
Symbolic Explanations for Hyperparameter Optimization

Sarah Segel1 Helena Graf1 Alexander Tornede1 Bernd Bischl2,3 Marius Lindauer1

1
Institute of Artificial Intelligence, Leibniz University Hannover

2
Department of Statistics, Ludwig-Maximilians-University Munich

3
Munich Center for Machine Learning (MCML)

Abstract Hyperparameter optimization (HPO) methods can determine well-performing hyperpa-

rameter configurations efficiently but often lack insights and transparency. We propose to

apply symbolic regression to meta-data collected with Bayesian optimization (BO) during

HPO. In contrast to prior approaches explaining the effects of hyperparameters on model

performance, symbolic regression allows for obtaining explicit formulas quantifying the

relation between hyperparameter values and model performance. Overall, our approach

aims to make the HPO process more explainable and human-centered, addressing the needs

of multiple user groups: First, providing insights into the HPO process can support data

scientists and machine learning practitioners in their decisions when using and interacting

with HPO tools. Second, obtaining explicit formulas and inspecting their properties could

help researchers understand the HPO loss landscape better. In an experimental evaluation,

we find that naively applying symbolic regression directly to meta-data collected during

HPO is affected by the sampling bias introduced by BO. However, the true underlying loss

landscape can be approximated by fitting the symbolic regression on the surrogate model

trained during BO. By penalizing longer formulas, symbolic regression furthermore allows

the user to decide how to balance the accuracy and explainability of the resulting formulas.

1 Introduction
As the performance of machine learning (ML) models crucially depends on the choice of suitable

hyperparameter configurations (Bischl et al., 2023; Feurer and Hutter, 2019), a plethora of tools

focused on finding such configurations has been developed during the last years (Akiba et al.,

2019; Awad et al., 2021; Balandat et al., 2020; Falkner et al., 2018; Li et al., 2018; Lindauer et al.,

2022). Despite their efficiency in finding a well-performing configuration quickly, these tools

are sometimes not adopted in practice - an important reason for this is the lack of insights into

the underlying HPO problem generated by the optimization process and, in turn, the returned

hyperparameter configuration (Blom et al., 2021). In fact, Godbole et al. (2023) advocate against

plainly applying HPO tools in a recent publication and instead argue in favor of an interactive HPO

process tailored to gain insights into the problem.

In this work, we take a step to alleviate this situation by moving toward a more human-centered

and interpretable HPO process (Moosbauer, Casalicchio, et al., 2022; Moosbauer, Herbinger, et

al., 2021) that generates insights into the underlying HPO problem while searching for a well-

performing hyperparameter configuration. To this end, we propose to apply symbolic regression to

the meta-data collected with Bayesian optimization (BO) during HPO, allowing us to infer a closed-

form expression of the relation between hyperparameters and the performance of a configuration.

The interpretability of this expression can be controlled via a parsimony hyperparameter trading off

(a) the complexity of the expression and (b) how well it describes the actual dependency between

hyperparameter values and model performance. We show that naively applying symbolic regression

does not yield an expression with high explanation power due to the bias in the meta-data used for

training, which is caused by the HPO process’ sampling strategy, and we suggest two strategies to

mitigate this problem.

AutoML 2023 © 2023 the authors, released under CC BY 4.0

mailto:s.segel@ai.uni-hannover.de
mailto:h.graf@ai.uni-hannover.de
mailto:a.tornede@ai.uni-hannover.de
mailto:bernd.bischl@stat.uni-muenchen.de
mailto:m.lindauer@ai.uni-hannover.de
https://creativecommons.org/licenses/by/4.0/

For practitioners, our approach (at the slight additional cost of training a symbolic regression

model) allows to obtain concrete insights into the HPO loss landscape at hand (Pushak and Hoos,

2022; Schneider et al., 2022) in the form of a formula analytically describing how hyperparameter

values influence the performance of a configuration. These insights can be compared and validated

against available domain knowledge much more directly than for a black-box surrogate model.

Moreover, although we focus on BO-based HPO in this work, the approach can be applied on

top of any sampling- and surrogate-based HPO tool, which collects corresponding meta-data. As

such, it does not only make HPO more interpretable and insightful for a practitioner, but it is also

applicable in a versatile manner, giving it the potential for a large impact on HPO in practice.

In an extensive experimental study, we show that the symbolic expressions indeed faithfully

model the HPO loss landscape in terms of a low approximation error while still being of a low enough

complexity to be interpretable. In addition, we analyze the trade-off between faithfulness and

interpretability based on a sensitivity analysis of the parsimony hyperparameter of our approach.

Altogether, we make the following contributions:

1. We propose an easy workflow offering practitioners the ability to gain insights into the HPO

process at little additional cost in the order of minutes.

2. As part of this, we leverage symbolic regression to learn an analytical, closed-form expression

to model the dependency between the model performance, i.e., the performance of an HPO

configuration, and the values of the corresponding hyperparameters.

3. We show that learning such a symbolic model naively on meta-data collected during the HPO

process does not yield a good explanation due to the bias caused by the HPO sampling strategy.

4. We propose a systematic approach to support a practitioner in controlling the trade-off between

the symbolic model’s faithfulness and interpretability based on a parsimony hyperparameter.

5. Our approach can deal with many hyperparameters by focusing on the most important ones

according to functional ANOVA and integrating out the rest using a partial dependence function.

2 Related Work

Increased efforts towards explainable HPO approaches have been made by Hutter et al. (2014) and

Jin (2022), who calculate hyperparameter importance values analogously to the concept of feature

importance, and by Moosbauer, Herbinger, et al. (2020, 2021) and Probst et al. (2019), who leverage

partial dependence plots (PDPs) as a posthoc explanation of the HPO process. PDPs (Friedman,

2001) can be used to visualize the marginal effect of one or two features on a model’s prediction,

i.e., in the context of HPO via BO, the marginal effect of a hyperparameter on the cost predicted

by the surrogate model. A significant obstacle to the usage of PDPs for the analysis of the HPO

process is posed by the bias introduced through the BO process due to the exploitative sampling of

configurations during the search. While this limitation is addressed in a follow-up work by splitting

up the hyperparameter space by certainty of the surrogate model as well as modifying the sampling

strategy to mitigate the bias in the sampling (Moosbauer, Casalicchio, et al., 2022), the approach is

inherently limited to the analysis of one or two hyperparameters at once due to the nature of the

PDPs. Very recently, Sass et al. (2022) and Zöller et al. (2022) published first packages that unify

a variety of explainability methods in frameworks that allow directly analyzing the optimization

process of several automated machine learning tools.

Further, symbolic regression has recently successfully been applied in the context of explainable

AutoML. Gijsbers et al. (2021) aim to learn a symbolic formula mapping dataset meta-features to

default hyperparameter configurations. While explainability is not the main goal, the approach

shows that symbolic regression can be used to find formulas that suggest hyperparameter configu-

rations with competitive or better performance compared to hand-picked or default configurations.

