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Abstract Bayesian Optimization (BO) is a sample-efficient black-box optimizer, and extensive methods
have been proposed to build the absolute function response of the black-box function through
a probabilistic surrogate model, including Tree-structured Parzen Estimator (TPE), random
forest (SMAC), and Gaussian process (GP). However, few methods have been explored to
estimate the relative rankings of candidates, which can be more robust to noise and have
better practicality than absolute function responses, especially when the function responses
are intractable but preferences can be acquired. To this end, we propose a novel ranking-
based surrogate model based on the Poisson process and introduce an efficient BO framework,
namely Poisson Process Bayesian Optimization (PoPBO). Two tailored acquisition functions
are further derived from classic LCB and EI to accommodate it. Compared to the classic
GP-BO method, our PoPBO has lower computation costs and better robustness to noise,
which is verified by abundant experiments. The results on both simulated and real-world
benchmarks, including hyperparameter optimization (HPO) and neural architecture search
(NAS), show the effectiveness of PoPBO.

1 Introduction

Bayesian optimization (BO) (Mockus et al., 1978) is a popular black-box optimization paradigm
and has achieved great success in a number of challenging fields, such as robotic control (Calandra
et al., 2016), biology (González et al., 2015), and hyperparameter tuning for complex learning
tasks (Bergstra et al., 2011). A standard BO routine usually consists of two alternate steps: 1) Train a
probabilistic surrogate model to build the response surface of a black-box function 𝑓 (𝑥); 2) Suggest
the next query by optimizing an acquisition function according to the learned response surface.
Popular surrogate models for the first step include random forest (SMAC) (Hutter et al., 2011),
Tree-structure Parzen Estimator (TPE) (Bergstra et al., 2011; Tiao et al., 2021; Song et al., 2022),
Gaussian Process (GP) (Snoek et al., 2012) and Bayesian Neural Network (BNN) (Springenberg et al.,
2016; Snoek et al., 2015), aiming to estimate the distribution of function values for each candidate.
Classic acquisition functions for the second step include Expected Improvement (EI) (Mockus,
1994), Thompson Sampling (TS) (Chapelle and Li, 2011; Agrawal and Goyal, 2013) and Upper/Lower
Confidence Bound (UCB/LCB) (Srinivas et al., 2012), aiming at the exploration and exploitation
trade-off. Most of the prior BO methods (Bergstra et al., 2011; Hutter et al., 2011; Snoek et al.,
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2012) attempt to build an absolute response surface1 of a black-box function based on the observed
function values, and few have been explored to build a relative response surface.

However, absolute metrics can have the following shortcomings. 1) Absolute response can
be difficult to obtain or even unavailable in some practical scenarios, such as sports games and
recommender systems where only relative response can be provided by pairwise comparison He
et al. (2022). 2) Absolute response can be sensitive to noise, as pointed out by Rosset et al.
(2005). Such an issue will affect the performance of BO in noisy real-world scenarios. 3) It can be
challenging to directly transfer the surrogate models for absolute response surfaces. In particular,
multi-fidelity metrics usually require multiple absolute responses for the same candidate. It is hard
to utilize history observations on a coarse-fidelity metric to warm up the training of surrogate
models on a fine-grained-fidelity one. Similarly, in hyperparameter optimization (HPO) and neural
architecture search (NAS) tasks, it is hard to transfer the performance across different datasets.

On the contrary, relative metrics can be effective cures for the above issues. 1) Relative response
such as ranking has better practicality since the information about candidate preferences can
be more easily acquired than raw value (González et al., 2017; Kahneman and Tversky, 2013;
Brusilovsky et al., 2007; González et al., 2017). 2) Relative response is more robust to noise than
absolute response since relation such as ranking between candidates is hard to be disrupted by
noise, which is verified by Nguyen et al. (2021); Salinas et al. (2020). In this work, we also analyze
the better robustness of rankings against absolute response in Sec. 3.1 under the common additive
Gaussian noise assumption. 3) Relative response has better transferability, such as rankings
between candidates, since they are usually comparable among multi-fidelity metrics or evaluations
across different datasets for the same candidate. It is also demonstrated by (Salinas et al., 2020;
Nguyen et al., 2021; Feurer et al., 2018).

Some BO methods utilize the relative responses. Preferential BO (González et al., 2017; Mikkola
et al., 2020; Lin et al., 2022) attempts to capture the relative preference by pairwise comparison.
However, they either rely on a computationally-expensive soft-Copeland score (PBO) or need to
optimize EI by the projective preferential query (PPBO) to propose the next query. Nguyen et al.
(2021) extend the pairwise comparison to comparison among 𝑘 samples, but it requires building an
absolute response through the Gaussian Process and capturing the local ranking among a fixed
number of neighbors via a multi-nominal logit model.

In contrast, we propose to capture the global ranking of each candidate among the whole
feasible domain (search space) and model the relative response. On the one hand, we can directly
search the optimum based on our relative response surface and obtain the next query without
computationally expensive procedure. On the other hand, we directly build a ranking-based relative
response surface without building an absolute response surface first. Specifically, we adopt Poisson
Process (PP) to capture the global ranking, which is naturally suitable since the ranking of a
candidate can be figured out by counting the number of better candidates. Verified experiments
on the Forrester function with various degrees of additive Gaussian noise are conducted to show
the robustness of our response surface capturing the global ranking. Comparison with GP-BO
is illustrated in Fig. 1. The detailed settings can be found in the caption and Appendix C.1. Our
contributions can be summarized as follows:

1) Ranking-based Response Surface based on Poisson Process. Unlike the prior absolute
response surface (Bergstra et al., 2011; Snoek et al., 2012), nor those (Nguyen et al., 2021) using
relative evidence likelihood based on absolute responses, this work is the first to directly capture
the global ranking over a feasible domain via Poisson process. The robustness against noise is also
analyzed in Sec. 3.1 and illustrated in Fig. 1.

