoGluon. We found that

Auto-Sklearn’s insight depends on the chosen metric. For the metric ROC AUC, CMA-ES

overfits drastically and is outperformed by GES – statistically significantly for multi-class

classification. For the metric balanced accuracy, CMA-ES does not overfit and outperforms

GES significantly. Motivated by the successful application of CMA-ES for balanced accuracy,

we explored methods to stop CMA-ES from overfitting for ROC AUC. We propose a method

to normalize the weights produced by CMA-ES, inspired by GES, that avoids overfitting for

CMA-ES and makes CMA-ES perform better than or similar to GES for ROC AUC.

1 Introduction

Auto-Sklearn (Feurer et al., 2015) was the first automated machine learning (AutoML) system

to discover that building an ensemble of models found during model selection is possible in an

efficient manner and superior in predictive performance to the single best model. Afterwards,

several other AutoML systems also build an ensemble post hoc: AutoGluon (Erickson et al., 2020),

Auto-Pytorch (Mendoza et al., 2018; Zimmer et al., 2021), MLJAR (Płońska and Płoński, 2021), and

H2O AutoML (LeDell and Poirier, 2020) all implemented post hoc ensembling.
Besides H2OAutoML, all of these systems implemented greedy ensemble selection (GES) (Caruana

et al., 2004, 2006), a greedy search for a weight vector to aggregate the predictions of base models.

In AutoML systems, GES is trained using the base models’ predictions on the validation data, which
are computed while evaluating a base model during model selection. The frequent usage of GES

likely follows Auto-Sklearn’s reported insight that alternatives like stacking (Wolpert, 1992) or

gradient-free numerical optimization overfit and are more costly than GES.

Auto-Sklearn 1, by default, only has limited validation data for post hoc ensembling, that is, a

33% hold-out split of the training data. We deem this to be low-quality validation data because,

depending on the dataset, 33% are not enough instances to avoid overfitting while training GES.

Hence, we were motivated to analyze if Auto-Sklearn’s insight also holds true for an AutoML

system with higher-quality validation data, e.g., AutoGluon with 𝑛-repeated 𝑘-fold cross-validation.

Moreover, we were motivated to focus on gradient-free numerical optimization instead of stacking.

Stacking is generally well-known in ensembling for machine learning and is used by H2O AutoML

for post hoc ensembling. In contrast, gradient-free numerical optimization has not been used so far.
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Thus, we compare the performance of GES to covariance matrix adaptation evolution strategy (CMA-

ES) (Hansen and Auger, 2014; Hansen, 2016), state-of-the-art gradient-free numerical optimization

(Hansen et al., 2010; Szynkiewicz, 2018; Li et al., 2020). We chose CMA-ES due to its widespread

usage in numerical optimization (Li et al., 2020). Moreover, CMA-ES’s update is efficient and

therefore enables fast training in post hoc ensembling; similar to GES’s training. Furthermore, the

function evaluation in post hoc ensembling, i.e., calculating the score of aggregated predictions,

takes seconds (Feurer et al., 2015). Thus, we disregarded Bayesian optimization, which is appropriate

for tasks with expensive function evaluation such as hyperparameter optimization (Lan et al., 2022).

In this study, we aim to boost the predictive performance as much as possible with post hoc

ensembling. Note that GES selects a small ensemble, while methods like gradient-free numerical

optimization or stacking produce an ensemble that includes all base models. Thus, the inference

time and size of the final model are larger for the latter two than for GES.

Our first contribution is an application of CMA-ES for AutoGluon on the 71 classification

datasets from the AutoML Benchmark (Gijsbers et al., 2022). Thereby, we show that Auto-Sklearn’s

insight w.r.t. overfitting of gradient-free numerical optimization depends on the chosen metric.

We contradict the insight for the metric balanced accuracy by showing that CMA-ES statistically

significantly outperforms GES. And we confirm the insight for the metric ROC AUC by showing

that GES outperforms CMA-ES due to overfitting.

As a follow-up, our second contribution is a method to avoid overfitting for CMA-ES. Motivated

by the successful application of CMA-ES for balanced accuracy, we explored methods to stop

CMA-ES from overfitting to salvage CMA-ES for ROC AUC. We identified the chosen method to

normalize the ensemble’s prediction probabilities as the key to avoiding overfitting. With this

knowledge, we propose a novel normalization method, inspired by GES’s implicit constraints during

optimization, that makes CMA-ES perform as well as GES and avoids overfitting for ROC AUC.

Interestingly, our normalization method also enables us to keep the size of the ensemble small.

Our code and data are publicly available: see Appendix E for details.

2 Related Work

Besides Auto-Sklearn 1’s (Feurer et al., 2015) statement related to post hoc ensembling, only H2O

AutoML names theoretical guarantees (van der Laan et al., 2007) as the reason for using stacking,

but does not comment on GES. In general, details about post hoc ensembling in publications about

AutoML systems were only a short comment without experiments or a reference to Auto-Sklearn 1

(Feurer et al., 2015; Mendoza et al., 2018; Erickson et al., 2020; LeDell and Poirier, 2020). We are only

aware of the work by Purucker and Beel (2022), which proposed a first benchmark and framework

for post hoc ensembling. The results in their Appendix also showed that GES can outperform

stacking. To the best of our knowledge, no other work on post hoc ensembling for AutoML exists.

CMA-ESwas previously applied tomachine learning problems like hyperparameter optimization

(Nomura et al., 2021; Loshchilov andHutter, 2016) or feature weighting (Tasci et al., 2018)
1
. However,

we found no work that used CMA-ES to directly optimizes the weights of an ensemble. Likewise,

we have found no work that applies normalization to the solutions produced by CMA-ES nor

comparable machine learning methods that apply normalization in this way to combat overfitting.

3 Application of CMA-ES for Post Hoc Ensembling

In our application of CMA-ES for post hoc ensembling, we search for an optimal weight vector

𝑊 = (𝑤1, ...,𝑤𝑚) to aggregate pool 𝑃 of𝑚 base models that minimizes a user-defined loss 𝐿(𝑃,𝑊 ).
Thereby, 𝐿 aggregates the predictions of models in 𝑃 by taking the𝑊 -weighted arithmetic mean.

Hence, we employ CMA-ES, as implemented in pycma (Hansen et al., 2019), with default values

to find𝑊 by minimizing 𝐿. Following GES’s first iteration, we set the initial solution 𝑥0 to be the

1
To the best of our knowledge, this work is not available in English. We read a machine-translated version.
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weight vector representing the single best model, that is, the weight for the single best model is

one while all other models are weighted zero. The initial standard deviation is 0.2 following the

intuition that a good weight vector might be close to the initial solution and that the granularity of

weights can be small, e.g., between 0 and 1, like in GES.

3.1 Experiments: CMA-ES vs. GES

We compared CMA-ES to GES w.r.t. ROC AUC following the AutoML Benchmark (Gijsbers et al.,

2022). ROC AUC requires prediction probabilities and is independent of a decision threshold that

would transform prediction probabilities into labels. We use macro average one-vs-rest ROC AUC

for multiclass. We complemented the comparison by also evaluating w.r.t. balanced accuracy, which

requires predicted labels and, thus, depends on a decision threshold.

For a threshold-dependent metric, the prediction of CMA-ES is, in our application, the class

with the highest value after aggregating the prediction probabilities with the𝑊 -weighted mean.

For a threshold-independent metric, we transform the aggregated probabilities for each instance

using the softmax function, i.e., we treat the aggregated probabilities of each class as decision

functions and take their softmax. Otherwise, the aggregated probabilities would not represent

prediction probabilities, as𝑊 can have negative or positive values of any granularity.

To compare the ensembling methods, we obtained base models and their validation data with

AutoGluon (Erickson et al., 2020) for each fold of the 71 classification datasets from the AutoML

benchmark (AMLB) (Gijsbers et al., 2022) – for both metrics. Then, per fold, we trained the ensemble

methods on the validation data, i.e., search for𝑊 , and scored them on validation and test. The final

validation/test score of a method for a dataset is the average over the 10 folds.

Following the AMLB, we ran AutoGluon for 4 hours with 8 cores (AMD EPYC 7452 CPU) and

32 GB of memory. We increased the memory for several datasets to 64 or 128 GB to avoid that

insufficient memory made it impossible to produce multiple base models. In the end, AutoGluon

produced between 2 and 24 base models, see Appendix F for details per dataset and metric.

We used the same resources and hardware to train and evaluate the ensemble methods. However,

instead of training ensemble methods for 4 hours, we followAuto-Sklearn’s default and stop training

GES after 50 iterations. This results in𝑚∗50 total evaluations of 𝐿 by GES. Therefore, we terminated

CMA-ES after𝑚 ∗ 50 evaluations of 𝐿.
We included the single best base model (SingleBest) in the comparison as a baseline. To evaluate

the statistical difference between the methods, we perform a Friedman test with a Nemenyi post

hoc test (𝛼 = 0.05), following the AMLB. See Appendix I.1 for more details on the statistical tests.

3.2 Results: CMA-ES vs. GES

We split the results for binary and multi-class classification in all our evaluations following the

AutoML Benchmark (Gijsbers et al., 2022). Figure 1 shows the mean rank and results of the statistical

test with critical difference (CD) plots. The Friedman tests were significant in all our experiments.

We observe that CMA-ES is statistically significantly better than GES for balanced accuracy but

fails to perform similarly well for ROC AUC.

To analyze the impact of overfitting on this outcome, we inspect the change of the mean rank

of CMA-ES when switching from validation to test data for both metrics, see Table 1. A detailed

overview for all methods can be found in Appendix G.1. While the single best is always ranked

last, GES overtakes CMA-ES when switching from validation to test data for ROC AUC. Notably,

CMA-ES has a mean rank of almost 1 for validation data in 3 out of 4 cases.