2

0.078 exp

/

^

0.25

batch size

Figure 1: An example of a symbolic expression 𝑠 , visualized as an expression tree. The formula

expresses how two hyperparameters typical to neural networks, the regularization factor 𝛼

and the batch size, influence the predictive performance of the network.

In comparison to our approach, the authors map dataset features to default configurations, whereas

we aim to explain the relation between hyperparameters and costs of configurations.

3 Background

As a foundation for discussing our approach, aimed at making the HPO process more insightful

and explainable, we provide brief introductions of HPO, BO, and symbolic regression.

Hyperparameter Optimization (HPO). Carefully choosing the hyperparameters of an ML model

for a new task is essential to good model performance (Bischl et al., 2023; Feurer and Hutter,

2019). For a given dataset D = {𝒙𝑖 , 𝑦𝑖}𝑛𝑖=1 ⊂ X × Y , the goal of HPO is to find a hyperparameter

configuration 𝝀∗ ∈ Λ from the configuration space Λ ⊆ R𝑑
that minimizes a given cost function, i.e.

𝝀∗ ∈ argmin𝝀∈Λ 𝑐 (𝝀). The cost function 𝑐 : Λ → R is an unknown black-box function that reflects

the validation loss on the given dataset D of the model instantiated with the given hyperparameter

configuration. For ease of notation, we do not make the dependence of 𝑐 on the dataset D explicit.

Bayesian Optimization (BO). BO is a global optimization procedure that searches for the optimum

of a given black-box function by sequentially evaluating the function at certain points (Mockus,

1989). A surrogate model is continuously updated with these points and serves as a basis for an

acquisition function that, in turn, suggests the next evaluation point. Due to its sample efficiency

and lack of assumptions about the optimized function, it is a popular approach to HPO and has

compared favorably to manually tuning hyperparameters or using strategies such as random or

grid search (Bergstra et al., 2011; Bischl et al., 2023; Snoek et al., 2012; Turner et al., 2021). When

applying BO to HPO, the optimized black-box function is the cost function 𝑐 : Λ → R, which
should be minimized. Usual choices for surrogate models are Gaussian processes (GP) (Rasmussen

and Williams, 2006) or, especially in the case of HPO, where the optimized function can have many

parameters, a random forest (Breiman, 2001). As a drawback to their usefulness in the optimization

process, the methods’ complexity dictates that neither gives a clear insight into the relation between

the in- and outputs of the black-box function and, thus, the optimization process.

Symbolic Regression (SR). In contrast to solely performance-oriented approaches, SR approximates

an unknown function from a set of samples D = {𝒙𝑖 , 𝑦𝑖}𝑛𝑖=1 ⊂ X × Y by constructing a model

𝑠 : X → Y from mathematical operators, constants, and input variables with the goal to strike

a balance between simplicity and accuracy of fit (Augusto and Barbosa, 2000). SR models can be

represented as trees of expressions, as illustrated in Figure 1. If their complexity is sufficiently

limited, they provide an explainable relationship between in- and outputs through the found

expression itself as well as visualizations thereof in terms of plots or tree structures. Finding such

an expression is an NP-hard problem; as such, it is often approximately solved with approaches

such as genetic programming (Koza, 1994) and recently also methods employing gradient-descent

(Alaa and Schaar, 2019; Crabbe et al., 2020; Petersen et al., 2021). Genetic programming refers to

a class of evolutionary algorithms, which leverages a tree structure as genome representation. It

3

HPO-Process

Retrain
Surrogate

Evaluate
 on

()

Select Config

Update

1 Symbolic Regression 3 Explanation

,

Evolve
Population

Evaluate Individuals
using / /

Select new Set of
Individuals 1.5 +

Penalty Function , Loss Function ,
Parsimony Coefficient

learning_rate ...

co
st

learning_rate

2

modified

Figure 2: This figure visualizes the overall process of our symbolic HPO explanation approach. The

phases correspond to the ones described in Section 4.

iteratively refines a set 𝑆 ⊂ S of individuals 𝑠 ∈ 𝑆 by creating new candidates through genetic

operations such as crossover and mutation, evaluating their fitness according to a fitness function

𝑓 : S → R, and subsequently selecting a new set of individuals based on their fitness.

4 Learning and Leveraging Symbolic Explanations

Arguably, automating hyperparameter optimization in an efficient way while still generating

valuable insights for the practitioner is a challenging task. To move to such a more human-centered

HPO process, we propose to learn a numerical expression explaining the relation between the

values of optimized hyperparameters and the corresponding performance. The overall process is

visualized in Figure 2 and consists of the following steps:

1. Run a BO-based HPO tool and collect (a) the meta-data consisting of the evaluated configurations

and their performance and (b) the final surrogate model.

2. Learn a symbolic regression model on either (a) the collected meta-data, or (b) randomly sampled

configurations, which are evaluated using the true cost function, or (c) randomly sampled

configurations, whose performance is estimated using the Gaussian process.

3. Leverage the symbolic explanation of the underlying HPO loss landscape.

In the following sections, we explain Steps 2 and 3 in more detail, followed by an elaboration on

the limitations of our approach.

4.1 Learning a Symbolic Hyperparameter Explanation

To learn a symbolic explanation of the relation between the hyperparameters’ values and the

corresponding configuration’s performance, appropriate training data is needed. The most straight-

forward way is to learn a symbolic model 𝑠 : Λ → R from meta-data consisting of 𝑁 configurations

collected during the HPO process, which is of the form

Dmeta =
{(
𝝀𝑖 , 𝑐 (𝝀𝑖)

)}𝑁
𝑖=1

⊂ Λ × R . (1)

Although there is some work on learning such a symbolic model using gradient-based methods

(Alaa and Schaar, 2019; Crabbe et al., 2020; Petersen et al., 2021), we found those methods to be

brittle in preliminary experiments, i.e. in some cases we could not recover simple functions, such as

polynomial functions, with the approach. Thus, in our experiments we use the classical approach

leveraging genetic programming (Koza, 1994).

4

(a) (b)

Figure 3: This figure displays several representations of the HPO loss landscape defined by tuning the

(log) regularization hyperparameter 𝛼 and the (log) batch size of a neural network on the kc1

dataset with a limit of 200 samples for the HPO process. (a) The top element approximates

the ground truth loss landscape by a fine-tuned grid-search over the configuration space. The

bottom element visualizes the loss landscape obtained from the actual surrogate model of the

HPO process. (b) The top element shows both the configurations sampled by the HPO process

and the loss landscape obtained from the symbolic model fitted on the sampled meta-data.