1In this work, ‘absolute response’ of a black-box function estimate as the raw values at candidate points. ‘relative
response’ of a black-box function estimates the ranking of candidate points, which can be computed by pairwise
comparing.
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(a) Response Surface of GP (value-based model)
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(b) Response Surface of PP (ranking-based model)
Figure 1: We compare the sensitivity of additive Gaussian noise between GP (value-based) response

surface and PoPBO (ranking-based response surface) on the Forrester function. Based on the
function value, the solid black line (oracle) indicates actual rankings over 100 points evenly
spaced from 0 to 0.8. We draw lines between the 100 predictions by linear interpolation for
a clear illustration. The dashed lines indicate predicted rankings over the 100 points by (a)
Gaussian process and (b) Poisson process on observations with varying degrees of noise
whose standard deviation 𝜎 ranges from 0 to 0.45. Each response surface is trained on the
same 15 queries. Note that GP performs worse as the standard deviation of noise increases.
In contrast, PP performs consistently well due to its great robustness against noise.

2) Tailored Acquisition Function for Ranking-based Response Surface. Two acquisition
functions for our response surface, named R-LCB and ERI, are deduced from the vanilla LCB and
EI for better exploitation-exploration trade-off. Gradients of the proposed acquisition functions
w.r.t. candidates are also derived, so the next query can be optimized by ADAM.

3) Computationally-efficient Bayesian Optimization Framework. The proposed ranking-
based response surface and acquisition functions form an efficient and novel Bayesian optimization
framework: Poisson Process Bayesian Optimization (PoPBO). The computational complexity of
PoPBO is 𝑂 (𝑁 2), much lower than that of GP-BO (𝑂 (𝑁 3)). Comparison is shown in Fig. 3.

4) Extensive Empirical Study with Strong Performance. Our method outperforms many prior
BO methods on both simulated functions and real-world benchmarks, including HPO and NAS.

2 Preliminaries and Background

Bayesian Optimization. Consider minimizing a black-box function 𝑥∗ = argmin𝑥∈𝑋 𝑓 (𝑥), where
𝑓 (·): 𝑋 → R, defined on a d-dimensional feasible domain 𝑋 ⊂ R𝑑 . The observations have additive
noise. Bayesian optimization (BO) is an efficient method to solve such a problem, especially when
the black-box function is expensive to be evaluated and has no closed-form expression (Brochu
et al., 2010; Perrone et al., 2018). It alternately trains a surrogate model to estimate the response
surface of the black-box function based on the observed samples and suggest the next query based
on a acquisition function balancing the exploitation and exploration. Gaussian process is one
of the most classic and popular surrogate models, which assumes a GP prior to the black-box
function and computes the posterior conditioned on the observations. SMAC (Hutter et al., 2011)
introduces random forests for regression, which can be used to handle categorical hyperparameters.
TPE (Bergstra et al., 2011) models two densities for each sample: 𝑙 (𝑥) = 𝑝 (𝑦 < 𝛼 |𝑥, 𝐷) and
𝑔(𝑥) = 𝑝 (𝑦 > 𝛼 |𝑥, 𝐷) via kernel density estimator, and then optimize the ratio 𝑙 (𝑥)/𝑔(𝑥) to suggest
the next query. Recently, Bayesian neural network is also introduced into BO framework (Snoek
et al., 2015) to estimate the response surface. Springenberg et al. (2016) improves the robustness by
evaluating the posterior via a stochastic gradient MCMC method (Chen et al., 2014).

After building the response surface via a surrogate model, BO suggests the next query via an
acquisition function considering the trade-off between exploitation and exploration. Popular acqui-
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sition functions include expected improvement, Thompson sampling, and upper/lower confidence
bound due to their ease of use and strong performance.

BO with Relative Metrics. The relative metric does not have to utilize absolute responses of the
black-box function. Some methods focus on the cases where the function evaluation is not directly
accessible (Brusilovsky et al., 2007; González et al., 2017; Mikkola et al., 2020; Siivola et al., 2021).
Absolute responses can be difficult to obtain or even unavailable in some practical scenarios, such
as sports games and recommender systems (Brusilovsky et al., 2007) where only relative evaluation
can be provided by pairwise comparisons. Preferential Bayesian Optimization (PBO) (González et al.,
2017) captures correlations between different inputs to find the optimal value of a latent function,
which requires limited comparisons. To handle a high-dimensional black-box function, Projective
Preferential Bayesian Optimization (PPBO) (Mikkola et al., 2020) proposes a projective preferential
query allowing for the feedback given by human interaction. However, they ignore the tie situations
and have to rely on a computationally expensive procedure to suggest the next query. Nguyen
et al. (2021) extend the above method by comparing k samples but have to model the absolute
response surface by Gaussian Process and assume the noise obeys Gumbel distribution. In addition,
ranking-based methods (Feurer et al., 2018; Salinas et al., 2020) can also facilitate the identification
of similar runs for transfer learning, reusing insights from past similar experiments. This work, on
the contrary, makes the first attempt to directly capture the global ranking of candidates based on
Poisson process and derive a novel Bayesian Optimization framework named PoPBO. We analyze
the robustness of relative metric (ranking) against noise and show the outstanding performance of
our method on various simulated benchmarks and real-world datasets.

3 Poisson Process for Bayesian Optimization

3.1 Ranking-based Metric

Consider a black-box objective function 𝑓 (·) defined on a feasible domain 𝑋 . Given a sample 𝑥 ∈ 𝑋
and a subset of the feasible domain 𝑆 ⊂ 𝑋 , we define a set 𝑆𝑥 = {𝑦 |𝑦 ∈ 𝑆, 𝑓 (𝑦) < 𝑓 (𝑥)}, consisting
of the better candidates than 𝑥 in 𝑆 . Hence, we can estimate the superiority of 𝑥 for 𝑓 (·) against the
points in set 𝑆 by measuring 𝑆𝑥 . Specifically, consider two points 𝑥1, 𝑥2, if 𝑆𝑥1 has a larger measure
value than 𝑆𝑥2 , it represents that there are more points in 𝑆 better than 𝑥1 compared to those better
than 𝑥2, so 𝑥1 is worse than 𝑥2. We would like to capture the ranking of each candidate 𝑥 over a
domain 𝑆 . However, 𝑆 usually contains a large number of candidates making it intractable to obtain
the true ranking. Therefore, we sample a set 𝑆 from the search space 𝑋 and attempt to capture the
ranking of 𝑥 over 𝑆 ∩ 𝑆 , i.e., |𝑆𝑥 ∩ 𝑆 |.