On validation data, GES is only competitive for multi-class ROC AUC, where it has a mean

rank of 1.6. Nevertheless, GES has a larger distance to the single best on validation for balanced

accuracy than it has for test data with a mean rank of ∼2 against the single best’s ∼3.
In summary, we conclude that Auto-Sklearn’s insight w.r.t. overfitting does not generalize to

an AutoML system with higher-quality validation data, i.e., AutoGluon, for balanced accuracy. In
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Figure 1: CD Plots Comparing GES and CMA-ES: The mean rank (lower is better) of a method is its

line’s position on the axis. Methods connected by a bar are not significantly different.

contrast, the insight holds for ROC AUC. Furthermore, we observe that CMA-ES is able to achieve

peak performance for ROC AUC on validation data.

4 Normalization to Combat Overfitting

The results we just presented motivated us to salvage CMA-ES for ROC AUC. Due to its good

performance for ROC AUC and its wide adaptation by AutoML systems, we decided to analyze

GES to determine how to avoid overfitting. As a result, we found two properties that inspired

our approach to salvage CMA-ES for ROC AUC. This section describes why and how we use

normalization to combat overfitting for a threshold-independent metric like ROC AUC. Since our

approach is inspired by GES, we start with preliminaries regarding GES and its properties.

4.1 Preliminaries

Greedy ensemble selection with replacement (Caruana et al., 2004, 2006) performs an iterative

greedy search to build a list of (repeated) base models, the ensemble 𝐸, that minimizes a user-defined

loss function. In each iteration, the base model minimizing the loss, when added to 𝐸, is selected
to be part of 𝐸. To produce predictions and evaluate any 𝐸, the (repeated) predictions of all base

Table 1: Mean rank change from validation to test data for CMA-ES compared to GES and SingleBest.

Metric Task Type Mean 𝑅𝑎𝑛𝑘𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 Mean 𝑅𝑎𝑛𝑘𝑇𝑒𝑠𝑡 Absolute Rank (Val→ Test)

Balanced Accuracy Binary 1.00 1.12 1.0→ 1.0

Balanced Accuracy Multi-class 1.03 1.25 1.0→ 1.0

ROC AUC Binary 1.02 1.83 1.0→ 2.0

ROC AUC Multi-class 1.42 2.12 1.0→ 2.0
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models in 𝐸 are aggregated with the arithmetic mean. Taking the arithmetic mean of 𝐸 weights base

models that exit multiple times higher. Hence, given 𝐸, we can compute a weight vector. Assuming

we run GES for 𝑁 iterations
2
, then |𝐸 | = 𝑁 and we compute the weight vector using:

𝑊 𝑝𝐷𝑖𝑠𝑐 =

[
𝑐𝑜𝑢𝑛𝑡𝐼𝑛(𝑝𝑖 , 𝐸)

𝑁

���� 𝑝𝑖 ∈ 𝑃 ] . (1)

While analysing GES, we found two constraints of the weight vector𝑊 𝑝𝐷𝑖𝑠𝑐
that we believe to

be essential for its performance. That is,𝑊 𝑝𝐷𝑖𝑠𝑐
is pseudo-discrete and sparse. Both properties are

only implicitly respected by GES and were, to the best of our knowledge, never formally defined.

Pseudo-Discrete. We call𝑊 𝑝𝐷𝑖𝑠𝑐
pseudo-discrete because one can transform every weight vector

produced by GES into a discrete count of how often a base model has been selected. This can be

done by multiplying𝑊 𝑝𝐷𝑖𝑠𝑐
with 𝑁 , reversing Equation 1. In fact, every weight vector produced by

GES is in the set G = {𝑊 ′ |𝑊 ′ ∈ 𝐻 (𝑁 ) and ∑𝑚
𝑖=1𝑤𝑖 = 1} with 𝐻 (𝑁 ) the𝑚-fold Cartesian product

of {0, 1/𝑁, 2/𝑁, ..., 1}:

𝐻 (𝑁 ) = {0, 1/𝑁, 2/𝑁, . . . , 1} × · · · × {0, 1/𝑁, 2/𝑁, . . . , 1}. (2)

In other words, every weight𝑤𝑖 ∈𝑊 𝑝𝐷𝑖𝑠𝑐
can be expressed as a positive fraction with denomi-

nator 𝑁 , and the weight vector sums to 1. This follows from GES iteratively building a list of base

models 𝐸 and calculating the final weight vector with Equation 1.

We would like to remark that this formulation of GES is very similar to mallows’ model average

(MMA) (Hansen, 2007, 2008; Le and Clarke, 2022) and that GES might share MMA’s asymptotic

guarantees for regression if 𝐿 is the squared error (Le and Clarke, 2022).

Sparse. 𝑊 𝑝𝐷𝑖𝑠𝑐
is sparse, that is, a weight vector where many models are assigned zero weight – as

intended for an ensemble selection approach (Tsoumakas et al., 2009). To the best of our knowledge,

a guarantee for sparseness was never formally introduced or proven for (greedy) ensemble selection,

cf. (Caruana et al., 2004, 2006; Tsoumakas et al., 2009). Here, we shortly provide an argument for

why it is likely that GES produces a sparse weight vector:

GES only adds new base models to 𝐸 if they reduce the loss. Hence, it would require at least

𝑚 iterations where adding a new base model would reduce the loss more than adding an existing

base model again (increasing its weight). As a result, for appropriate values for 𝑚 and 𝑁 , it is

unlikely that enough iterations happened such that each model was able to reduce the loss once.

Auto-Sklearn, for example, uses𝑚 = 50 and 𝑁 = 50 by default. Moreover, once 𝐸 becomes large,

the changes to the aggregated prediction that are induced by adding a new base model are minimal.

Thus, it also becomes less likely that the changes result in a different loss. Additonally, the larger 𝐸

is, the more likely GES has reached a (local) optimum, which can not be improved upon by adding

new models. In short, the iterative greedy approach to add models to 𝐸 likely makes𝑊 𝑝𝐷𝑖𝑠𝑐
sparse.

4.2 Motivation

Since all solutions produced by GES are pseudo-discrete and (likely) sparse, and since GES does not

seem to overfit, we hypothesized that both properties might help to avoid overfitting.

Note, the properties can be seen as constraints. They constrain the weight vector to be sparse,

sum to 1, and contain only values such that 0 ≤ 𝑤𝑖 ≤ 1. In contrast, our application of CMA-ES

uses no such constraints. By default, CMA-ES produces a continuous and dense vector which does

not need to sum to 1 and may contain negative or positive values of any granularity.

Thus, our first idea was to constrain the optimization process of CMA-ES such that it would

produce results that match the constraints of GES. However, we found that once the same constraints

2
We always denote 𝑁 as the number of the iteration the final 𝐸 was found in. Depending on the implementation of

GES, the final 𝐸 does not need to be from the final iteration.
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are introduced, CMA-ES often violates the constraints; making CMA-ES inefficient and often leading

to an endless loop due to rejection sampling. In other words, we were not able to make CMA-ES

produces solution vectors that fulfill all constraints of GES. In general, constraining CMA-ES is also

not trivial (Biedrzycki, 2020), and we leave more sophisticated approaches to constrain CMA-ES for

post hoc ensembling, like methods based on repair-and-inject or penalization (Hansen, 2016) or

with relaxed constraints, to future work.

Instead of constraining the optimization process of CMA-ES, wemoved to adding the constraints

directly to the weight vector when they are evaluated, following a concept observed from GES.

That is, we observed that while the constraints of GES are an implicit result of the algorithm as

defined by Caruana et al. (2004), they manifested explicitly only when one computes the weight

vector with Equation 1. The optimization loop of GES, i.e., iteratively building 𝐸, does not explicitly

consider these constraints, but only greedily minimizes a user-defined loss. In other words, the

optimizer is only implicitly constrained by applying constraints during the computation of the weight
vector; before evaluating the vector’s performance.

In detail, every time GES computes the loss for an ensemble 𝐸, it first transforms 𝐸 into𝑊 𝑝𝐷𝑖𝑠𝑐

using Equation 1. Thereby, applying the constraints that the resulting weight vector must sum to

1, is sparse, and 0 ≤ 𝑤𝑖 ≤ 1. Then, the 𝐿(𝑃,𝑊 𝑝𝐷𝑖𝑠𝑐) is returned as the loss of 𝐸. At this point, it

becomes clear that changing Equation 1 leads to different constraints; the loss of 𝐸 could change

without touching the optimization loop of GES.

As a result, we were motivated to apply the same concept to CMA-ES by normalizing the weight

vector before we aggregate the predictions of the base models. Thus, changing the loss associated

with a weight vector proposed by CMA-ES outside of its optimization process. In contrast, our

application in Section 3 normalized the aggregated predictions for ROC AUC using softmax – we

normalized after aggregation. Now, however, we propose to normalize before aggregation as in GES.

In turn, this also changes the optimization process of CMA-ES, e.g., the parameter update, because

a weight vector might have a different loss depending on normalizing before or after aggregation.

4.3 Normalization Methods

We propose three distinct normalization methods. Two of the methods we propose are based on

the concept of GES such that the last proposed method tries to simulate Equation 1 fully.

1) Softmax (CMA-ES-Softmax). Initially, we propose a simple alternative to our previous usage

of CMA-ES by moving the (non-linear) softmax before the aggregation. That is, we normal-

ize the weight vector 𝑊 by taking its softmax. That is, for a weight 𝑤𝑖 ∈ 𝑊 , we calculate:

𝑤𝑠
𝑖 =

exp(𝑤𝑖 )∑𝑚
𝑗=1 exp(𝑤𝑗 ) (3), resulting in𝑊 𝑠 = (𝑤𝑠

1
, ...,𝑤𝑠

𝑚) with

∑𝑚
𝑗=1𝑤

𝑠
𝑗 = 1 and 0 ≤ 𝑤 𝑗 ≤ 1 for𝑤 𝑗 ∈𝑊 𝑠

.

2) Softmax & Implict GES Normalization (CMA-ES-ImplictGES). Next, we propose to re-normalize

𝑊 𝑠
with the aim of producing an equivalent to a pseudo-discrete weight vector𝑊 𝑝𝐷𝑖𝑠𝑐

; simulating

GES’s G (see Equation 2). Therefore, we round each value of𝑊 𝑠
to the nearest fraction with

denominator 𝑁ℎ𝑦𝑝 producing a rounding-discrete weight vector𝑊 𝑟𝐷𝑖𝑠𝑐
. Then, 𝑁ℎ𝑦𝑝 represents the

number of hypothetical iterations for a simulated G. We set 𝑁ℎ𝑦𝑝 = 50, similar to GES.