The middle element shows randomly sampled configurations and the loss landscape obtained

from the symbolic model fitted on them. The bottom element visualizes the loss landscape

obtained from the symbolic model fitted on the randomly sampled configurations, whose

performance is approximated using the surrogate model of the HPO process.

4.1.1 Mitigating Sampling Bias. As indicated by our experimental evaluation and recently observed by

Moosbauer, Herbinger, et al. (2021), models trained on meta-data generated during the search pro-

cess tend to be biased towards the well-performing regions of the HPO loss landscape. This is caused

by the HPO process sampling these points, as it will - in most cases - prefer such well-performing

regions, which leads to a Dmeta whose points are not even roughly equally distributed across the

entire HPO search space. This is visualized in Figure 3b, which shows the configurations sampled

by the HPO tool at the top, and randomly drawn configurations in the middle. Correspondingly,

directly training on the sampled data can lead to an explanation biased towards those regions.

As Figure 3b (middle) suggests, a solution to this problem is to fit the symbolic model 𝑠 on

randomly sampled configurations instead of the ones sampled by the HPO process to reach a

sufficient coverage of the search space and a good prediction performance. However, this comes

with the drawback that these randomly sampled points might not have been evaluated during the

HPO run, leading to an increased cost for the required additional evaluation of those points. This

cost can be circumvented by not evaluating these points, but leveraging the surrogate model �̂�

learned during the HPO process in order to predict the performance of these randomly sampled

points. Although this offers a potential for error propagation if the surrogate model has a bad fit and

/ or bias, this strategy tends to work well in practice as our experimental evaluation corroborates.

4.1.2 Ensuring Interpretability. To ensure that the resulting formula is still of an interpretable complexity,

we employ a regularization penalty based on the size of the formula. More precisely, we assign a

fitness 𝑓 : S → R to the candidates of the populations to be a linear combination of their predictive

performance and the complexity penalty of a formula 𝑠 : Λ → R ∈ S , i.e.,

𝑓𝑐 (𝑠) = L(𝑐, 𝑠) + Z · 𝑝 (𝑠) . (2)

5

Here,L(𝑐, 𝑠) returns the loss between the (approximated) performance of the sampled configurations

according to a cost function 𝑐 and the predicted cost according to the symbolic model 𝑠 on the above

mentioned training datasetDmeta (Equation 1), 𝑝 (𝑠) returns the complexity penalty for formula 𝑠 and

Z ∈ R is a parsimony hyperparameter of our approach. For the third instantiation of our approach,

we use the surrogate �̂� instead of 𝑐 to approximate the performance of the sampled configurations

as outlined at the beginning of Section 4. For this work, we chose the root-mean-square error for L
and the length, i.e., number of operations of 𝑠 , as the penalty 𝑝 .

In order to achieve a desired complexity, the parsimony hyperparameter Z has to be set accord-

ingly. Due to the potential difference between the scale of the loss L and the penalty function 𝑝 ,

doing so is not a straightforward task. Similar problems are not unknown in the meta-algorithmics

community, e.g., in combined ranking and regression approaches for algorithm selection (Fehring et

al., 2022; Hanselle et al., 2020). As a solution, we suggest to leverage the elbow heuristic (Thorndike,

1953), which is well-known in clustering. The underlying idea is to fit the symbolic regression

multiple times with different parsimony values as visualized in Figure 5, starting with a high value

and decreasing it until the increase in performance no longer outweighs the increasing complexity

and thus decreasing explainability. More details on this idea can be found in Appendix A.

4.1.3 Subsets of Hyperparameters. The set of hyperparameters to be included in the explanation and the

one being optimized has to be the same. Otherwise, the construction of a meta-data training dataset

for the SR is problematic due to noise imposed onto the performance by the hyperparameters

unconsidered for the explanation. To alleviate this, we propose to extend our workflow: After

running the HPO in the first step, functional ANOVA (Hutter et al., 2014) can be applied to calculate

the importance of all hyperparameters. We propose to select the hyperparameters with the highest

importance to explain them. We can leverage the partial dependence (PD) function, as done by

Moosbauer, Herbinger, et al. (2021), which expresses the expected performance of a configuration

independent of the irrelevant hyperparameters by integrating them out. After computing the partial

dependence for the corresponding set of hyperparameters, steps two and three of our approach

can be applied to obtain an explanation with respect to the most important hyperparameters.

4.2 Leveraging a Symbolic Hyperparameter Explanation
Once a symbolic regression model, as outlined in Section 4.1, is learned, we can quantify the

relation between the values of the hyperparameters and the performance of the corresponding

configuration in the form of a closed-form analytic expression, i.e., a formula. Below, we outline

some exemplary use cases for such a symbolic hyperparameter explanation.

4.2.1 Characterizing the HPO Loss Landscape. While there has been work on characterizing the loss

landscape of HPO problems (Pushak and Hoos, 2022; Schneider et al., 2022), the focus has mostly

been on indirect characterization ways by computing certain statistics on sampled configurations

and their performance. The symbolic model allows for a much more concrete characterization

of the landscape in the form of a formula. This also gives an easy way to plot the landscape as

Figure 3a and Figure 3b demonstrate. In Figure 3a, the top element approximates the ground truth

landscape based on a high-resolution grid-search, the bottom element shows the loss landscape as

predicted by the original HPO surrogate model whereas, in Figure 3b, the bottom element shows

the loss landscape as predicted by the symbolic explanation model.

4.2.2 Theoretical Analysis of HPO Loss Landscapes. A concrete closed-form expression quantifying

the relation between the values of hyperparameters and the performance of the corresponding

configuration has the potential to pave the way for a theoretical analysis of HPO loss landscapes.

Under the assumption that the formula is at least roughly correct, theoreticians might be able to

analyze the concrete interaction effects of hyperparameters on the performance, potentially across

several datasets, and thus might gain insights into why certain algorithms perform very well on

some datasets and worse on others.

6

4.3 Limitations

As of now, our approach can only be used if the HPO configuration space solely consists of numerical

and no categorical or other types of hyperparameters. This limitation arises as the formulas assume

the hyperparameters to be real numbers. Moreover, ensuring interpretability via the parsimony

coefficient controlling the penalty is a very simple solution to the actual underlying multi-objective

optimization problem. We discuss these limitations in more detail in Appendix C.