Robustness Analysis. Consider two queries 𝑥1, 𝑥2 with observations 𝑦1, 𝑦2. Suppose observa-
tions of the black-box function are subject to additive Gaussian noisy 𝑦 = 𝑓 (𝑥) + 𝜖, 𝜖 ∼ N (0, 𝜎2)
We assume 𝑓 (𝑥1) < 𝑓 (𝑥2) without loss of generality, the probability of correctly ranking 𝑥1, 𝑥2 is:

𝑃 (𝑦1 < 𝑦2) = 𝑃 (𝜖1 − 𝜖2 < 𝑓 (𝑥2) − 𝑓 (𝑥1)) . (1)

Since 𝜖1, 𝜖2 ∼ N (0, 𝜎2) are independent, Δ𝜖 = 𝜖1 − 𝜖2 ∼ N (0, 2𝜎2). According to three-sigma rule
of thumb, if 𝑓 (𝑥2) − 𝑓 (𝑥1) >

√
2𝜎 , the probability of correctly ranking 𝑥1, 𝑥2 is larger than 82.63%;

If 𝑓 (𝑥2) − 𝑓 (𝑥1) > 2
√
2𝜎 , the probability of correctly ranking 𝑥1, 𝑥2 is larger than 97.72%. Even if

observations are noisy, the ranking of candidates is hard to be disrupted.
Hence, we conclude the ranking metric is robust to noise and assume the observed ranking

noiseless in this work. Results of our ranking-based surrogate model on Forrester function with
varying degrees of additive noises confirm our analysis, as shown in Fig. 1b. Specifically, despite
that no prior of noise is considered on the observed ranking when training the PP (ranking-based)
surrogate model, it can still capture the oracle ranking (the line of ground truth in black) properly
even with noisy observations. In contrast, although the GP (value-based) surrogate model considers
the prior of noise, it performs worse.
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Algorithm 1 PoPBO: Bayesian Optimization with Poisson Process

Require: 1)A function 𝑅𝑎𝑛𝑘 ({·})† to rank samples based on a black-box function 𝑓 (·); 2)A feasible
domain (search space) 𝑋 ; 3) An acquisition function 𝛼 ; 4) The number of initial points 𝑁 ; 5)
the number of total training iterations 𝑇 .

1: Randomly sample 𝑁 initial points 𝑆 := {𝑥 𝑗 }𝑁𝑗=1 from 𝑋 ;
2: Initialize the parameters \ of _b (𝑥);
3: for 𝑡 := 𝑓 𝑟𝑜𝑚 1 𝑡𝑜 𝑇 do
4: Get their rankings 𝑅 := 𝑅𝑎𝑛𝑘 (𝑆);
5: Train \ based on points 𝑆 and 𝑅 by minimizing Eq. 4 through ADAM;
6: Get the next query 𝑥∗ by minimizing acquisition function 𝛼 ;
7: Update the set of points 𝑆 := 𝑆 ∪ {𝑥∗}
8: end for
9: Get the best query 𝑥𝑜𝑝𝑡 in history based on 𝑅𝑎𝑛𝑘 (𝑆);
Output: The best point 𝑥𝑜𝑝𝑡 in history.
†: A sorting function can serve as the 𝑅𝑎𝑛𝑘 (·).

3.2 Capturing the Ranking via Poisson Process

Given a sample 𝑥 and a set 𝑆 , we utilize a random process 𝑅𝑥 (𝑆),∀𝑆 ⊂ 𝑋 to capture the ranking 𝑥 .
Note that 𝑅𝑥 (𝑆) also depends on 𝑆 , we omit it for conciseness. In particular, we define 𝑅𝑥 ≜ 𝑅𝑥 (𝑋 )
to denote the ranking of 𝑥 over the whole feasible domain 𝑋 , which is a random variable. We
assume the rankings of 𝑥 over two disjoint areas are independent, i.e., 𝑅𝑥 (𝑆1) ⊥⊥ 𝑅𝑥 (𝑆2),∀𝑆1, 𝑆2 ⊂
𝑋, 𝑆1 ∩ 𝑆2 = ∅ since the function 𝑓 (𝑥) is black-box. Hence, we can model 𝑅𝑥 (𝑆),∀𝑆 ⊂ 𝑋 as
an independent increment counting process. Moreover, 𝑅𝑥 (𝑆) has the following properties: 1)
𝑅𝑥 (∅) = 0 and 2) limΔ𝑠→0 P(𝑅𝑥 (𝑆 + Δ𝑠) − 𝑅𝑥 (𝑆) ≥ 2) = 0,∀𝑆 ⊂ 𝑋 . Detailed discussion is provided
in Appendix A. Since the supremum of 𝑅𝑥 (𝑆) is |𝑆 |, 𝑅𝑥 (𝑆) obeys a truncated non-homogeneous
Poisson process (Yigiter and Inal, 2006) as Eq. 2 with parameter _(𝑠, 𝑥), 𝑠 ∈ 𝑋 .