We produce𝑊 𝑟𝐷𝑖𝑠𝑐 = (𝑤𝑟𝐷𝑖𝑠𝑐
0

, ...,𝑤𝑟𝐷𝑖𝑠𝑐
𝑚 ) by multiplying each𝑤𝑠

𝑖 with 𝑁ℎ𝑦𝑝 and rounding each

element to the nearest integer afterwards; rounding up for values larger than 0.5. Therefore, we

first compute the integer vector 𝑅 = (𝑟1, ..., 𝑟𝑚) using 𝑟𝑖 = ⌊𝑤𝑠
𝑖 ∗𝑁ℎ𝑦𝑝⌉. Note, 𝑅 can be thought of as

a vector of repetitions where 𝑟𝑖 denotes how often a model has been repeated in a hypothetical list

of repeated base models 𝐸ℎ𝑦𝑝 . That is, 𝐸ℎ𝑦𝑝 is connected to𝑊 𝑟𝐷𝑖𝑠𝑐
like an 𝐸 to its𝑊 𝑝𝐷𝑖𝑠𝑐

. Hence,

we can compute𝑊 𝑟𝐷𝑖𝑠𝑐
using 𝑅, paralleling Equation 1:

𝑊 𝑟𝐷𝑖𝑠𝑐 =

[
𝑟𝑖∑𝑚
𝑗=1 𝑟 𝑗

| 𝑟𝑖 ∈ 𝑅
]
. (4)

6



𝑊 𝑟𝐷𝑖𝑠𝑐
sums to 1, and each element is between 0 and 1. Interestingly, we found that this

approach also implicitly trims base models, as the nearest fraction can be
0

𝑁ℎ𝑦𝑝
such that the method

assigns zero weight to base models in these cases.

3) Softmax & Explicit GES Normalization (CMA-ES-ExplicitGES). Finally, we propose to explicitly
trim base models and perfect the simulation of Equation 1. We can explicitly trim base models

based on 𝑁ℎ𝑦𝑝 . We found that a weight 𝑤𝑠
𝑗 is set to zero by rounding if 𝑤𝑠

𝑗 ∗ 𝑁ℎ𝑦𝑝 ≤ 0.5. If we

reformulate the inequality to𝑤𝑠
𝑗 ≤ 0.5 ∗ 1

𝑁ℎ𝑦𝑝
, we see that this parallels GES, where the number of

iterations determines the minimal weight a model can be assigned, i.e., 1

𝑁
.

Furthermore, we found that CMA-ES-ImplictGES does not simulate GES sufficiently. We

observed that rounding may result in

∑𝑚
𝑗=1 𝑟 𝑗 ≠ 𝑁ℎ𝑦𝑝 . That is, the total number of repetitions in

𝑅 did not match the number of simulated iterations nor the (hypothetical) length of 𝐸ℎ𝑦𝑝 . 𝑅 was

supposed to relate to 𝐸ℎ𝑦𝑝 for𝑊 𝑟𝐷𝑖𝑠𝑐
like an 𝐸 to its𝑊 𝑝𝐷𝑖𝑠𝑐

. Yet for GES, it holds that |𝐸 | = 𝑁

while |𝐸ℎ𝑦𝑝 | ≠ 𝑁ℎ𝑦𝑝 can happen in CMA-ES-ImplictGES.

Considering both, we implemented the third method, shown in Algorithm 1. First, we compute

𝑊 𝑠
and trim any base model smaller than

0.5
𝑁ℎ𝑦𝑝

(Line 2). If we set all weights to zero, we fall back

to an unweighted average (Line 5). Second, we round to the nearest integer, producing 𝑅′ (Line 8).
Next, we set𝑅′′ = 𝑅′ andmodify𝑅′′ to achieve

∑𝑚
𝑗=1 𝑟

′′
𝑗 = 𝑁ℎ𝑦𝑝 . Wewant to keep the distribution

of 𝑅′′ as close as possible to the distribution of 𝑅′. Hence, we keep the relative distances between

the individual elements in 𝑅′ and 𝑅′′ similar.

If

∑𝑚
𝑗=1 𝑟

′
𝑗 > 𝑁ℎ𝑦𝑝 , we decrement elements in 𝑅′′ by 1 until

∑𝑚
𝑗=1 𝑟

′′
𝑗 = 𝑁ℎ𝑦𝑝 (Line 11). We

decrement in order from lowest to highest valued element in 𝑅′, that is, lowest to highest weighted

base model in the resulting weight vector. Thus, first trimming base models with only one repetition.

Finally, if

∑𝑚
𝑗=1 𝑟

′
𝑗 − 𝑁ℎ𝑦𝑝 is large enough, we decrement the most repeated elements. Note, due

to rounding, we must decrement each element once in the worst case. If

∑𝑚
𝑗=1 𝑟

′
𝑗 < 𝑁ℎ𝑦𝑝 , we

have to increase the value of elements in 𝑅′′. To keep the relative distances similar, we equally

distributed 𝑁ℎ𝑦𝑝 −
∑𝑚

𝑗=1 𝑟
′
𝑗 increments between all non-zero elements in 𝑅′′ (Line 13). Finally, the

𝑅′′ is transformed into a weight vector with Equation 4.

Algorithm 1 The Procedure for CMA-ES-ExplicitGES

Input: Weight vector𝑊 ′
of length𝑚, the number of hypothetical iterations 𝑁ℎ𝑦𝑝

Output: Weight vector𝑊

1: 𝑊 ←𝑊 𝑠
computed with Equation 3 using 𝑊 ′ ⊲ Apply softmax.

2: for 𝑖 = 1 to𝑚 do ⊲ Trim base models.

3: if 𝑤𝑖 ≤ 0.5
𝑁ℎ𝑦𝑝

then
4: 𝑤𝑖 ← 0

5: if
∑𝑚

𝑖=1 𝑤𝑖 = 0 then ⊲ Fallback to unweighted average.

6: return ( 1
𝑚
, ..., 1

𝑚
)

7: 𝑅′ ← [0 · · · 0] ⊲ Initialize an empty vector of repetitions.

8: for 𝑖 = 1 to𝑚 do ⊲ Round to nearest integer.

9: 𝑟 ′
𝑖
← ⌊𝑤𝑠

𝑖
∗ 𝑁ℎ𝑦𝑝 ⌉

10: 𝑅′′ ← 𝑅′

11: if
∑𝑚

𝑗=1 𝑟
′
𝑗
> 𝑁ℎ𝑦𝑝 then

12: 𝑅′′ ← Decrement elements from lowest to highest valued element in 𝑅′′ by 1 until

∑𝑚
𝑗=1 𝑟

′′
𝑗
= 𝑁ℎ𝑦𝑝

13: if
∑𝑚

𝑗=1 𝑟
′
𝑗
< 𝑁ℎ𝑦𝑝 then

14: 𝑅′′ ← Equally distributed 𝑁ℎ𝑦𝑝 −
∑𝑚

𝑗=1 𝑟
′
𝑗
increments between all non-zero elements in 𝑅′′

15: return𝑊 computed with Equation 4 using 𝑅′′ .

4.4 Comparing Normalization Methods

We use CMA-ES-ExplicitGES for the final evaluation below because it is the only approach that is

in line with GES’s concepts. Nevertheless, here, we provide an additional comparison of the three
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normalization methods on the same data as used in Section 3.1. We run CMA-ES, as described above,

with the three different methods for normalization on the data from AutoGluon for ROC AUC. We

ignore the threshold-dependent balanced accuracy because CMA-ES is not affected by overfitting

for balanced accuracy. Besides normalization, the main difference to the application from Section 3

is that we do not apply softmax after aggregation anymore when we apply normalization.

First, a note regarding sparseness. On average, across all datasets for ROC AUC, ∼13.2 base
models exist, see Appendix F for each dataset’s number. For comparison, we computed the average

number of non-zero weighted base models for the ensemble methods, see Appendix H. This shows

that CMA-ES without normalization has an average ensemble size, that is, the number of non-zero

weighted base models, of ∼12.9. In contrast, CMA-ES-ExplicitGES has an average ensemble size of

∼6.3, CMA-ES-ImplicitGES of ∼5.4. For context, GES has an average ensemble size of ∼5.8 Hence,
we conclude that CMA-ES produces dense weight vectors. While our normalization approaches are

able to produce sparse vectors like GES.

Next, we repeat the statistical test performed in Section 3.1 for all normalization methods,

CMA-ES, and the SingleBest, see Figure 4 in the Appendix H. We observe that all normalization

methods outperform CMA-ES and that CMA-ES-ExplicitGES ranks highest. Furthermore, the

different normalization methods are not statistically significantly different from each other. Only

CMA-ES-ExplicitGES is significantly different from CMA-ES for multi-class.

5 Overall Experiments

In our final evaluation, we mirror the experiments from Section 3.1 and compare the SingleBest,

GES, CMA-ES, and CMA-ES with normalization (CMA-ES-ExplicitGES). We additionally include

stacking in our comparison because it is part of Auto-Sklearn’s insight and used by H2O AutoML.

For our implementation of stacking (Wolpert, 1992), we use a default Logistic Regression classifier

from scikit-learn (Pedregosa et al., 2011) as a stacking model. We adjusted the code such that

we terminate after𝑚 ∗ 50 evaluations to make the method comparable to GES and CMA-ES. For

CMA-ES we stick to the implementation and default hyperparameters as described in Section 3.

Besides the statistical tests, we also inspect the difference in the distributions of relative

performance. Therefore, we follow the AutoML benchmark (Gijsbers et al., 2022) and use normalized
improvement to make the scores of methods comparable across different datasets. We scale the

scores for a dataset such that −1 is equal to the score of a baseline, here the SingleBest, and 0 is equal
to the score of the best method on the dataset. We employ a variant of normalized improvement

as we ran into an edge case where the normalized improvement is undefined if the difference

between the single best model and the best method is 0. In our variant, for this edge case, we set

everything as good as the SingleBest to −1 and penalize all methods worse than the baseline with

−10; following a penalization approach like PAR10 from Algorithm Selection (Lindauer et al., 2019).