5 Experimental Evaluation
In this section, we show that symbolic models can provide simple explanations of the HPO loss

landscape while faithfully capturing its dynamics. Leveraging a subset of problems from HPOBench

(Eggensperger et al., 2021), a collection of benchmark problems for HPO, we apply SR to learn

the dependency between hyperparameter values and performance for a large range of models,

hyperparameters, and datasets. As the cost associated with a hyperparameter configuration, we

consider the validation error rate evaluated via hold-out testing, using 0.33% of each dataset for

validation. We use the BO-powered HPO tool SMAC (Lindauer et al., 2022) as a basis for the

evaluation (Phase 1 in the description in Section 4) and compare three ways of training a symbolic

explanation based on the HPO run as described in Section 4. SR (BO) refers to a symbolic regression

fitted based on the meta-data collected by the HPO process, SR (Random) refers to a training based

on randomly sampled configurations, which are evaluated, whereas SR (BO-GP) refers to a training

based on randomly sampled points, whose performance is approximated using the posterior mean

of the surrogate model of the HPO process, in this case a Gaussian process (GP). Technical details on

the experiments, such as the number of seeds, the hardware for execution, and the used resources,

can be found in Appendix D. The code for running the experiments is provided online
1
. In the

following sections, we analyze the accuracy of the symbolic explanation (Section 5.1) under varying

HPO sample sizes and the trade-off between the faithfulness and explainability (Section 5.2).

5.1 Faithfulness of Symbolic Explanations

In Table 1, the root-mean-square error (RMSE) between the cost values predicted by the SR and the

true cost values averaged over 100 test configurations is shown for the three meta-data generation

procedures described in Section 4.1. The RMSE between the cost predicted by the GP and the true

cost is shown as a baseline. As we expect due to sampling bias, when fitted on the BO samples

directly, the RMSE is highest for most models and datasets, while fitting on random samples

results in the lowest error in most cases. Leveraging the GP to obtain the cost predictions for the

random samples results in error values close to those we obtain when using the true cost values

and an even lower average error. This suggests that this approach is suitable to obtain a faithful

explanation without evaluating additional hyperparameter configurations as SR (Random) does.

Furthermore, we compare the SR against a linear regression, showing that for some model and

dataset combinations the difference in performance is minor, while for others it is substantial.

In addition, we study how the error of the symbolic regression and the GP baseline depends

on the number of samples it is fit on, i.e., how faithful the symbolic explanation is under varying

sample sizes. Figure 4 displays the results for two models on two datasets. Our results show that the

error decreases slightly between 20 and 60 samples. However, adding more samples does not have

a large effect on the error, suggesting that a small number of samples is sufficient for the studied

models and datasets to apply symbolic regression as explainer. For more results, see Appendix E.

5.2 Faithfulness vs. Interpretability

By penalizing longer formulas, SR allows to balance the accuracy and interpretability of the resulting

formulas via a parsimony hyperparameter Z . Figure 5 shows the RMSE between the cost predicted

1https://github.com/automl/symbolic-explanations

7

https://github.com/automl/symbolic-explanations

Model Hyperparameters Dataset SR (BO) SR (Random) SR (BO-GP) GP Baseline Linear Regression

Logistic Regression alpha, eta0 blood-transfusion 0.015 ± 0.006 0.010 ± 0.002 0.016 ± 0.005 0.019 ± 0.009 0.015 ± 0.006

vehicle 0.045 ± 0.006 0.035 ± 0.003 0.041 ± 0.004 0.026 ± 0.004 0.062 ± 0.002

Australian 0.361 ± 1.275 0.023 ± 0.007 0.024 ± 0.005 0.024 ± 0.006 0.025 ± 0.003

car 0.029 ± 0.007 0.025 ± 0.002 0.026 ± 0.002 0.018 ± 0.002 0.052 ± 0.001

phoneme 0.012 ± 0.003 0.010 ± 0.003 0.011 ± 0.003 0.011 ± 0.003 0.010 ± 0.001

segment 0.062 ± 0.036 0.028 ± 0.016 0.033 ± 0.005 0.035 ± 0.005 0.053 ± 0.002

credit-g 0.028 ± 0.006 0.024 ± 0.004 0.028 ± 0.002 0.026 ± 0.001 0.026 ± 0.001

kc1 0.017 ± 0.004 0.020 ± 0.007 0.016 ± 0.003 0.015 ± 0.001 0.015 ± 0.002

Support Vector Machine C, gamma blood-transfusion 0.036 ± 0.015 0.032 ± 0.005 0.034 ± 0.002 0.008 ± 0.001 0.031 ± 0.000

vehicle 0.133 ± 0.025 0.094 ± 0.008 0.097 ± 0.009 0.071 ± 0.014 0.234 ± 0.001

Australian 0.078 ± 0.012 0.062 ± 0.005 0.069 ± 0.010 0.061 ± 0.011 0.139 ± 0.000

car 0.070 ± 0.008 0.053 ± 0.003 0.052 ± 0.002 0.032 ± 0.010 0.103 ± 0.000

phoneme 0.067 ± 0.027 0.044 ± 0.008 0.047 ± 0.006 0.019 ± 0.002 0.081 ± 0.000

segment 0.178 ± 0.040 0.128 ± 0.019 0.133 ± 0.013 0.100 ± 0.011 0.282 ± 0.001

credit-g 0.041 ± 0.008 0.038 ± 0.009 0.039 ± 0.005 0.020 ± 0.003 0.080 ± 0.000

kc1 0.034 ± 0.015 0.029 ± 0.006 0.024 ± 0.006 0.007 ± 0.001 0.034 ± 0.000

Random Forest max_depth, max_features blood-transfusion 0.016 ± 0.004 0.015 ± 0.004 0.017 ± 0.000 0.008 ± 0.001 0.014 ± 0.000

vehicle 0.034 ± 0.046 0.021 ± 0.008 0.020 ± 0.004 0.018 ± 0.003 0.109 ± 0.004

Australian 0.024 ± 0.009 0.022 ± 0.008 0.018 ± 0.002 0.016 ± 0.003 0.033 ± 0.002

car 0.035 ± 0.005 0.030 ± 0.006 0.031 ± 0.005 0.024 ± 0.002 0.071 ± 0.003

phoneme 0.015 ± 0.002 0.016 ± 0.002 0.015 ± 0.002 0.008 ± 0.002 0.052 ± 0.002

segment 0.040 ± 0.007 0.035 ± 0.004 0.039 ± 0.005 0.029 ± 0.006 0.147 ± 0.003

credit-g 0.025 ± 0.012 0.022 ± 0.006 0.021 ± 0.003 0.012 ± 0.002 0.036 ± 0.002

kc1 0.015 ± 0.006 0.015 ± 0.005 0.019 ± 0.001 0.005 ± 0.002 0.013 ± 0.000

XGBoost colsample_bytree, eta blood-transfusion 0.018 ± 0.002 0.017 ± 0.001 0.017 ± 0.002 0.014 ± 0.001 0.016 ± 0.001