𝑅𝑥 (𝑆) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
(∫
𝑆

_(𝑠, 𝑥)d𝑠
)
. (2)

Hence, the ranking of 𝑥 over the whole feasible domain is 𝑅𝑥 = 𝑅𝑥 (𝑋 ), the probability of 𝑅𝑥 = 𝑘 is:

P
(
𝑅𝑥 = 𝑘 |𝑥, 𝑆

)
=

(∫
𝑋
_(𝑠, 𝑥)d𝑠

)𝑘
𝑘! · 𝑍 (𝑥) exp

(
−

∫
𝑋

_(𝑠, 𝑥)d𝑠
)
=

(
_b (𝑥) |𝑋 |

)𝑘
𝑘! · 𝑍 (𝑥) exp

(
−_b (𝑥) |𝑋 |

)
, (3)

where 𝑍 (𝑥) = ∑ |𝑆\{𝑥 } |
𝑘=0

[
(_ (b,𝑥 ) |𝑋 | )𝑘

𝑘! exp (−_(b, 𝑥) |𝑋 |)
]
is the normalized coefficient and |𝑆\{𝑥}| is

the number of samples without 𝑥 . There exists b ∈ 𝑋 satisfying
∫
𝑋
_(𝑠, 𝑥)d𝑠 = _b (𝑥) |𝑋 | according

to the mean value theorem for integrals. We can approximate _b (𝑥) by a multi-layer perceptron
(MLP) _b (𝑥 ;\ ) with parameter \ .

To train \ , we resort to the maximized loglikelihood estimation (MLE). Give 𝑁 (≥ 2) samples
𝑆 = {𝑥 𝑗 }𝑁𝑗=1, the ranking of each sample over 𝑆 is �̂� = {𝑘𝑥 𝑗 }𝑁𝑗=1. Similar to (Salinas et al., 2020),
the log-likelihood log𝐿(�̂� |𝑆 ;\ ) can be approximated as follows and \ can be optimized through
ADAM.

𝑁∑︁
𝑗=1

{
𝑘𝑥 𝑗 log

(
_b (𝑥 𝑗 ;\ ) |𝑋 |

)
− log (𝑘𝑥 𝑗 !) − log

[ 𝑁−1∑︁
𝑖=0

(
_b (𝑥 𝑗 ;\ ) |𝑋 |

)𝑖
𝑖!

]}
. (4)
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Once \ is determined after training on the observations (𝑆, �̂�), the ranking of a new sample 𝑥∗
over the whole feasible domain 𝑋 can be predicted, where 𝑍 is the normalized coefficient by Eq. 3.

P
(
𝑅𝑥∗ (𝑋 ) = 𝑘 |\, 𝑥∗, 𝑆

)
=

(
_b (𝑥∗;\ ) |𝑋 |

)𝑘
𝑘! · 𝑍 (𝑥∗) · exp

(
− _b (𝑥∗;\ ) |𝑋 |

)
. (5)

The proposed Bayesian optimization framework with Poisson process (PoPBO) is outlined in
Alg. 1. The acquisition function is introduced in the next section.

4 Tailored Acquisition Functions for PoPBO

The existing acquisition functions are designed for absolute response surface considering inde-
pendent mean and variance, which can be improper for our ranking-based response surface since
the mean of Poisson distribution is the same as the variance. Directly applying these acquisition
functions to our PoPBO will cause the over-exploitation issue. To this end, we introduce a series
of acquisition functions, named rectified upper confidence bound (R-LCB) and expected ranking
improvement (ERI), derived from vanilla LCB and EI, respectively.

4.1 Rectified Lower Confidence Bound (R-LCB)

Ranking of the point 𝑥 obeys Poisson distribution as Eq. 5, with expectation ` (𝑥) = _b (𝑥) |𝑋 | ·∑𝑁 −1
𝑖=0 (_b (𝑥 ) |𝑋 |)𝑖/𝑖!∑𝑁
𝑖=0(_b (𝑥 ) |𝑋 |)𝑖/𝑖! and standard deviation 𝜎 (𝑥) =

√︁
` (𝑥) according to the property of Poisson

distribution. Thus the vanilla LCB of each point is:

𝛼LCB(𝑥) = ` (𝑥) − 𝛽𝜎 (𝑥) =
√︁
` (𝑥)

(√︁
` (𝑥) − 𝛽

)
. (6)

However, Poisson distribution with a large expectation also has a large variance, indicating less
confidence in the ranking prediction. The vanilla LCB will be trapped into an over-exploitation
issue. Hence, we propose a rectified LCB (R-LCB) to restrict the lower value to a threshold:

𝛼R-LCB(𝑥) =
{
𝛼LCB(𝑥) if _b (𝑥 ;\ ) |𝑋 | < 𝑞 |𝑆 |
𝜖𝑥 , 𝜖𝑥 ∼ 𝑈 [0, 1] Otherwise

, (7)

where 𝜖𝑥 is a uniform random variable for reparameterization, and 𝑞 is a pre-defined quantile of
the number of samples. The threshold 𝑞 |𝑆 | can be adaptively adjusted during the BO process. To
minimize R-LCB, we randomly sample a set of start points and adopt a LBFGS (Liu and Nocedal,
1989) optimizer. In particular, LBFGS will not update the samples whose predicted ranking is larger
than 𝑞 |𝑆 |, and they have a probability of being selected as the next query if the sampled 𝜖𝑥 is very
small. Results in Fig. 5 show the advantage of our R-LCB against LCB.

4.2 Expected Ranking Improvement (ERI)

Inspired by EI, we introduce ERI to maximize the expected improvement on ranking over the worst
tolerable ranking 𝐾𝑚 . We set 𝐾𝑚 = 5 by default.

𝛼ERI(𝑥) =
𝐾𝑚∑︁
𝑘=0

(𝐾𝑚 − 𝑘) · P
(
𝑅𝑥 = 𝑘 |\, 𝑥

)
, (8)
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Figure 2: Performance of black-box optimization methods on three simulation functions. Y-axis is the

residual of the optimum function value and the incumbent. We run each method ten times
and plot the average performance and standard error as the line and shadow.

where P
(
𝑅𝑥 = 𝑘 |\, 𝑥

)
is defined in Eq. 5 representing the prediction of ranking of 𝑥 . The gradient

of ERI w.r.t. 𝑥 is defined as follows, where _b (𝑥) = _b (𝑥 ;\ ).

𝜕𝛼ERI(𝑥)
𝜕𝑥

=

𝐾𝑚∑︁
𝑘=0

[
𝐾𝑚 − 𝑘
𝑘!