We provide a formalized definition of normalized improvement in Appendix I.2.

6 Overall Results

Figure 2 shows the results of the statistical tests and mean rankings for the compared methods.

The distribution of the relative performance is shown in Figure 3. Additionally, the performance

per dataset is provided in Appendix J.

Overall Predictive Performance. All post hoc ensembling methods always outperform the Sin-

gleBest on average, although not always statistically significant – see Figure 2. Yet, post hoc

ensembling can overfit and become worse for specific datasets, as indicated by the black dots left of

the red bar and the number of outliers in square brackets in Figure 3.

For balanced accuracy, we observe that CMA-ES significantly beats all methods. Likewise, we

observe that stacking and CMA-ES-ExplicitGES outperform GES by a small non-significant margin.

8



12345

SingleBest

GES

CMA-ES-ExplicitGES

Stacking

CMA-ES

CD

(a) Balanced Accuracy - Binary (41 Datasets)

12345

SingleBest

GES

Stacking

CMA-ES-ExplicitGES

CMA-ES

CD

(b) Balanced Accuracy - Multi-class (30 Datasets)

12345

SingleBest

Stacking

CMA-ES

CMA-ES-ExplicitGES

GES

CD

(c) ROC AUC - Binary (41 Datasets)

12345

SingleBest

Stacking

CMA-ES

GES

CMA-ES-ExplicitGES

CD

(d) ROC AUC - Multi-class (30 Datasets)

Figure 2: CD Plots for all Methods: Methods connected by a bar are not significantly different.

For ROCAUC, we see that GES and CMA-ES-ExplicitGES outperform all other methods and differ

only by a small non-significant margin. Both are also significantly different from the SingleBest;

unlike stacking. Moreover, Figure 3 shows us that CMA-ES-ExplicitGES has similar or better relative

performance distributions than GES (see the medians and whiskers).

Normalization to Combat Overfitting. See Table 2 to inspect overfitting for CMA-ES-ExplictGES.

See Appendix G.2 for an overview of the rank change for all compared methods. In general,

CMA-ES-ExplictGES’s mean rank, compared to GES and the SingleBest, changes only minimally

between validation and test data. Showing us that it overfits less than CMA-ES (compare to Table

1, Section 3.2). As before, the SingleBest is always the worst-ranked method. GES is worse than

CMA-ES-ExplictGES on test data for all but ROC AUC Binary. On validation data, however, GES is

better than CMA-ES-ExplictGES in all cases except for ROC AUC multi-class, where it is tied. Now,

GES is more affected by overfitting than CMA-ES with normalization.

No Free Lunch. CMA-ES-ExplictGES for balanced accuracy ranks worse than CMA-ES but better

than GES. In contrast, CMA-ES-ExplictGES ranks better than CMA-ES for ROC AUC. A decrease in

performance for balanced accuracy was to be expected as the normalization method constrained

the solutions of CMA-ES to be sparse and pseudo-discrete to combat overfitting, but CMA-ES did

not overfit for balanced accuracy. Moreover, it indicates that satisfying these properties of GES

for balanced accuracy is suboptimal. Hence, our results also indicate the need to select the best

method per task and metric instead of always using the same method; in line with the no free lunch
theorem. Likewise, the drastic differences in performance of the methods between metrics suggest

that the optimization landscapes, and the impact of overfitting on them, differ drastically.

7 Conclusion

Greedy ensemble selection (GES) (Caruana et al., 2004) is often used for post hoc ensembling in

AutoML; likely as a result of Auto-Sklearn 1’s (Feurer et al., 2015) reported insight that GES is

superior to potential alternatives, like gradient-free numerical optimization, for post hoc ensembling.
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Figure 3: Normalized Improvement Boxplots: Higher normalized improvement is better. Each black

point represents the improvement for one dataset. A value smaller than −1 is worse than
the single best model (red vertical line), while 0 is the best observed value. The number in

square brackets counts the outliers of a method left of the plot’s boundary.

Table 2: Mean rank change for CMA-ES-ExplictGES compared to GES and SingleBest. In the case of a

tie for the absolute rank, we assign all tied values the average of their tie-broken ranks.

Metric Task Type Mean 𝑅𝑎𝑛𝑘𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 Mean 𝑅𝑎𝑛𝑘𝑇𝑒𝑠𝑡 Absolute Rank (Val→ Test)

Balanced Accuracy Binary 1.74 1.78 2.0→ 1.0

Balanced Accuracy Multi-class 1.73 1.78 2.0→ 1.0

ROC AUC Binary 1.63 1.70 2.0→ 2.0

ROC AUC Multi-class 1.50 1.57 1.5→ 1.0

In this paper, we have shown that Auto-Sklearn’s insight w.r.t. overfitting depends on the

metric when tested for an AutoML system with higher-quality validation data than Auto-Sklearn,

e.g., AutoGluon (Erickson et al., 2020). Indeed, for the metric ROC AUC, GES does not overfit

meaningfully, while gradient-free numerical optimization, e.g., CMA-ES (Hansen and Auger, 2014;

Hansen, 2016), overfits drastically. However, for balanced accuracy, CMA-ES does not overfit and

outperforms GES.

As a direct consequence, we were motivated to find a method that combats the overfitting of

CMA-ES for ROC AUC. Therefore, we proposed a novel normalization method, is inspired by GES,

which successfully salvages CMA-ES for ROC AUC by making CMA-ES perform better than or

similar to GES.
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A Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We state in the abstract and introduction that we compare

GES to CMA-ES w.r.t. overfitting. Moreover, we claim to look at normalization to avoid

overfitting. This is exactly what we do in the paper.

(b) Did you describe the limitations of your work? [Yes] In the Appendix, see B.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In the Appendix,

see C.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://2023.automl.cc/ethics/ [Yes]We believe our paper confirms

to them.

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We included no

theoretical results; only theoretical arguments for our proposed normalization method.

(b) Did you include complete proofs of all theoretical results? [N/A] We included no theoretical

results; only theoretical arguments for our proposed normalization method.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] See our code repository (Appendix E) for all details.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] See our code repository.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes] See

our code repository.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes] We believe that our code quality and documentation

are sufficient.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] See the Section 3.1 and 5.

Additionally, see our code repository.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] We ran all methods on the same data.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We compared different normalization approaches, see Section 4.4.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] We ran

all methods on the same data with the same evaluation protocol and code.
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(i) Did you compare performance over time? [No] We compared performance for a spe-

cific point in time (after 50 iterations of GES, i.e., after𝑚 ∗ 50 function evaluations of 𝐿).

Performance over time was out of scope for our experiments.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] Yes,

we used 10-fold cross-validation for all our runs. The used random seeds can be found in

our code.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [No] We took the average over the 10 folds as a score following previous

work and have not reported variance across folds.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] Such bench-

marks were not available for our use case.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] See Section 3.1.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [N/A] We did not tune hyperparameters. We

used a default application of CMA-ES and introduced no meaningful new hyperparameters

with our approaches that would require tuning.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 3.1 and

Appendix D.

(b) Did you mention the license of the assets? [Yes] See Appendix D.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] See

our code repository.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We are only using publicly available data that was used before in

benchmarks.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] We believe that the data we are using does not

contain personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] We did not use crowdsourcing or conducted research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] We did not use crowdsourcing or conducted research

with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] We did not use crowdsourcing or conducted research

with human subjects.
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B Limitations

We note that our work is limited with respect to the following points: 1) we did not explore

variations (w.r.t. hyperparameters or implementation) of CMA-ES in our work; 2) we considered

overfitting with respect to mean rank change between validation and test data, but did not consider

other concepts of overfitting; 3) we only looked at normalization to combat overfitting for CMA-ES

and were not able to compare normalization to using constraints during optimization; 4) we only

provided a high-level theoretical analysis of GES and were not able to provide more fundamental

work or proofs ; and 5) we only evaluated our approach for AutoGluon, one AutoML system with

its specific approach to AutoML.

C Broader Impact Statement

After careful reflection, we determine that this work presents almost no notable or new negative

impacts to society or the environment that are not already present for existing state-of-the-art

AutoML systems. This follows from our work being mostly domain-independent, abstract, and

methodical. We only proposed to replace one component of an AutoML system such that the

predictive performance improves. Nevertheless, we would like to remark that our work might

prompt others to use a default application of CMA-ES instead of GES for a metric like balanced

accuracy. This might have a negative impact on the environment because this would likely increase

the inference time and size of the final ensemble proposed by AutoML systems.

In contrast – as a trade-off – we see the positive impact that higher predictive performance

with CMA-ES could better support decisions made with AutoML systems. Moreover, we believe

that our work might help to understand GES, the currently most used method, better; such that its

performance and behaviour becomes more explainable.

D Used Assets: Essential Python Frameworks for the Implementation and Experiments

The following frameworks were essential for our implementation and experiments:

• AutoGluon (Erickson et al., 2020), Version: 0.6.2, Apache-2.0 License; We used AutoGluon to

generate base models for post hoc ensembling.

• pycma (Hansen et al., 2019), Version 3.2.2, BSD 3-Clause License; We used pycma for CMA-ES.

• Assembled (Purucker and Beel, 2022), Version 0.0.4, MIT License; We used Assembled to store

the base models generated with AutoGluon and to run our ensemble-related experiments.

E DOIs for Data and Code

The following assets were newly created as part of our experiments:

• The code for our experiments: https://doi.org/10.6084/m9.figshare.23609226.

• The prediction data of base models collected by running AutoGluon on the classification datasets

from the AutoML benchmark: https://doi.org/10.6084/m9.figshare.23609361.
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F Data Overview

See Table 3 for an overview of the used datasets and their characteristics. Additionally, the table

shows the mean number of base models and the mean number of distinct algorithms generated by

AutoGluon for the dataset for each metric (mean over the 10 folds of a dataset).