vehicle 0.009 ± 0.001 0.010 ± 0.001 0.009 ± 0.001 0.009 ± 0.001 0.009 ± 0.001

Australian 0.011 ± 0.000 0.011 ± 0.000 0.011 ± 0.000 0.010 ± 0.001 0.010 ± 0.000

car 0.031 ± 0.015 0.018 ± 0.004 0.020 ± 0.003 0.016 ± 0.005 0.045 ± 0.000

phoneme 0.013 ± 0.000 0.012 ± 0.000 0.013 ± 0.000 0.008 ± 0.001 0.013 ± 0.000

segment 0.003 ± 0.000 0.003 ± 0.000 0.003 ± 0.000 0.003 ± 0.001 0.003 ± 0.000

credit-g 0.011 ± 0.001 0.011 ± 0.000 0.011 ± 0.000 0.011 ± 0.001 0.011 ± 0.000

kc1 0.008 ± 0.000 0.008 ± 0.000 0.008 ± 0.000 0.006 ± 0.001 0.007 ± 0.000

Neural Network alpha, batch_size blood-transfusion 0.016 ± 0.002 0.013 ± 0.001 0.014 ± 0.002 0.011 ± 0.001 0.013 ± 0.000

vehicle 0.024 ± 0.014 0.018 ± 0.002 0.029 ± 0.008 0.030 ± 0.006 0.041 ± 0.002

Australian 0.014 ± 0.003 0.012 ± 0.003 0.014 ± 0.003 0.014 ± 0.002 0.014 ± 0.001

car 0.010 ± 0.002 0.008 ± 0.001 0.010 ± 0.002 0.007 ± 0.003 0.021 ± 0.000

phoneme 0.026 ± 0.010 0.012 ± 0.003 0.014 ± 0.004 0.010 ± 0.003 0.027 ± 0.001

segment 0.015 ± 0.008 0.012 ± 0.006 0.022 ± 0.023 0.013 ± 0.004 0.025 ± 0.001

credit-g 0.017 ± 0.006 0.214 ± 0.722 0.019 ± 0.006 0.020 ± 0.007 0.025 ± 0.001

kc1 0.015 ± 0.004 0.014 ± 0.004 0.012 ± 0.002 0.007 ± 0.001 0.014 ± 0.000

Average 0.0412 0.0306 0.0274 0.0200 0.0503

Table 1: We show the RMSE between the cost predicted by the SR and the true cost. The SR is fitted

either on samples collected by BO (BO), random samples with the true cost (Random) or

random samples evaluated with the GP (BO-GP). For each row, the best/second best RMSE

among the SR models is boldfaced/underlined. The surrogate model’s RMSE (GP Baseline) is

shown for comparison, as well as the RMSE of a linear regression model fitted on the same

samples as SR (GP-BO). The SR is fitted on 140 samples with Z = 0.0001. For GP-BO, it is fitted

on 400 random samples evaluated with the GP obtained after running BO for 140 samples.

by the SR and the true cost, as well as the complexity expressed in terms of the number of operations

in the resulting formulas for multiple values of Z . As expected, for all shown models and datasets,

the error decreases with increasing complexity. We suggest (cf. Section 4.1.2) using the elbow

heuristic to select the appropriate value of Z . The results imply that this strategy is indeed justified.

Two formulas as possible hypotheses obtained by our approach are shown below. They describe

the dependency between the regularization hyperparameter 𝛼 and the batch size of a neural network

on the kc1 dataset, with the SR fitted on 400 random samples evaluated with the GP obtained after

collecting 200 samples with BO with different seeds for the SR. While the formulas are composed

of different functions, it must be considered that they only describe the relationship within the

bounds defined for the hyperparameters. Within these bounds, the relationship described by them

is quite similar. Notably, the second formula does not depend on the batch size, indicating that

𝛼 is more important. Figure 6a shows the hyperparameter importance values, calculated using

functional ANOVA (Hutter et al., 2014), confirming that 𝛼 is indeed more important than the batch

size. This is in line with recent findings (Godbole et al., 2023).

𝑠 (𝛼, batch size) = 0.078 · exp
(
(𝛼/batch size) 1

4

)
𝑠 (𝛼, batch size) = 0.104 ·

√︁
| sin(𝛼) | + 0.07

8

Figure 4: RMSE between the cost predicted by the SR and the true cost for different numbers of samples.

The SR is fitted on either samples collected by BO (BO), random samples with their true cost

(Random), or random samples evaluated with the GP (BO-GP). The RMSE of the GP (GP

Baseline) is shown for comparison. The SR is fitted on the number of samples shown, with

parsimony coefficient 0.0001. For GP-BO, it is fitted on 400 random samples evaluated with

the GP obtained after collecting the shown number of samples with BO.

Figure 5: RMSE between the cost predicted by the SR and the true cost for different values of the

parsimony coefficient Z . The symbolic regression is fitted on 400 random samples evaluated

with the Gaussian process obtained after collecting 200 samples with BO.

9

(a) Hyperparameter importance on kc1. (b) Hyperparameter importance on blood-transfusion.

Figure 6: Importance of several hyperparameters of a neural network calculated by functional ANOVA.

Figure 7: Result of optimizing the learning rate, width, regularization hyperparameter 𝛼 , batch size,

and depth of a neural network on the blood-transfusion dataset for 100 samples. Left: PD

function for the learning rate and width. Right: Loss landscape obtained from the SR fitted on

randomly sampled configurations, whose performance is approximated by the PD function.

Finally, we provide an example on how to obtain formulas for subsets of hyperparameters

as described in Section 4.1.3. After optimizing multiple hyperparameters of a neural network,

we calculate their importances using functional ANOVA, shown in Figure 6b. Leveraging the GP

surrogate model, we then calculate the PD for the two hyperparameters with the highest importance

scores and fit the SR. Figure 7 illustrates the PD function and the function obtained from the SR.

6 Conclusion and Future Work

In this work, we took a step toward a more human-centered HPO process by proposing an easy

workflow for practitioners targeted at gaining insights about the underlying HPO problem. To this

end, we leverage symbolic regression to learn an interpretable, analytic closed-form expression of

the relation between hyperparameter values and their performance. We show that naively learning

such a symbolic model on meta-data collected during the HPO process suffers from bias issues and

suggest solving this solution by learning on randomly sampled configurations whose performance

is approximated by the HPO process’ surrogate model. In an experimental evaluation, we show

that a trade-off between the interpretability and faithfulness of the symbolic model can be achieved

with a systematic approach for setting a parsimony hyperparameter.

There are several interesting directions toward future work. As most modern HPO tools

leverage multi-fidelity techniques to improve efficiency, we deem it worthwhile to extend our

approaches to handle meta-data from several fidelities in a suitable manner. Furthermore, it is

conceivable to incorporate the symbolic regression model as a surrogate model into BO-based HPO

tools. Here, the main challenge is to find a suitable way to model the uncertainty of the symbolic

model, which is required by many acquisition functions in practice. Last, one could make use

of conformal prediction (Angelopoulos and Bates, 2021) for quantifying the uncertainty of the

different expressions obtained by the symbolic regression.