𝜕

𝜕𝑥

( (
_b (𝑥) |𝑋 |

)𝑘
𝑘! · 𝑍 (𝑥) · exp

(
− _b (𝑥) |𝑋 |

))]
(9)

=

𝐾𝑚∑︁
𝑘=0

{
(𝐾𝑚 − 𝑘)

(
_b (𝑥) |𝑋 |

)𝑘−1 |𝑋 |

𝑘!
( ∑𝑁

𝑖=0
(_b (𝑥 ) |𝑋 |)2

𝑖!
)2 [

𝑘

𝑁∑︁
𝑖=0

(
_b (𝑥) |𝑋 |

)2
𝑖!

− _b (𝑥) |𝑋 |
𝑁−1∑︁
𝑖=0

(
_b (𝑥) |𝑋 |

)2
𝑖!

]}
.

Hence, we can get the next query 𝑥∗ by minimizing 𝛼ERI(𝑥) through a LBFGS optimizer. Similar to
R-LCB, we also apply the rectified technique in Eq. 7 to ERI.

5 Empirical Analysis

Benchmarks. We verify the efficacy of PoPBO on both simulated and real-world benchmarks,
including HPO and NAS. For the simulated benchmark, we select three simulation functions,
including 2-d Branin, 6-d Hartmann, and 6-d Rosenbrock. For the HPO task, we test on the tabular
benchmark HPO-Bench (Eggensperger et al., 2021). For the NAS task, we test on on NAS-Bench-
201 (Dong and Yang, 2020). Details of the benchmarks can be found in the Appendix C.2

Baselines. We compare against random search (RS) (Bergstra and Bengio, 2012) and various
value-based Bayesian optimization methods, including GP (Snoek et al., 2012), TPE (Bergstra et al.,
2011), SMAC (Hutter et al., 2011), BOHAMIANN (Springenberg et al., 2016), and HEBO (Cowen-
Rivers et al., 2022). For GPmethods, we use EI and LCB as acquisition functions, which are optimized
by LBFGS, and adopt the Matérn 5/2 covariance function to be the kernel function. We also compare
with PPBO (Mikkola et al., 2020), one of state of the art preferential BO methods. Detailed settings
of the baselines are provided in Appendix C.3.
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Figure 3: Time cost of GP-BO,
PPBO (Mikkola et al., 2020)
and PoPBO. All the methods
are applied to optimize 6-d
Hartmann function. The
units are wall-clock times.

Settings. We run all the methods for 80 iterations with
12 initial points by default. For the Rosenbrock-6d simulation
function, we run all methods for 80 iterations with 30 initial
points due to its complex search space. The MLP _b (𝑥 ;\ )
used to approximate the parameter of the Poisson process has
three hidden layers with 128 nodes and a ReLU activation
function. The MLP is trained for 100 steps by ADAM Tian and
Parikh (2022) with 64 batch sizes and a 0.01 initial learning rate
multiplied by 0.2 every 30 steps. All methods are evaluated
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Figure 4: Minimum regret comparison with random search and various Bayesian optimization methods

on tabular datasets in HPO-Bench. Y-axis indicates the residual between the optimum
function value and the incumbent. We run each method ten times and plot the average
performance and standard error of the incumbent as the line and shadow. Our PoPBO can
quickly discover good samples and achieves the best performance (lowest regret).

ten times independently on an Intel(R) Xeon(R) Silver 4210R
CPU.

5.1 Performance on the Simulated Benchmarks

Fig. 2 compares PoPBO and baselines on 2-d Branin, 6-d Hart-
mann, and 6-d Rosenbrock simulation benchmarks. Hartmann
has higher dimensions than Branin and thus is more difficult
to optimize. As shown in Fig. 2b, although the standard GP
temporarily outperforms others in the early stage, our PoPBO
achieves the best at around 40-th iterations and takes the lead till the end. In particular, PPBO
performs great in the early stage but falls into a local optimum after ten iterations. Optimizing the
Rosebrock function is much more complicated than Branin and Hartmann since its global optimum
lies in a narrow valley (Picheny et al., 2013) as well as a more extensive search space. Hence, we
increase the initial points to 30 for a better preview of the Rosenbrock landscape for all methods.
Fig. 2c shows that our PoPBO can quickly find the valley and significantly outperforms other BO
methods.

Computational Cost. Fig. 3 compares the time cost (wall-clock time) of three peer methods,
showing that the cost of GP-BO and PPBO are much higher than PoPBO as the number of observa-
tions increases. Specifically, GP has to compute the inverse of a covariance matrix resulting in a
𝑂 (𝑁 3) computational complexity. PPBO is also based on GP and requires computing another covari-
ance matrix of size 𝐽 × 𝐽 , where 𝐽 is the number of random samples. In contrast, the computational
bottleneck of PoPBO lies in the training of an MLP, which is 𝑂 (𝑁 2) as shown in Eq. 4. Notice that
the units are wall-clock times. Nevertheless, in our experiment, the evaluation of candidates can be
negligible compared with the training of the surrogate model and the optimization of acquisition.
Therefore, the wall-clock time has little difference from the CPU time.
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Table 1: Top-1 mean accuracy (%) for classification on NAS-Bench-201. The first block shows the
performance of non-parameter sharing algorithms and various Bayesian optimizationmethods.
The second block shows the performance of PoPBO with ERI and R-LCB acquisition functions.
†: Results are obtained from NAS-Bench-201. Otherwise, we independently run the method
for ten times. The best mean accuracy in each column is in bold.