Table 3: Data Overview

Mean # Base Models Mean # Distinct Algorithms

Dataset Name OpenML Task ID #instances #features #classes Memory (GB) Balanced Accuracy ROC AUC Balanced Accuracy ROC AUC

yeast 2073 1484 9 10 32 21.0 21.3 12.0 12.1

KDDCup09_appetency 3945 50000 231 2 32 11.0 11.0 11.0 11.0

covertype 7593 581012 55 7 64 13.3 12.9 8.3 8.0

amazon-commerce-reviews 10090 1500 10001 50 32 8.3 8.7 5.3 5.7

Australian 146818 690 15 2 32 13.0 13.0 13.0 13.0

wilt 146820 4839 6 2 32 12.0 12.0 12.0 12.0

numerai28.6 167120 96320 22 2 32 12.0 12.0 12.0 12.0

phoneme 168350 5404 6 2 32 12.0 11.9 12.0 11.9

credit-g 168757 1000 21 2 32 13.0 13.0 13.0 13.0

steel-plates-fault 168784 1941 28 7 32 21.0 21.0 12.0 12.0

APSFailure 168868 76000 171 2 32 12.0 12.0 12.0 12.0

dilbert 168909 10000 2001 5 32 12.9 12.7 7.9 8.3

fabert 168910 8237 801 7 32 19.8 19.8 11.0 11.0

jasmine 168911 2984 145 2 32 12.3 12.9 12.3 12.9

airlines 189354 539383 8 2 64 9.0 8.9 9.0 8.9

dionis 189355 416188 61 355 128 4.0 4.2 3.0 3.6

albert 189356 425240 79 2 64 7.0 7.0 7.0 7.0

gina 189922 3153 971 2 32 12.0 12.0 12.0 12.0

ozone-level-8hr 190137 2534 73 2 32 13.0 13.0 13.0 13.0

vehicle 190146 846 19 4 32 24.0 24.0 13.0 13.0

madeline 190392 3140 260 2 32 12.0 12.3 12.0 12.3

philippine 190410 5832 309 2 32 12.0 12.0 12.0 12.0

ada 190411 4147 49 2 32 12.0 12.0 12.0 12.0

arcene 190412 100 10001 2 32 13.0 13.0 13.0 13.0

jannis 211979 83733 55 4 32 14.9 15.3 9.2 9.3

Diabetes130US 211986 101766 50 3 32 17.9 18.1 10.8 10.9

micro-mass 359953 571 1301 20 32 13.0 13.0 13.0 13.0

eucalyptus 359954 736 20 5 32 13.0 13.0 13.0 13.0

blood-transfusion-service-center 359955 748 5 2 32 13.0 13.0 13.0 13.0

qsar-biodeg 359956 1055 42 2 32 13.0 13.0 13.0 13.0

cnae-9 359957 1080 857 9 32 20.0 20.0 11.0 11.0

pc4 359958 1458 38 2 32 13.0 13.0 13.0 13.0

cmc 359959 1473 10 3 32 21.8 21.6 12.0 12.0

car 359960 1728 7 4 32 18.4 18.0 9.2 9.0

mfeat-factors 359961 2000 217 10 32 20.0 20.0 11.0 11.0

kc1 359962 2109 22 2 32 12.8 13.0 12.8 13.0

segment 359963 2310 20 7 32 21.0 21.0 12.0 12.0

dna 359964 3186 181 3 32 19.0 19.0 10.0 10.0

kr-vs-kp 359965 3196 37 2 32 10.0 10.0 10.0 10.0

Internet-Advertisements 359966 3279 1559 2 32 12.0 12.0 12.0 12.0

Bioresponse 359967 3751 1777 2 32 12.0 12.0 12.0 12.0

churn 359968 5000 21 2 32 12.0 12.0 12.0 12.0

first-order-theorem-proving 359969 6118 52 6 32 20.1 20.1 11.1 11.1

GesturePhaseSegmentationProcessed 359970 9873 33 5 32 20.0 20.4 11.0 11.2

PhishingWebsites 359971 11055 31 2 32 10.0 10.0 10.0 10.0

sylvine 359972 5124 21 2 32 12.0 12.0 12.0 12.0

christine 359973 5418 1637 2 32 12.0 12.0 12.0 12.0

wine-quality-white 359974 4898 12 7 32 21.0 21.0 12.0 12.0

Satellite 359975 5100 37 2 32 12.0 12.0 12.0 12.0

Fashion-MNIST 359976 70000 785 10 64 12.1 13.0 8.5 8.2

connect-4 359977 67557 43 3 32 16.2 16.3 9.0 9.0

Amazon_employee_access 359979 32769 10 2 32 9.1 10.0 9.1 10.0

nomao 359980 34465 119 2 32 12.0 10.0 12.0 10.0

jungle_chess_2pcs_raw_endgame_complete 359981 44819 7 3 32 19.5 19.9 11.0 11.0

bank-marketing 359982 45211 17 2 32 12.0 12.0 12.0 12.0

adult 359983 48842 15 2 32 12.0 11.9 12.0 11.9

helena 359984 65196 28 100 32 7.7 7.9 5.0 5.0

volkert 359985 58310 181 10 32 13.9 12.5 8.9 8.6

robert 359986 10000 7201 10 64 9.7 9.3 7.6 7.3

shuttle 359987 58000 10 7 32 18.9 19.0 11.0 11.0

guillermo 359988 20000 4297 2 32 9.0 9.0 9.0 9.0

riccardo 359989 20000 4297 2 32 10.1 9.0 10.1 9.0

MiniBooNE 359990 130064 51 2 32 10.3 10.2 10.3 10.2

kick 359991 72983 33 2 32 11.7 12.0 11.7 12.0

Click_prediction_small 359992 39948 12 2 32 11.8 12.4 11.8 12.4

okcupid-stem 359993 50789 20 3 32 18.6 19.8 11.0 11.4

sf-police-incidents 359994 2215023 9 2 64 11.0 7.2 11.0 7.2

KDDCup99 360112 4898431 42 23 128 10.3 7.6 8.5 6.9

porto-seguro 360113 595212 58 2 64 6.2 2.2 6.2 2.2

Higgs 360114 1000000 29 2 64 3.0 3.0 3.0 3.0

KDDCup09-Upselling 360975 50000 14892 2 128 10.5 9.0 10.5 9.0
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G Overview of Rank Change from Validation to Test Data

This section provides an overview of the rank change from validation to test data for the compared

methods to inspect overfitting. Table 4 gives the overview for the comparison made in Section 3.2.

Table 5 gives the overview for the comparison made in Section 6.

G.1 Supplements for Section 3.2

Table 4: Mean rank change from validation to test data for CMA-ES, GES, and SingleBest. We denote

the mean rank on validation data with MRV and the mean rank on test data with MRT.

Method MRV MRT Absolute Rank (Val→ Test)

CMA-ES 1.00 1.12 1.00 ->1.00

GES 2.06 2.44 2.00 ->2.50

SingleBest 2.94 2.44 3.00 ->2.50

(a) Balanced Accuracy - Binary

Method MRV MRT Absolute Rank (Val→ Test)

CMA-ES 1.03 1.25 1.00 ->1.00

GES 1.97 2.33 2.00 ->2.00

SingleBest 3.00 2.42 3.00 ->3.00

(b) Balanced Accuracy - Multi-class

Method MRV MRT Absolute Rank (Val→ Test)

CMA-ES 1.02 1.83 1.00 ->2.00

GES 1.99 1.52 2.00 ->1.00

SingleBest 2.99 2.65 3.00 ->3.00

(c) ROC AUC - Binary

Method MRV MRT Absolute Rank (Val→ Test)

CMA-ES 1.42 2.12 1.00 ->2.00

GES 1.60 1.40 2.00 ->1.00

SingleBest 2.98 2.48 3.00 ->3.00

(d) ROC AUC - Multi-class

G.2 Supplements for Section 6

Table 5: Mean rank change from validation to test data for CMA-ES-ExplicitGES, GES, and SingleBest.

We denote the mean rank on validation data with MRV and the mean rank on test data

with MRT. In the case of a tie for the absolute rank, we assign all tied values the average of

their randomly tie-broken ranks. As a result, a rank of 1.5 for validation data for ROC AUC

multi-class occurs since CMA-ES-ExplicitGES and GES are tied.

Method MRV MRT Absolute Rank (Val→ Test)

CMA-ES-ExplicitGES 1.74 1.78 2.00 ->1.00

GES 1.40 2.00 1.00 ->2.00

SingleBest 2.85 2.22 3.00 ->3.00

(a) Balanced Accuracy - Binary

Method MRV MRT Absolute Rank (Val→ Test)

CMA-ES-ExplicitGES 1.73 1.78 2.00 ->1.00

GES 1.27 2.07 1.00 ->2.00

SingleBest 3.00 2.15 3.00 ->3.00

(b) Balanced Accuracy - Multi-class

Method MRV MRT Absolute Rank (Val→ Test)

CMA-ES-ExplicitGES 1.63 1.70 2.00 ->2.00

GES 1.39 1.50 1.00 ->1.00

SingleBest 2.98 2.80 3.00 ->3.00

(c) ROC AUC - Binary

Method MRV MRT Absolute Rank (Val→ Test)

CMA-ES-ExplicitGES 1.50 1.57 1.50 ->1.00

GES 1.50 1.73 1.50 ->2.00

SingleBest 3.00 2.70 3.00 ->3.00

(d) ROC AUC - Multi-class

H Comparison of Normalization Methods

See Figure 4 for a comparison of the three proposed normalization methods following the experi-

ments described in Section 3.1.

The difference between the presented methods shows a small ablation study of our approaches

w.r.t. satisfying the properties of GES, pseudo-discrete and sparse (specified in Section 4.1). CMA-ES

and CMA-ES-Softmax are versions without either property; CMA-ES-ImplicitGES satisfies only

sparseness; and CMA-ES-ExplicitGES satisfies both properties. Only the method that satisfies both
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Figure 4: CD Plots Comparing the Normalization Methods for ROC AUC:Mean rank of the methods

(lower is better). Methods connected by a bar are not significantly different.

Table 6: The average ensemble size (non-zero weighted base models) for CMA-ES, CMA-ES-

ExplicitGES, CMA-ES-ImplicitGES, and GES for binary and multi-class classification with

ROC AUC.