10

7 Broader Impact Statement

HPO and thus also the approach presented in this paper can be used in virtually any ML applications

and, in principle, even for most general configuration problems, e.g., in mechanical engineering

(Gevers et al., 2022; Kotthoff et al., 2022). Correspondingly, it can have a positive or negative impact

on society based on the application it is used for. If it is used with malicious intent or within

a socially critical application such as face recognition, it can lead to giving practitioners more

insights, which might allow for increasing the performance and, thus, the potential harmfulness of

the corresponding tool. However, at the same time, when used within applications with a positive

impact on society, such as most medical applications (Imrie et al., 2022), similar improvements are

conceivable and conversely, a positive impact on society.

Acknowledgements. Funded by the European Union (ERC, “ixAutoML”, grant no.101041029).

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect

those of the European Union or the European Research Council Executive Agency. Neither the

European Union nor the granting authority can be held responsible for them.

The authors gratefully acknowledge the computing time provided to them on the high-

performance computers Noctua2 at the NHR Center PC2 under the project hpc-prf-intexml. These

are funded by the Federal Ministry of Education and Research and the state governments partici-

pating on the basis of the resolutions of the GWK for the national high performance computing at

universities (www.nhr-verein.de/unsere-partner).

11

References

Akiba, T., S. Sano, T. Yanase, T. Ohta, and M. Koyama (2019). “Optuna: A Next-Generation Hyper-

parameter Optimization Framework”. In: Proc. of KDD’19, pp. 2623–2631.
Alaa, A. andM. van der Schaar (2019). “Demystifying Black-box Models with Symbolic Metamodels”.

In: Proc. of NeurIPS’19.
Angelopoulos, A. N. and S. Bates (2021). “A Gentle Introduction to Conformal Prediction and

Distribution-Free Uncertainty Quantification”. In: arXiv:2107.07511 [cs.LG].
Augusto, D. and H. Barbosa (2000). “Symbolic Regression via Genetic Programming”. In: Proc. of

SBRN’00. IEEE, pp. 173–178.
Awad, N., N. Mallik, and F. Hutter (2021). “DEHB: Evolutionary Hyberband for Scalable, Robust

and Efficient Hyperparameter Optimization”. In: Proc. of IJCAI’21, pp. 2147–2153.
Balandat, M., B. Karrer, D. Jiang, S. Daulton, B. Letham, A. Wilson, and E. Bakshy (2020). “BoTorch:

A Framework for Efficient Monte-Carlo Bayesian Optimization”. In: Proc. of NeurIPS’20.
Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl (2011). “Algorithms for Hyper-Parameter Optimiza-

tion”. In: Proc. of NeurIPS’11, pp. 2546–2554.
Bischl, B., M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker,

A.-L. Boulesteix, D. Deng, and M. Lindauer (2023). “Hyperparameter Optimization: Foundations,

Algorithms, Best Practices, and Open Challenges”. In: Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, e1484.

Blom, K. van der, A. Serban, H. Hoos, and J. Visser (2021). “AutoML Adoption in ML Software”. In:

ICML Workshop on AutoML.
Breiman, L. (2001). “Random Forests”. In: MLJ 45, pp. 5–32.
Crabbe, J., Y. Zhang, W. Zame, and M. van der Schaar (2020). “Learning Outside the Black-box: The

Pursuit of Interpretable Models”. In: Proc. of NeurIPS’20, pp. 17838–17849.
Deb, K. (2013). “Multi-Objective Optimization”. In: Search Methodologies: Introductory Tutorials in

Optimization and Decision Support Techniques. Springer, pp. 403–449.
Eggensperger, K., P. Müller, N. Mallik, M. Feurer, R. Sass, A. Klein, N. Awad, M. Lindauer, and

F. Hutter (2021). “HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems

for HPO”. In: Proc. of NeurIPS’21 Datasets and Benchmarks Track.
Falkner, S., A. Klein, and F. Hutter (2018). “BOHB: Robust and Efficient Hyperparameter Optimization

at Scale”. In: Proc. of ICML’18, pp. 1437–1446.
Fehring, L., J. Hanselle, and A. Tornede (2022). “HARRIS: Hybrid Ranking and Regression Forests

for Algorithm Selection”. In: MetaLearn’22.
Feurer, M. and F. Hutter (2019). “Hyperparameter Optimization”. In: Automated Machine Learning:

Methods, Systems, Challenges. Ed. by F. Hutter, L. Kotthoff, and J. Vanschoren. Available for free

at http://automl.org/book. Springer. Chap. 1, pp. 3–38.

Friedman, J. (2001). “Greedy Function Approximation: A Gradient Boosting Machine”. In: Annals of
Statistics, pp. 1189–1232.

Gevers, K., A. Tornede, M. Wever, V. Schöppner, and E. Hüllermeier (2022). “A Comparison of

Heuristic, Statistical, and Machine Learning Methods for Heated Tool Butt Welding of Two

Different Materials”. In: Welding in the World 10, pp. 2157–2170.

Gijsbers, P., F. Pfisterer, J. N. van Rijn, B. Bischl, and J. Vanschoren (2021). “Meta-Learning for

Symbolic Hyperparameter Defaults”. In: Proc. of GECCO’21, pp. 151–152.
Godbole, V., G. E. Dahl, J. Gilmer, C. J. Shallue, and Z. Nado (2023). Deep Learning Tuning Playbook.

Version 1.

Hanselle, J., A. Tornede, M. Wever, and E. Hüllermeier (2020). “Hybrid Ranking and Regression for

Algorithm Selection”. In: Proc. of KI’20, pp. 59–72.
Hooker, G. (2007). “Generalized Functional ANOVA Diagnostics for High-Dimensional Functions

of Dependent Variables”. In: Journal of Computational and Graphical Statistics 16, pp. 709–732.

12

Hutter, F., H. Hoos, and K. Leyton-Brown (2014). “An Efficient Approach for Assessing Hyperpa-

rameter Importance”. In: Proc. of ICML’14, pp. 754–762.
Imrie, F., B. Cebere, E. McKinney, and M. van der Schaar (2022). “AutoPrognosis 2.0: Democratizing

Diagnostic and Prognostic Modeling in Healthcare with Automated Machine Learning”. In:

arXiv:2210.12090 [cs.LG].
Jin, H. (2022). “Hyperparameter Importance for Machine Learning Algorithms”. In: arXiv:2201.05132

[stat.ML].
Kotthoff, L., S. Dey, J. Heil, V. Jain, T. Muller, A. Tyrrell, H.Wahab, and P. Johnson (2022). “Optimizing

Laser-Induced Graphene Production”. In: PAIS@ECAI, pp. 31–44.
Koza, J. (1994). Genetic Programming II. The MIT Press.

Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar (2018). “Hyperband: A Novel

Bandit-Based Approach to Hyperparameter Optimization”. In: JMLR 18.185, pp. 1–52.

Lindauer, M., K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T. Ruhkopf, R. Sass,

and F. Hutter (2022). “SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter

Optimization”. In: JMLR 23.54, pp. 1–9.

Mockus, J. (1989). Bayesian Approach to Global Optimization. Theory and Applications. Ed. by M.

Hazewinkel. Kluwer Academic Publishers.

Molnar, C., G. König, J. Herbinger, T. Freiesleben, S. Dandl, C. A. Scholbeck, G. Casalicchio, M.

Grosse-Wentrup, and B. Bischl (2022). General Pitfalls of Model-Agnostic Interpretation Methods
for Machine Learning Models. Ed. by A. Holzinger, R. Goebel, R. Fong, T. Moon, K. Müller, and

W. Samek. Springer International Publishing, pp. 39–68.

Moosbauer, J., G. Casalicchio, M. Lindauer, and B. Bischl (2022). “Enhancing Explainability of

Hyperparameter Optimization via Bayesian Algorithm Execution”. In: arXiv:2206.05447 [cs.LG].
Moosbauer, J., J. Herbinger, G. Casalicchio, M. Lindauer, and B. Bischl (2020). “Towards Explaining

Hyperparameter Optimization via Partial Dependence Plots”. In: ICML Workshop on AutoML.
Moosbauer, J., J. Herbinger, G. Casalicchio, M. Lindauer, and B. Bischl (2021). “Explaining Hyperpa-

rameter Optimization via Partial Dependence Plots”. In: Proc. of NeurIPS’21.
Petersen, B., M. Landajuela, T. Mundhenk, C. Santiago, S. Kim, and J. Taery Kim (2021). “Deep

Symbolic Regression: Recovering Mathematical Expressions from Data via Risk-seeking Policy

Gradients”. In: Proc. of ICLR’21.
Probst, P., A. Boulesteix, and B. Bischl (2019). “Tunability: Importance of Hyperparameters of

Machine Learning Algorithms”. In: JMLR 20.53, pp. 1–32.

Pushak, Y. and H. Hoos (2022). “AutoML Loss Landscapes”. In: ACM Transactions on Evolutionary
Learning and Optimization 2.3, pp. 1–30.

Rasmussen, C. and C. Williams (2006). Gaussian Processes for Machine Learning. The MIT Press.

Sass, R., E. Bergman, A. Biedenkapp, F. Hutter, and M. Lindauer (2022). “DeepCAVE: An Interactive

Analysis Tool for Automated Machine Learning”. In: ICML ReALML Workshop.
Schneider, L., L. Schäpermeier, R. Prager, B. Bischl, H. Trautmann, and P. Kerschke (2022). “HPO×

ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Land-

scape Analysis”. In: Proc. of PPSN’22, pp. 575–589.
Snoek, J., H. Larochelle, and R. Adams (2012). “Practical Bayesian Optimization of Machine Learning

Algorithms”. In: Proc. of NeurIPS’12, pp. 2960–2968.
Thorndike, R. (1953). “Who Belongs in the Family?” In: Psychometrika 4, pp. 267–276.
Tornede, T., A. Tornede, J. Hanselle, M. Wever, F. Mohr, and E. Hüllermeier (2021). “Towards Green

Automated Machine Learning: Status Quo and Future Directions”. In: arXiv:2111.05850 [cs.LG].
Turner, R., D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon (2021). “Bayesian

Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning:

Analysis of the Black-Box Optimization Challenge 2020”. In: Proc. of NeurIPS’20 Competition
and Demonstration, pp. 3–26.

13

Zöller, M., W. Titov, T. Schlegel, and M. F. Huber (2022). “XAutoML: A Visual Analytics Tool for

Establishing Trust in Automated Machine Learning”. In: arXiv:2202.11954 [cs.LG].

14

Figure 8: RMSE between the cost predicted by the SR and the true cost for different values of the

parsimony coefficient Z . The symbolic regression is fitted on 400 random samples evaluated

with the Gaussian process obtained after collecting 200 samples with BO. The red circle

indicates the stop-point, i.e., the value of the parsimony coefficient at which we would stop

increasing the parsimony coefficient further according to our heuristic.

A Applying the Elbow Heuristic

We propose the use of the elbow heuristic as a systematic approach to balancing the interpretability

and faithfulness of the symbolic model via a parsimony parameter. The method suggests starting

with a low complexity (and, in turn, usually relatively lower performance), and decreasing the

parsimony parameter until the benefits of increased performance no longer outweigh the increased

complexity of the resulting formula. One conceivable way a practitioner could put this into practice

is by setting thresholds for gain of performance/loss of interpretability. For example, in Figure 8, we

stop decreasing the parsimony parameter once the next value of the parsimony parameter would

increase the operation count by at least two while decreasing the RMSE by less than 10%. Another

option would be to define a relative trade-off point between accuracy and complexity changes

where one would stop (e.g., stopping once the increase in complexity is larger than the relative

gain of performance).

B On the Operation Count for Symbolic Expressions

As a measure for the complexity of a symbolic expression, we use the operation count in the

formula as computed by the SymPy library. Operations are all functions with an arity > 0, i.e.

all nodes in an expression tree except leaf nodes. For example, the expression 𝑠 (𝛼, batch size) =
0.078·exp

(
(𝛼/batch size)1/4

)
depicted in Figure 1 has 4 operations. An expression with 0 operations

is a constant or a variable.

C Limitations

In its current state, our approach has several limitations, which we discuss here together with

possible remedies:

15

Numerical Hyperparameters. As of now, our approach can only be used if the HPO configuration

space consists solely of numerical and no categorical or other types of hyperparameters. This

limitation arises from the fact that hyperparameters are treated as variables in the symbolic

regression, whose values must be able to be plugged in correspondingly. As usual in such cases,

any other type of hyperparameter can be supported by providing a suitable mapping of the space

to a numerical space, such as a one-hot encoding for categorical hyperparameters. However, it is

unclear how well this works in practice in this case.

Multi-Objective Optimization. As noted in Section 4.1.2, we ensure interpretability by penalizing

very complex formulas through a penalty term in their fitness value. This is an instantiation of

scalarization (Deb, 2013) for solving multi-objective optimization problems (Deb, 2013). Since

we actually want to optimize for both accuracy/faithfulness of the explainer, i.e., the symbolic

regression model, and the complexity of the corresponding formula, a more sophisticated approach

would be to employ Pareto-based multi-objective approaches. This would also improve the usability

for the practitioner as they would not need to specify the penalty in advance but could pick a

formula from the Pareto front at the end of the optimization, which offers a compromise between

accuracy and interpretability to their taste.