Methods CIFAR-10 CIFAR-100 ImageNet-16-120

valid test valid test valid test

REINFORCE (Williams, 1992)† 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18
REA (Real et al., 2019)† 91.19±0.31 93.92±0.30 71.81±1.12 71.84±0.99 45.15±0.89 45.54±1.03
Random Search (Bergstra and Bengio, 2012) 91.00±0.38 93.83±0.31 71.29±1.29 71.47±1.16 44.83±1.11 45.05±1.14
BOHB (Falkner et al., 2018)† 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.28 44.26±1.36 44.42±1.49
TPE (Bergstra et al., 2011) 91.06±0.38 93.90±0.34 71.29±1.29 71.85±1.13 45.04±1.23 45.27±1.49
SMAC (Hutter et al., 2011) 91.09±0.38 93.95±0.28 71.40±1.23 71.66±1.11 45.11±0.99 45.32±1.09
GP (EI) (Snoek et al., 2012) 91.40±0.18 94.23±0.15 72.67±0.83 72.75±0.47 45.83±0.45 46.20±0.63
GP (LCB) (Snoek et al., 2012) 91.30±0.25 93.98±0.22 72.00±0.80 72.05±0.76 45.37±0.83 45.60±0.94
BOHAMIANN (Springenberg et al., 2016) 91.36±0.16 94.13±0.23 72.36±0.82 72.38±0.81 45.93±0.66 46.18±0.60
PoPBO (ERI) 91.52±0.05 94.35±0.03 73.21±0.29 73.25±0.18 46.27±0.36 46.54±0.19
PoPBO (R-LCB) 91.52±0.04 94.33±0.08 73.21±0.36 73.19±0.31 46.12±0.43 46.61±0.32

5.2 Performance on the Real-world Benchmarks

HPO-Bench. we run each method for ten times and plot the trend of minimum regret during the
BO procedure. Fig. 4 compares PoPBO with advanced Bayesian optimization methods and random
search on HPO-Bench (Eggensperger et al., 2021), showing that our PoPBO achieves the best on
all the four datasets. In contrast, other methods are unable to perform consistently well and even
worse than random search. Moreover, the performance of our method has a lower standard error
than other methods, indicating its outstanding stability. The numerical performance of all methods
on the four datasets are provided in Table 2 in Appendix C.4.

NAS-Bench-201. Table 1 reports the performance on the NAS task. The first block shows
the performance of prior non-parameter-sharing-based NAS methods, including random search,
evolution algorithm, reinforcement learning, and Bayesian optimization. We adopt the same
initial observations when testing Random Search, GP-BO, and our PoPBO for a fair comparison.
As for SMAC and TPE, we directly run the open-source codes, which have different sampling
implementations from ours, making it hard to sample the same initial observations as ours even
under the same random seed. Our method achieves the best performance on the three datasets and,
in particular, outperforms the state-of-the-art Bayesian optimization methods BOHB (Falkner et al.,
2018) and BOHAMIANN (Springenberg et al., 2016). Additionally, we plot the performance trend
of various methods on the validation and test set of CIFAR-10, CIFAR-100, and ImageNet16-120 in
Fig. 6 in Appendix C.4.

5.3 Effectiveness of the Rectified Technique

The quantile parameter 𝑞 in Eq. 7 trades off the exploration and exploitation, i.e., a smaller 𝑞 has
better exploration ability. On the one hand, the method degrades to random search when 𝑞 → 0,
with weak exploitation ability, so it is undesirable to set 𝑞 as a rather small value. On the other
hand, it degrades to the vanilla acquisition functions when 𝑞 → 1, with weak exploration ability
as our analysis in Sec. 4. Fig. 5 evaluates the effect of quantile parameters 𝑞 on both R-LCB and
ERI on 6-d Rosenbrock benchmark. The best setting of the quantile parameter 𝑞 for R-LCB is 0.6,
and the best for ERI is 0.4. We also conduct the ablation study on NAS-Bench-201, which verify
that this setting could provide a good balance between exploration and exploitation. The results on
NAS-Bench-201 can be found in Appendix C.7.
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Figure 5: Ablation study on hyperparameter 𝑞, which controls the exploitation-exploration trade-off.

We test on the Rosenbrock simulation function and show the effect of 𝑞 on (a) R-LCB and (b)
ERI. For each setting, we run ten times and plot the average performance of the incumbent.

6 Conclusion

We have proposed a novel Bayesian Optimization framework, named PoPBO, for optimizing
black-box functions with relative responses, being more robust to noise than absolute responses.
Specifically, we introduce a relative response surface to capture the global ranking of candidates
based on the Poisson process that is suitable for modeling discrete count events. We give the
likelihood and posterior forms of ranking under the general assumption of a non-homogeneous
Poisson process. To balance the trade-off between exploration and exploitation, we design two
acquisition functions, namely Rectified Lower Confidence Bound (R-LCB) and Expected Ranking
Improvement (ERI), for our ranking-based response surface. Our method enjoys a lower computa-
tional complexity of𝑂 (𝑁 2) compared to GP’s𝑂 (𝑁 3) and performs competitively on both simulated
and real-world benchmarks.

Limitations and Future Work. This work analyzes the robustness of relative response against
noise and thus does not involve prior knowledge of noise. However, there exist real scenarios
where the noise is too large to disrupt the ranking of observations, and we would like to leave it as
our future work. Additionally, the mean of Poisson distribution is the same as variance, which has a
potential over-exploitation issue as mentioned in Sec. 4. This work introduces a rectified technique
to alleviate it, and we would like to explore other elegant acquisition functions in future work.
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A Discussion on the Assumptions for 𝑅𝑥 (𝑆)

Consider to minimize a black-box function 𝑓 (𝑥). In this paper, 𝑅𝑥 (𝑆) = |𝑆𝑥 ∩ 𝑆 |, where 𝑆 is a set of
samples and 𝑆𝑥 = {𝑦 |𝑦 ∈ 𝑆, 𝑓 (𝑦) < 𝑓 (𝑥)} is the set of better points than 𝑥 . We assume 𝑅𝑥 (𝑆) has
the following properties:

1) 𝑅𝑥 (𝑆1) ⊥⊥ 𝑅𝑥 (𝑆2),∀𝑆1, 𝑆2 ⊂ 𝑋, 𝑆1 ∩ 𝑆2 = ∅; (independent increment)
2) 𝑅𝑥 (∅) = 0;
3) limΔ𝑠→0 P(𝑅𝑥 (𝑆 ′) + Δ𝑠) − 𝑅𝑥 (𝑆 ′) ≥ 2) = 0,∀𝑆 ′ ⊂ 𝑆 .
We adopt the first assumption since 𝑓 (𝑥) is a black-box function. Unlike GP that assume 𝑓 (𝑥) is

a linear function 𝑓 (𝑥) = 𝑤⊤𝑥 , we make no prior assumption on the form of black-box function and
only assume the rankings over disjoint areas are independent. The second assumption is naturally
satisfied since there are no points 𝑥 ′ ∈ ∅ satisfying 𝑦′ > 𝑦, where 𝑦 indicates the observation of
point 𝑥 . The third assumption is also satisfied no matter if the black-box function is a discrete or
continuous. Specifically, we can find a small enough Δ𝑠 making (𝑆 ∩ 𝑆) ∩ Δ𝑠 only contains one
point, since 𝑆 is discrete.