Task Type CMA-ES CMA-ES-ExplicitGES CMA-ES-ImplicitGES GES

Binary Classification 10.973 5.263 4.471 4.761

Multi-class Classification 14.827 7.300 6.310 6.850

Average ∼12.9 ∼6.3 ∼5.4 ∼5.8

properties, CMA-ES-ExplicitGES, is significantly different from CMA-ES for multi-class and always

has the best mean rank.

To analyze the effect of trimming base models on the size of the ensemble, we show the average

ensemble size in Table 6.

I Supplements for Experiments Following the AutoML Benchmark (Gijsbers et al., 2022)

I.1 Statistical Test with Critical Difference Plots

Following the AutoML benchmark (Gijsbers et al., 2022), we perform a statistical test using a

Friedman test with a Nemenyi post hoc test (𝛼 = 0.05). We implemented the tests re-using code

from Autorank (Herbold, 2020).

We first calculate the mean rank of each method for each collection of datasets, i.e., the subset

of datasets for binary or multi-class classification for both metrics. Then, we use the Friedman

test as an omnibus test to try to reject the null hypothesis that there is no difference between the

methods. Only if the Friedman test is significant and rejects the null hypothesis, we perform a

Nemenyi post hoc test. The test calculates a critical difference (CD). Finally, we determine if the

difference between methods is significant by verifying that their difference in mean rank is greater

than the CD. Otherwise, the difference is not significant. We show the results of the Nemenyi

post hoc test using CD plots, whereby a horizontal bar connects methods that are not significantly

different.

I.2 Normalized Improvement

Our implementation of normalized improvement follows the AutoML benchmark (Gijsbers et al.,

2022). That is, we scale the scores for a dataset such that −1 is equal to the score of the single best

model, and 0 is equal to the score of the best method on the dataset.
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Formally, we normalise the score 𝑠𝐷 of a method for a dataset 𝐷 using:

𝑠𝐷 − 𝑠𝑏𝐷
𝑠∗
𝐷
− 𝑠𝑏

𝐷

− 1, (5)

with the score of the baseline 𝑠𝑏
𝐷
and the best-observed score for the dataset 𝑠∗

𝐷
. We assume that

higher scores are always better.

We extend this definition for the edge cases where no method is better than the baseline, i.e.,
𝑠∗
𝐷
− 𝑠𝑏

𝐷
= 0. We suppose that this edge case never happened in the AutoML benchmark. Otherwise,

their definition and implementation would have crashed. In our setting, such an edge case can

happen due to overfitting such that the ensemble methods becomes worse than the single best

model.

If the edge case happens, we set the score of all methods worse than the baseline to −10,
following a penalization-like approach (e.g., PAR10 from Algorithm Selection (Lindauer et al., 2019)).

Methods for which 𝑠𝐷 − 𝑠𝑏𝐷 = 0 holds are assigned a score of −1.

J Overview of Performance per Dataset

Here we provide the mean and standard deviation over all folds per dataset. The different com-

binations of metric and classification tasks are split into separate tables, see Tables 7,8, 9, and

10.

19



Table 7: Balanced Accuracy - Binary: The mean and standard deviation of the test score over all folds

for each method. The best method per dataset is shown in bold.

Dataset CMA-ES CMA-ES-ExplicitGES GES SingleBest Stacking

APSFailure 0.9563 (± 0.0118) 0.8957 (± 0.0207) 0.8957 (± 0.0205) 0.8961 (± 0.0208) 0.8977 (± 0.0236)

Amazon_employee_access 0.8262 (± 0.0153) 0.6883 (± 0.0104) 0.6884 (± 0.0105) 0.6883 (± 0.0104) 0.6902 (± 0.0147)

Australian 0.8598 (± 0.0293) 0.8615 (± 0.0237) 0.8579 (± 0.0357) 0.8605 (± 0.0174) 0.871 (± 0.0247)
Bioresponse 0.8085 (± 0.0175) 0.805 (± 0.0218) 0.8052 (± 0.0228) 0.8045 (± 0.0222) 0.8066 (± 0.02)

Click_prediction_small 0.6461 (± 0.0081) 0.5535 (± 0.0052) 0.5535 (± 0.0052) 0.5535 (± 0.0052) 0.5504 (± 0.0057)

Higgs 0.7414 (± 0.0012) 0.7408 (± 0.001) 0.7408 (± 0.001) 0.7407 (± 0.001) 0.7417 (± 0.0012)
Internet-Advertisements 0.9454 (± 0.0251) 0.9438 (± 0.0247) 0.9452 (± 0.0247) 0.9365 (± 0.0243) 0.9445 (± 0.0219)

KDDCup09-Upselling 0.7906 (± 0.0076) 0.7818 (± 0.0103) 0.7823 (± 0.0102) 0.7817 (± 0.01) 0.7683 (± 0.009)

KDDCup09_appetency 0.6622 (± 0.0622) 0.5 (± 0.0) 0.5 (± 0.0) 0.5 (± 0.0) 0.5005 (± 0.0018)

MiniBooNE 0.9442 (± 0.0051) 0.9399 (± 0.0028) 0.94 (± 0.0028) 0.9399 (± 0.0028) 0.9364 (± 0.0031)

PhishingWebsites 0.9723 (± 0.0037) 0.972 (± 0.0046) 0.9722 (± 0.0049) 0.9705 (± 0.0046) 0.9715 (± 0.0045)

Satellite 0.9281 (± 0.0418) 0.8317 (± 0.0704) 0.8248 (± 0.0712) 0.8316 (± 0.0703) 0.832 (± 0.078)

ada 0.8102 (± 0.0299) 0.7956 (± 0.0293) 0.7953 (± 0.0289) 0.7943 (± 0.0277) 0.7887 (± 0.0282)

adult 0.842 (± 0.0069) 0.8002 (± 0.0069) 0.7993 (± 0.0069) 0.8002 (± 0.0069) 0.8007 (± 0.0067)

airlines 0.6422 (± 0.0025) 0.6573 (± 0.0016) 0.6573 (± 0.0017) 0.6569 (± 0.0014) 0.649 (± 0.0017)

albert 0.7049 (± 0.0021) 0.7046 (± 0.0023) 0.7047 (± 0.0023) 0.7043 (± 0.0026) 0.7051 (± 0.0024)
arcene 0.8383 (± 0.1616) 0.7967 (± 0.1904) 0.8075 (± 0.1911) 0.7808 (± 0.1646) 0.785 (± 0.1807)

bank-marketing 0.8722 (± 0.0097) 0.7447 (± 0.0117) 0.7448 (± 0.012) 0.7448 (± 0.0116) 0.7348 (± 0.0139)

blood-transfusion-service-center 0.6315 (± 0.0378) 0.642 (± 0.0476) 0.6419 (± 0.0437) 0.6514 (± 0.0398) 0.6233 (± 0.0403)

christine 0.7556 (± 0.0133) 0.7521 (± 0.0173) 0.7517 (± 0.0163) 0.7517 (± 0.0163) 0.7523 (± 0.0191)

churn 0.9075 (± 0.0248) 0.8912 (± 0.0211) 0.8896 (± 0.0188) 0.8809 (± 0.0248) 0.9001 (± 0.024)

credit-g 0.689 (± 0.0369) 0.6843 (± 0.0494) 0.6855 (± 0.0474) 0.684 (± 0.0472) 0.6843 (± 0.0432)

gina 0.9607 (± 0.0153) 0.9563 (± 0.0179) 0.9563 (± 0.0179) 0.9563 (± 0.0179) 0.956 (± 0.0187)

guillermo 0.8411 (± 0.0102) 0.8171 (± 0.0094) 0.8171 (± 0.0094) 0.8171 (± 0.0094) 0.8307 (± 0.0111)

jasmine 0.8167 (± 0.0169) 0.8167 (± 0.0186) 0.8154 (± 0.0183) 0.8154 (± 0.0183) 0.8231 (± 0.0182)
kc1 0.7021 (± 0.0329) 0.6423 (± 0.0357) 0.6423 (± 0.0357) 0.6423 (± 0.0357) 0.6453 (± 0.0415)

kick 0.6985 (± 0.0139) 0.6231 (± 0.0068) 0.6231 (± 0.0068) 0.6231 (± 0.0068) 0.6258 (± 0.0086)

kr-vs-kp 0.9947 (± 0.005) 0.9934 (± 0.0045) 0.9935 (± 0.0042) 0.9932 (± 0.005) 0.9956 (± 0.0051)
madeline 0.8767 (± 0.011) 0.8694 (± 0.0192) 0.8688 (± 0.0185) 0.8691 (± 0.0187) 0.8716 (± 0.0176)

nomao 0.9733 (± 0.0031) 0.9668 (± 0.0027) 0.9666 (± 0.0027) 0.9666 (± 0.0027) 0.9663 (± 0.0032)

numerai28.6 0.5209 (± 0.0047) 0.5192 (± 0.0046) 0.5194 (± 0.0045) 0.5196 (± 0.0042) 0.5202 (± 0.0046)

ozone-level-8hr 0.7963 (± 0.0398) 0.7203 (± 0.0447) 0.7203 (± 0.0447) 0.7201 (± 0.045) 0.6814 (± 0.0649)

pc4 0.8571 (± 0.0412) 0.8011 (± 0.0561) 0.8014 (± 0.0551) 0.8019 (± 0.0526) 0.7417 (± 0.0598)

philippine 0.7819 (± 0.019) 0.7814 (± 0.0149) 0.7795 (± 0.0161) 0.7798 (± 0.016) 0.7827 (± 0.0167)
phoneme 0.9141 (± 0.0148) 0.8931 (± 0.0191) 0.8938 (± 0.0178) 0.8905 (± 0.0216) 0.8987 (± 0.0206)

porto-seguro 0.5487 (± 0.0425) 0.5001 (± 0.0003) 0.5 (± 0.0002) 0.5001 (± 0.0003) 0.5004 (± 0.0006)

qsar-biodeg 0.8568 (± 0.0335) 0.8504 (± 0.034) 0.8469 (± 0.0331) 0.849 (± 0.0342) 0.8568 (± 0.0379)
riccardo 0.9986 (± 0.0008) 0.9986 (± 0.0004) 0.9985 (± 0.0006) 0.9985 (± 0.0007) 0.9984 (± 0.0007)

sf-police-incidents 0.6279 (± 0.0117) 0.5255 (± 0.001) 0.5256 (± 0.0009) 0.5248 (± 0.0009) 0.5207 (± 0.0005)

sylvine 0.9518 (± 0.0073) 0.95 (± 0.0049) 0.9504 (± 0.005) 0.9506 (± 0.0051) 0.9504 (± 0.0068)

wilt 0.9542 (± 0.0312) 0.9232 (± 0.0482) 0.9272 (± 0.0401) 0.9291 (± 0.0382) 0.9057 (± 0.0479)
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Table 8: Balanced Accuracy - Multi-class: The mean and standard deviation of the test score over all

folds for each method. The best method per dataset is shown in bold.