Subsets of Hyperparameters. Our approach can deal with many hyperparameters by focusing

on the most important ones according to functional ANOVA and integrating out the rest using a

partial dependence (PD) function, as discussed in Section 4.1.3. As a result of including functional

ANOVA and PD, the extended approach may be subject to their limitations, in particular:

1. Functional ANOVA and PD can yield misleading results when dealing with correlated features

due to extrapolation to unlikely combinations of feature values, i.e., hyperparameter values, in

our case (Hooker, 2007). However, in contrast to the standard setting of interpreting machine

learning models, there is no inherent data distribution on the hyperparameter configuration

space in the context of HPO. Thus, this limitation is of no concern for the HPO setting.

2. When interaction effects are present, interpreting themain effects obtained by functional ANOVA

can lead to inaccurate conclusions, as they capture the effect of varying a hyperparameter

averaging across all instantiations of all other hyperparameters (Hutter et al., 2014). Similarly,

PD can be misleading when interaction effects are present, capturing only the average marginal

effects (Molnar et al., 2022). However, recent findings by Pushak and Hoos (2022) suggest that

there are few strong interactions in HPO problems, which makes these limitations less of a

concern in practice.

D Detailed Experimental Setup

For all experiments, we used 5 seeds to obtain the training data points, i.e., configurations for the

symbolic regression and the corresponding performances. Furthermore, we repeated learning the

symbolic expression three times with different seeds. All results are averaged, and error bars as

well as standard deviations are computed across the 5 × 3 = 15 repetitions. Experiments are run on

cluster nodes equipped with two AMD Milan 7763 with 2×64 cores@2.45 GHz and were limited to

64 CPUs and 64GB of RAM. In the interest of GreenAutoML (Tornede et al., 2021), we aim to be

transparent regarding the computational resources required for our experiments, which consumed

about 700.000 CPU hours in total. As the cluster is exclusively powered by renewable energy, the

experiments did not cause any CO2 equivalents when considering only the energy required to run

them.

Bayesian Optimization. We use the HPO tool SMAC (Lindauer et al., 2022) for running BO in our

experiments. We use the BlackBoxFacade with the default settings, except for the config selector,

16

where we set retrain_after=1 to update the surrogate model each time when returning a new

hyperparameter configuration.

Symbolic Regression. To learn the symbolic regression models we use gplearn2, a library to perform
genetic programming based symbolic regression. We fit the Symbolic Regressor with a population

size of 5000, evolving over 20 generations and optimizing the RMSE. The parsimony coefficient is

set to 0.0001 in our experiments except for the parsimony variation study. We allow the functions

addition, subtraction, multiplication, division, square root, logarithm, exponential, sine, cosine, and

absolute value when building and evolving the formulas. For all other hyperparameters, we use the

default values. The formulas are simplified with the SymPy3 tool.

E Detailed Results

Extending the results presented in Section 5.1, Figure 9, 10, and 11 display the error of the symbolic

regression and the GP baseline for varying sample sizes for different models, hyperparameters, and

datasets.

2
https://gplearn.readthedocs.io/en/stable/intro.html

3
https://www.sympy.org/en/index.html

17

Figure 9: RMSE between the cost predicted by the SR and the true cost for different numbers of samples.

The symbolic regression is fitted on either samples collected by BO (BO), random samples

with their true cost (Random), or random samples evaluated with the GP (BO-GP). The RMSE

of the GP (GP Baseline) is shown for comparison. The symbolic regression is fitted on the

number of samples shown, with parsimony coefficient 0.0001. For GP-BO, it is fitted on

400 random samples evaluated with the GP obtained after collecting the shown number of

samples with BO.

18

Figure 10: RMSE between the cost predicted by the SR and the true cost for different numbers of

samples. The symbolic regression is fitted on either samples collected by BO (BO), random

samples with their true cost (Random), or random samples evaluated with the GP (BO-GP).

The RMSE of the GP (GP Baseline) is shown for comparison. The symbolic regression is

fitted on the number of samples shown, with parsimony coefficient 0.0001. For GP-BO, it is

fitted on 400 random samples evaluated with the GP obtained after collecting the shown

number of samples with BO.

19

Figure 11: RMSE between the cost predicted by the SR and the true cost for different numbers of

samples. The symbolic regression is fitted on either samples collected by BO (BO), random

samples with their true cost (Random), or random samples evaluated with the GP (BO-GP).

The RMSE of the GP (GP Baseline) is shown for comparison. The symbolic regression is

fitted on the number of samples shown, with parsimony coefficient 0.0001. For GP-BO, it is

fitted on 400 random samples evaluated with the GP obtained after collecting the shown

number of samples with BO.

F Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We corroborate our claims with corresponding experiments

in Section 5.

(b) Did you describe the limitations of your work? [Yes] See Section 4.3 and Appendix C.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 7.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://2023.automl.cc/ethics/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We do not show

any theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] We do not show any

theoretical results.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes]

20

https://2023.automl.cc/ethics/

(b) Did you include the raw results of running the given instructions on the given code and

data? [No] However, the README of the code clearly describes how to produce the raw

data. Releasing this is not easy as the raw data is roughly 700GB.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes]

Detailed instructions can be found in the README of the code.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] All details can be found in the

code.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] All compared methods are executed by us in our code

framework on the same data.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We ran studies of different version of our approach.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] All

compared methods are executed by us in our code framework on the same data using the

same evaluation protocol.

(i) Did you compare performance over time? [No] Since we do not suggest a new core HPO

approach, such an evaluation does not make sense in our case.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] See

Appendix D.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] See figures and tables.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No]

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] See Appendix D.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, we cite HPOBench.

See Section 5.

(b) Did you mention the license of the assets? [No]

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We

link to an anonymized version of the code used to produce the results.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We are using a public benchmark such that consent from the authors

can be expected.

21

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] We did not check whether any of the datasets being

used in HPOBench suffers from such issues.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] We neither used crowdsourcing nor conducted research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]We neither used crowdsourcing nor conducted research

with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] We neither used crowdsourcing nor conducted

research with human subjects.

22

	Introduction
	Related Work
	Background
	Learning and Leveraging Symbolic Explanations
	Learning a Symbolic Hyperparameter Explanation
	Mitigating Sampling Bias
	Ensuring Interpretability
	Subsets of Hyperparameters

	Leveraging a Symbolic Hyperparameter Explanation
	Characterizing the HPO Loss Landscape
	Theoretical Analysis of HPO Loss Landscapes

	Limitations

	Experimental Evaluation
	Faithfulness of Symbolic Explanations
	Faithfulness vs. Interpretability

	Conclusion and Future Work
	Broader Impact Statement
	Applying the Elbow Heuristic
	On the Operation Count for Symbolic Expressions
	Limitations
	Detailed Experimental Setup
	Detailed Results
	Submission Checklist