B Algorithm Details

As the number of observations 𝑁 increases, the right truncated Poisson distribution gradually
approaches to the normal one(Yigiter and Inal, 2006), which has a smaller computational cost.
Hence, we use normal Poisson process to model the response surface when 𝑁 ≥ 12.

B.1 Workflow of PoPBO

Suppose at 𝑡-th iteration, we have 𝑁 (𝑡 ) history queries, denoted as 𝑆 (𝑡 ) and their observations. The
detailed workflow of our PoPBO at 𝑡 iteration is as follows (In the following, we omit 𝑡 without
loss of generality.):

1) Get the rankings. ∀𝑥 ∈ 𝑆 , we compute the ranking of 𝑥 over 𝑆 by comparing its observation
with others and obtain a ranking set �̂� = {𝑘𝑥 |∀𝑥 ∈ 𝑆}. Similar to [1], we assume the rankings
between queries are independent. (Though it is not rigorous, we find it performs better than a truly
independent ranking strategy, which will be analyzed later.)
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2) Compute log-likelihood on observations �̂� . Since the rankings in �̂� are independent, we
can get the log-likelihood on the observations of ranking �̂� as:

log𝐿(�̂� |𝑆 ;\ ) = log

{∏
𝑥∈𝑆

𝑝 (𝑅𝑥 = 𝑘𝑥 |𝑥, 𝑆)
}

(Property of independent increment) (10)

=
∑︁
𝑥∈𝑆

log

{
(_(b, 𝑥) |𝑋 |)𝑘

𝑘! · 𝑍 (𝑥) exp (−_(b, 𝑥) |𝑋 |)
}

(According to the definition of 𝑝 (𝑅𝑥 = 𝑘𝑥 |𝑥, 𝑆) in Eq. 3)

(11)

=
∑︁
𝑥∈𝑆

{
𝑘𝑥 log

(
_b (𝑥 ;\ ) |𝑋 |

)
− log (𝑘𝑥 !) − log

[ 𝑁−1∑︁
𝑖=0

(
_b (𝑥 ;\ ) |𝑋 |

)𝑖
𝑖!

]}
(Derive Eq. 4). (12)

3) Train the surrogate model. We then train MLP by minimizing the log-likelihood through
ADAM, whose gradient can be computed as Eq. 8.

4) Get the next query. We utilize R-LCB or ERI acquisition function to determine the next
query. After obtaining the reward, we put the new query and its reward to the observation set 𝑆 .

B.2 Independent ranking strategy VS. Our implementation.

Given two points 𝑥1, 𝑥2 and a set 𝑆 , their rankings over 𝑆\{𝑥1, 𝑥2} are independent. Hence, we
implement a truly independent ranking strategy as follows: We sample 𝑁 /2 samples from all
queries 𝑆 to build a base set 𝐵. For the left 𝑁 /2 samples, we obtain their rankings over 𝐵 and
build the ranking set �̂� = {𝑘𝑥 ,∀𝑥 ∈ 𝑆\𝐵}, where 𝑘𝑥 denotes the ranking of 𝑥 over 𝐵. Such a
ranking strategy can guarantee that the rankings in �̂� are independent of each other. Then the
log-likelihood of the observations of ranking �̂� can be computed as:

log𝐿(�̂� |𝑆\𝐵;\ ) = log

{ ∏
𝑥∈𝑆\𝐵

𝑝 (𝑅𝑥 = 𝑘𝑥 )
}

(13)

=
∑︁
𝑥∈𝑆\𝐵

log

{
(_(b, 𝑥) |𝑋 |)𝑘

𝑘! · 𝑍 (𝑥) exp (−_(b, 𝑥) |𝑋 |)
}

=
∑︁
𝑥∈𝑆\𝐵

{
𝑘𝑥 log

(
_b (𝑥 ;\ ) |𝑋 |

)
− log (𝑘𝑥 !) − log

[ |𝐵 |−1∑︁
𝑖=0

(
_b (𝑥 ;\ ) |𝑋 |

)𝑖
𝑖!

]}
However, the above independent ranking strategy results in under-utilization of observations

𝑆 since it has to be divided into two sets. Moreover, candidates with different performances may
get the same ranking over 𝐵, which will mislead the training of the surrogate. This work adopts a
simple relaxation – We compute 𝑅 as the ranking over the whole set 𝑆 and assume independence
property, which is also utilized in [1]. Our experimental results show that such a relaxation results
in better performance since it can fully utilize all observations.

C Supplementary of Experiments

C.1 Experimental Settings on Robustness Analysis

We compare the sensitivity to additive Gaussian noise between GP (value-based) response surface
and PoPBO (ranking-based) response surface on Forrester function. To simulate the performance of
GP, we first utilize Gaussian process to fit a certain number of (15 in this paper) observed values and
plot the ranking of e.g. 100 points according to the values predicted by GP as Fig. 1a. Meanwhile,
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Figure 6: Performance trend of random search and Bayesian optimization methods on NAS-Bench-201.

We run 10 times for each setting and plot the mean accuracy as the lines. Note that when
testing Random Search, GP-BO, and our PoPBO, we adopt the same initial random seeds for
all settings at each run for fairness. Hence, the lines in each plot have the same initial point
(at the 0-th iteration).