Dataset CMA-ES CMA-ES-ExplicitGES GES SingleBest Stacking

Diabetes130US 0.4946 (± 0.0066) 0.4498 (± 0.0032) 0.4495 (± 0.0038) 0.4493 (± 0.0037) 0.4526 (± 0.0049)

Fashion-MNIST 0.9112 (± 0.0037) 0.9098 (± 0.0034) 0.91 (± 0.0033) 0.909 (± 0.0036) 0.9097 (± 0.0044)

GesturePhaseSegmentationProcessed 0.737 (± 0.0202) 0.7146 (± 0.0182) 0.7141 (± 0.0182) 0.7152 (± 0.0171) 0.7204 (± 0.0154)

KDDCup99 0.7672 (± 0.0356) 0.7681 (± 0.0358) 0.7607 (± 0.0392) 0.7268 (± 0.0421) 0.7297 (± 0.0387)

amazon-commerce-reviews 0.8547 (± 0.0301) 0.85 (± 0.028) 0.8533 (± 0.029) 0.8307 (± 0.0352) 0.8353 (± 0.0314)

car 0.997 (± 0.0057) 0.9954 (± 0.0112) 0.9949 (± 0.0115) 0.9954 (± 0.0112) 0.9989 (± 0.0023)
cmc 0.5377 (± 0.0453) 0.538 (± 0.0448) 0.5298 (± 0.0441) 0.526 (± 0.0375) 0.5321 (± 0.039)

cnae-9 0.9611 (± 0.0246) 0.962 (± 0.0245) 0.9657 (± 0.0175) 0.9556 (± 0.0275) 0.963 (± 0.0214)

connect-4 0.7834 (± 0.0074) 0.71 (± 0.0081) 0.7096 (± 0.0081) 0.7101 (± 0.0078) 0.7082 (± 0.0058)

covertype 0.9707 (± 0.0032) 0.9579 (± 0.0034) 0.9577 (± 0.0035) 0.9579 (± 0.0037) 0.953 (± 0.0029)

dilbert 0.9944 (± 0.0012) 0.9934 (± 0.0015) 0.9936 (± 0.0027) 0.992 (± 0.0028) 0.994 (± 0.002)

dionis 0.8354 (± 0.0033) 0.8315 (± 0.0022) 0.8316 (± 0.0021) 0.826 (± 0.0018) 0.8332 (± 0.0015)

dna 0.9661 (± 0.0117) 0.9653 (± 0.011) 0.9635 (± 0.0096) 0.9612 (± 0.0085) 0.9645 (± 0.0141)

eucalyptus 0.691 (± 0.0472) 0.6806 (± 0.0365) 0.6799 (± 0.0418) 0.6901 (± 0.0476) 0.6937 (± 0.0673)
fabert 0.7164 (± 0.0094) 0.7094 (± 0.0108) 0.7102 (± 0.0093) 0.7104 (± 0.0124) 0.7123 (± 0.0124)

first-order-theorem-proving 0.5121 (± 0.0132) 0.497 (± 0.0282) 0.4941 (± 0.0205) 0.4858 (± 0.0233) 0.4913 (± 0.0229)

helena 0.2491 (± 0.0057) 0.2411 (± 0.0066) 0.2414 (± 0.0069) 0.2283 (± 0.0057) 0.2092 (± 0.004)

jannis 0.6546 (± 0.0129) 0.5691 (± 0.0046) 0.5691 (± 0.0046) 0.5692 (± 0.0051) 0.5746 (± 0.0048)

jungle_chess_2pcs_raw_endgame_complete 0.9808 (± 0.0047) 0.9703 (± 0.0065) 0.9707 (± 0.0065) 0.9707 (± 0.0063) 0.9757 (± 0.0053)

mfeat-factors 0.9805 (± 0.006) 0.98 (± 0.0062) 0.9815 (± 0.0047) 0.9825 (± 0.0054) 0.979 (± 0.0088)

micro-mass 0.9189 (± 0.0403) 0.9227 (± 0.0378) 0.9152 (± 0.0436) 0.9072 (± 0.0517) 0.9017 (± 0.0401)

okcupid-stem 0.7 (± 0.0088) 0.5638 (± 0.0133) 0.5635 (± 0.0137) 0.5636 (± 0.0136) 0.5505 (± 0.0094)

robert 0.5136 (± 0.0102) 0.5134 (± 0.0119) 0.5124 (± 0.0108) 0.5159 (± 0.012) 0.51 (± 0.0098)

segment 0.9442 (± 0.0141) 0.9463 (± 0.0152) 0.9455 (± 0.0126) 0.9442 (± 0.0139) 0.9429 (± 0.0127)

shuttle 0.8543 (± 0.009) 0.8534 (± 0.0117) 0.8534 (± 0.0117) 0.8542 (± 0.009) 0.9791 (± 0.0476)
steel-plates-fault 0.8491 (± 0.0211) 0.828 (± 0.0167) 0.8234 (± 0.0198) 0.8279 (± 0.0194) 0.8167 (± 0.0197)

vehicle 0.8519 (± 0.027) 0.8589 (± 0.0297) 0.8553 (± 0.0269) 0.8552 (± 0.0264) 0.8645 (± 0.0298)
volkert 0.7197 (± 0.0061) 0.6802 (± 0.0083) 0.6795 (± 0.008) 0.6805 (± 0.0086) 0.6767 (± 0.0066)

wine-quality-white 0.4279 (± 0.0438) 0.3938 (± 0.0417) 0.3938 (± 0.0347) 0.4023 (± 0.0333) 0.3917 (± 0.0386)

yeast 0.5213 (± 0.0644) 0.5113 (± 0.0556) 0.5006 (± 0.0752) 0.4955 (± 0.0732) 0.516 (± 0.0569)
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Table 9: ROC AUC - Binary: The mean and standard deviation of the test score over all folds for each

method. The best method per dataset is shown in bold.

Dataset CMA-ES CMA-ES-ExplicitGES GES SingleBest Stacking

APSFailure 0.9923 (± 0.0021) 0.9927 (± 0.0016) 0.9927 (± 0.0016) 0.9925 (± 0.0017) 0.992 (± 0.0015)

Amazon_employee_access 0.901 (± 0.0125) 0.9012 (± 0.0127) 0.9008 (± 0.0126) 0.9003 (± 0.0119) 0.8967 (± 0.0126)

Australian 0.9399 (± 0.0189) 0.9403 (± 0.0174) 0.9403 (± 0.017) 0.9402 (± 0.0187) 0.9437 (± 0.0171)
Bioresponse 0.8843 (± 0.0178) 0.8859 (± 0.0163) 0.886 (± 0.016) 0.8807 (± 0.0166) 0.8853 (± 0.016)

Click_prediction_small 0.7098 (± 0.0116) 0.7102 (± 0.0118) 0.7101 (± 0.0118) 0.7086 (± 0.0122) 0.71 (± 0.0119)

Higgs 0.8256 (± 0.0008) 0.8244 (± 0.0008) 0.8243 (± 0.0008) 0.8244 (± 0.0008) 0.8254 (± 0.0008)

Internet-Advertisements 0.9859 (± 0.0106) 0.9844 (± 0.0127) 0.9851 (± 0.0129) 0.9845 (± 0.0121) 0.9866 (± 0.0106)
KDDCup09-Upselling 0.9085 (± 0.0067) 0.9085 (± 0.0066) 0.9085 (± 0.0068) 0.9082 (± 0.0067) 0.8997 (± 0.0074)

KDDCup09_appetency 0.8484 (± 0.0128) 0.8487 (± 0.0131) 0.8487 (± 0.0131) 0.8462 (± 0.0128) 0.8373 (± 0.0129)

MiniBooNE 0.9874 (± 0.0011) 0.9873 (± 0.001) 0.9873 (± 0.001) 0.9871 (± 0.001) 0.9866 (± 0.0012)

PhishingWebsites 0.9967 (± 0.0015) 0.9969 (± 0.001) 0.997 (± 0.001) 0.9955 (± 0.0015) 0.9968 (± 0.001)

Satellite 0.9682 (± 0.0883) 0.9946 (± 0.0066) 0.9945 (± 0.0065) 0.9944 (± 0.0066) 0.9944 (± 0.006)

ada 0.9199 (± 0.0174) 0.9203 (± 0.0177) 0.9203 (± 0.0176) 0.9198 (± 0.0179) 0.9202 (± 0.0179)

adult 0.9318 (± 0.004) 0.9316 (± 0.0041) 0.9316 (± 0.0041) 0.9312 (± 0.0044) 0.9303 (± 0.0038)

airlines 0.7064 (± 0.0024) 0.7242 (± 0.0018) 0.7245 (± 0.0019) 0.7233 (± 0.0019) 0.7084 (± 0.0022)

albert 0.7782 (± 0.0025) 0.778 (± 0.0025) 0.7781 (± 0.0025) 0.7776 (± 0.0026) 0.7781 (± 0.0025)

arcene 0.913 (± 0.1134) 0.8812 (± 0.1379) 0.8812 (± 0.1379) 0.8447 (± 0.1967) 0.873 (± 0.1585)

bank-marketing 0.9405 (± 0.0062) 0.9406 (± 0.0061) 0.9406 (± 0.0062) 0.9395 (± 0.0064) 0.9399 (± 0.0062)

blood-transfusion-service-center 0.7352 (± 0.059) 0.7383 (± 0.0557) 0.7394 (± 0.0552) 0.7487 (± 0.0485) 0.7437 (± 0.0571)

christine 0.8274 (± 0.0137) 0.8266 (± 0.0132) 0.8266 (± 0.0134) 0.8258 (± 0.0142) 0.8274 (± 0.0135)

churn 0.9348 (± 0.0164) 0.923 (± 0.0252) 0.924 (± 0.0249) 0.9221 (± 0.0247) 0.929 (± 0.0195)

credit-g 0.7926 (± 0.0329) 0.797 (± 0.0367) 0.7984 (± 0.0372) 0.7894 (± 0.0323) 0.7999 (± 0.0377)
gina 0.992 (± 0.0048) 0.9914 (± 0.0052) 0.9914 (± 0.0052) 0.991 (± 0.0057) 0.9898 (± 0.0062)

guillermo 0.9216 (± 0.0061) 0.9124 (± 0.0081) 0.9119 (± 0.0077) 0.9117 (± 0.0077) 0.9214 (± 0.0058)

jasmine 0.884 (± 0.0157) 0.8856 (± 0.0165) 0.8857 (± 0.0166) 0.8836 (± 0.0178) 0.8858 (± 0.0172)
kc1 0.8338 (± 0.0409) 0.8371 (± 0.0382) 0.8378 (± 0.0367) 0.8335 (± 0.0426) 0.839 (± 0.0354)
kick 0.7913 (± 0.0062) 0.7913 (± 0.0062) 0.7912 (± 0.0062) 0.7898 (± 0.0057) 0.7897 (± 0.0062)

kr-vs-kp 0.9983 (± 0.0043) 0.9998 (± 0.0002) 0.9998 (± 0.0002) 0.9998 (± 0.0002) 0.9994 (± 0.0012)

madeline 0.9471 (± 0.0078) 0.9447 (± 0.0086) 0.9447 (± 0.0087) 0.9394 (± 0.0082) 0.9458 (± 0.0094)

nomao 0.9964 (± 0.0006) 0.9964 (± 0.0006) 0.9964 (± 0.0006) 0.9963 (± 0.0007) 0.996 (± 0.0005)

numerai28.6 0.5301 (± 0.0045) 0.5305 (± 0.0044) 0.5305 (± 0.0045) 0.5297 (± 0.0044) 0.5302 (± 0.0045)

ozone-level-8hr 0.9267 (± 0.0287) 0.9336 (± 0.0184) 0.9338 (± 0.0177) 0.9329 (± 0.0193) 0.9328 (± 0.0249)

pc4 0.9515 (± 0.0191) 0.9526 (± 0.0191) 0.9524 (± 0.0195) 0.9513 (± 0.0183) 0.9519 (± 0.0191)

philippine 0.877 (± 0.0129) 0.8756 (± 0.013) 0.8754 (± 0.0131) 0.8772 (± 0.0117) 0.8754 (± 0.0132)

phoneme 0.9717 (± 0.0087) 0.9684 (± 0.0094) 0.9684 (± 0.0094) 0.9678 (± 0.0091) 0.9705 (± 0.0092)

porto-seguro 0.5172 (± 0.0383) 0.5172 (± 0.0382) 0.5172 (± 0.0382) 0.5172 (± 0.0382) 0.5172 (± 0.0381)

qsar-biodeg 0.9398 (± 0.0313) 0.9436 (± 0.029) 0.9436 (± 0.0289) 0.9355 (± 0.0337) 0.9418 (± 0.0307)

riccardo 0.9999 (± 0.0001) 0.9998 (± 0.0001) 0.9998 (± 0.0001) 0.9997 (± 0.0002) 0.9998 (± 0.0001)

sf-police-incidents 0.6874 (± 0.0017) 0.6886 (± 0.0019) 0.6886 (± 0.0019) 0.6873 (± 0.0017) 0.684 (± 0.0019)

sylvine 0.9863 (± 0.0071) 0.9889 (± 0.0033) 0.9889 (± 0.0034) 0.988 (± 0.0039) 0.9884 (± 0.0036)

wilt 0.994 (± 0.0071) 0.9946 (± 0.0091) 0.9948 (± 0.0087) 0.9946 (± 0.0092) 0.9943 (± 0.0084)
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Table 10: ROC AUC - Multi-class: The mean and standard deviation of the test score over all folds for

each method. The best method per dataset is shown in bold.

Dataset CMA-ES CMA-ES-ExplicitGES GES SingleBest Stacking

Diabetes130US 0.7127 (± 0.0054) 0.713 (± 0.0055) 0.713 (± 0.0055) 0.7129 (± 0.0055) 0.7115 (± 0.0053)

Fashion-MNIST 0.9942 (± 0.0004) 0.9943 (± 0.0004) 0.9943 (± 0.0004) 0.9941 (± 0.0004) 0.9937 (± 0.0005)

GesturePhaseSegmentationProcessed 0.94 (± 0.0066) 0.9382 (± 0.0064) 0.938 (± 0.0064) 0.9374 (± 0.0063) 0.937 (± 0.0074)

KDDCup99 0.9999 (± 0.0001) 0.8898 (± 0.0233) 0.8935 (± 0.0148) 0.892 (± 0.0174) 0.9997 (± 0.0005)

amazon-commerce-reviews 0.995 (± 0.0019) 0.994 (± 0.0024) 0.9941 (± 0.0022) 0.9924 (± 0.0037) 0.9919 (± 0.0021)

car 0.9993 (± 0.0022) 1.0 (± 0.0001) 1.0 (± 0.0001) 1.0 (± 0.0001) 1.0 (± 0.0)
cmc 0.7353 (± 0.0338) 0.739 (± 0.0345) 0.7391 (± 0.0344) 0.7296 (± 0.0332) 0.7358 (± 0.0344)

cnae-9 0.9974 (± 0.0035) 0.9985 (± 0.0018) 0.9985 (± 0.0017) 0.9983 (± 0.0018) 0.9984 (± 0.0016)

connect-4 0.9494 (± 0.0035) 0.9496 (± 0.0035) 0.9496 (± 0.0035) 0.9496 (± 0.0035) 0.9472 (± 0.0034)

covertype 0.9994 (± 0.0) 0.9995 (± 0.0) 0.9995 (± 0.0) 0.9994 (± 0.0) 0.9993 (± 0.0001)

dilbert 0.9999 (± 0.0001) 0.9999 (± 0.0) 0.9999 (± 0.0) 0.9999 (± 0.0002) 1.0 (± 0.0)
dionis 0.9937 (± 0.0027) 0.9941 (± 0.0025) 0.9941 (± 0.0025) 0.9891 (± 0.0051) 0.997 (± 0.0004)
dna 0.9943 (± 0.0033) 0.9952 (± 0.0025) 0.9953 (± 0.0026) 0.9947 (± 0.0026) 0.9947 (± 0.003)

eucalyptus 0.9293 (± 0.0173) 0.9321 (± 0.0154) 0.9314 (± 0.017) 0.9296 (± 0.0142) 0.9347 (± 0.0156)
fabert 0.9457 (± 0.0038) 0.946 (± 0.0038) 0.9458 (± 0.0038) 0.9445 (± 0.004) 0.9434 (± 0.0044)

first-order-theorem-proving 0.8468 (± 0.0114) 0.8523 (± 0.0094) 0.8524 (± 0.0095) 0.8468 (± 0.0109) 0.8408 (± 0.0115)

helena 0.8992 (± 0.0027) 0.8999 (± 0.0027) 0.9 (± 0.0027) 0.8986 (± 0.0028) 0.8795 (± 0.0014)

jannis 0.8872 (± 0.0032) 0.8887 (± 0.0031) 0.8887 (± 0.0031) 0.8872 (± 0.0032) 0.8846 (± 0.0027)

jungle_chess_2pcs_raw_endgame_complete 0.9992 (± 0.0003) 0.999 (± 0.0002) 0.999 (± 0.0002) 0.999 (± 0.0002) 0.9991 (± 0.0003)

mfeat-factors 0.9989 (± 0.0017) 0.9996 (± 0.0004) 0.9995 (± 0.0005) 0.9994 (± 0.0007) 0.9992 (± 0.0007)

micro-mass 0.9913 (± 0.0167) 0.9956 (± 0.008) 0.9956 (± 0.0082) 0.9957 (± 0.0081) 0.9976 (± 0.002)
okcupid-stem 0.8321 (± 0.0059) 0.8329 (± 0.0055) 0.8329 (± 0.0055) 0.832 (± 0.0057) 0.8277 (± 0.005)

robert 0.8866 (± 0.0036) 0.8853 (± 0.0039) 0.8855 (± 0.004) 0.8843 (± 0.0041) 0.8817 (± 0.005)

segment 0.9964 (± 0.0009) 0.9965 (± 0.0013) 0.9965 (± 0.0012) 0.9961 (± 0.0014) 0.9962 (± 0.0012)

shuttle 1.0 (± 0.0) 0.9286 (± 0.0) 0.9286 (± 0.0) 0.9286 (± 0.0) 1.0 (± 0.0)
steel-plates-fault 0.9663 (± 0.0086) 0.9696 (± 0.0048) 0.9694 (± 0.0049) 0.9678 (± 0.0062) 0.9653 (± 0.0088)

vehicle 0.9665 (± 0.0102) 0.9691 (± 0.0091) 0.9686 (± 0.0092) 0.9689 (± 0.0086) 0.9683 (± 0.0091)

volkert 0.9569 (± 0.0011) 0.9581 (± 0.001) 0.9581 (± 0.001) 0.9578 (± 0.0011) 0.9521 (± 0.0017)

wine-quality-white 0.8594 (± 0.0306) 0.8409 (± 0.0319) 0.8425 (± 0.0311) 0.8446 (± 0.0311) 0.8673 (± 0.0339)
yeast 0.8834 (± 0.035) 0.8632 (± 0.0334) 0.8638 (± 0.0327) 0.8571 (± 0.0384) 0.878 (± 0.0325)
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