Methods Naval Parkinson Protein Slice

Random Search (Bergstra and Bengio, 2012) 9.54 × 10−5 ± 5.76 × 10−5 7.99 × 10−3 ± 4.18 × 10−3 3.04 × 10−2 ± 1.51 × 10−2 1.48 × 10−4 ± 7.45 × 10−5
TPE (Bergstra et al., 2011) 1.67 × 10−5 ± 1.64 × 10−5 4.49 × 10−3 ± 2.55 × 10−3 1.86 × 10−2 ± 1.37 × 10−2 1.80 × 10−4 ± 7.10 × 10−5
SMAC (Hutter et al., 2011) 2.94 × 10−4 ± 3.96 × 10−4 1.48 × 10−2 ± 9.38 × 10−3 2.05 × 10−2 ± 1.14 × 10−2 3.16 × 10−4 ± 2.25 × 10−4
GP (EI) (Snoek et al., 2012) 1.79 × 10−4 ± 1.77 × 10−4 6.20 × 10−3 ± 2.44 × 10−3 8.06 × 10−3 ± 6.53 × 10−2 1.66 × 10−4 ± 7.00 × 10−5
GP (LCB) (Snoek et al., 2012) 1.38 × 10−4 ± 1.77 × 10−4 5.31 × 10−3 ± 2.79 × 10−3 8.08 × 10−3 ± 1.02 × 10−2 1.95 × 10−4 ± 1.30 × 10−4

PoPBO (ERI) 1.38 × 10−5 ± 1.59 × 10−5 1.92 × 10−3 ± 1.51 × 10−3 5.77 × 10−3 ± 3.55 × 10−3 4.83 × 10−5 ± 3.29 × 10−5
PoPBO (R-LCB) 1.07 × 10−5 ± 6.26 × 10−6 2.41 × 10−3 ± 1.93 × 10−3 4.62 × 10−3 ± 3.91 × 10−3 3.14 × 10−5 ± 1.74 × 10−5

Table 2: Regret of the configuration discovered by various methods on the four datasets of HPO-Bench.
We run each method for ten times and report the mean and standard deviation. The best
performance (lowest mean value and standard deviation) is in bold.

our method utilizes Poisson process to directly capture the ranking response surface based on the
same 15 observations and predict the ranking of 100 points as shown in Fig. 1b. We observe that
our response surface is more robust to noise and can better capture the global ranking.

C.2 Details of the Benchmarks

For the simulated benchmark, we apply PoPBO to optimize three simulation functions: 1) 2-d Branin
function with the domains of each dimension are [−5, 10] and [0, 15] respectively; 2) 6-d Hartmann
function in [0, 1] for all six dimensions; 3) 6-d Rosenbrock function defined in [−5, 10]6. For the HPO
task, we test PoPBO on the tabular benchmark HPO-Bench (Eggensperger et al., 2021), containing
the root mean square error (RMSE) of a 2-layer feed-forward neural network (FCNET) (Klein and
Hutter, 2019) trained under 62208 hyper-parameter configurations on four real-world datasets:
protein structure (Rana, 2013), slice localization (Graf et al., 2011), naval propulsion (Coraddu
et al., 2016) and parkinsons telemonitoring (Tsanas et al., 2010). The averaged RMSE over four
independent runs under the same configuration is utilized as the performance of that configuration.
For the NAS task, we test on NAS-Bench-201 (Dong and Yang, 2020) containing 15,625 architectures
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in a cell search space that consists of 6 categorical parameters, and each parameter has five choices.
Each architecture is evaluated on three datasets. Following the setting of (Dong and Yang, 2020),
we search for the best architecture according to its performance on the CIFAR-10 validation set
after 12 epochs training.

C.3 Detailed Settings of Baseline Methods

In this section, we provide the specific details of each baseline mentioned in the paper:
Random Search (RS). Following the description in Bergstra and Bengio (2012), we sample candidates
uniformly at random.

BO with Gaussian Process (GP). We follow the settings that described by Snoek et al. (2012) and
use the implementation of our own. We use expected improvement (EI) and lower confidence
bound (LCB) as acquisition functions and adopt LBFGS to optimize them. When the search space is
completely discrete like Dong and Yang (2020), we use random sampling to find the next query,
which gives the maximizer of the acquisition function among 𝑁 = 1000 random samples. For kernel
function, we use Matérn 5/2 kernel for GP. During the training process, we adopt slice sampling,
an efficient Markov chain Monte Carlo (MCMC) method, to fit the hyperparameters of GP, which
we find to work more robustly for GP.

Tree Parzen Estimator (TPE). Bergstra et al. (2011) adopt kernel density estimators to model the
probability of points with bad and good performance respectively. Then TPE give the next query
by optimizing the ratio between the two estimated likelihood, which is proved to be equivalent to
optimizing EI. We use the default settings provided in hyperopt package (https://github.com/
hyperopt/hyperopt).

SMAC. Hutter et al. (2011) adopt random forest to model the response surface of the black-box
function. We use the default settings given by scikit-optimize package (https://github.com/
scikit-optimize/scikit-optimize).

BOHAMIANN. Unlike Snoek et al. (2012), BOHAMIANN adopts Bayesian neural network to
build the response surface, whose weights are sampled via a stochastic gradient Hamiltonian
Monte-Carlo (SGHMC) method. We use the default settings provided in pybnn package (https:
//github.com/automl/pybnn) and use EI as the acquisition function.

PPBO. This is an effective preferential BO method based on pairwise comparisons, attempting to
learn user preferences in high-dimensional spaces. We use the default settings provided by PPBO
package (https://github.com/AaltoPML/PPBO).

HEBO. Heteroscedastic Evolutionary Bayesian Optimisation that won the NeurIPS 2020 black-
box optimisation competition. We use the default strategy and its default parameters provided
in HEBO package (https://github.com/huawei-noah/HEBO). For a fair comparison, we use a
uniform sampling strategy instead of a sobol one during initialization and candidates generation.

C.4 Detailed Results on HPO-Bench and NAS-Bench-201

Table 2 reports the numerical performance of PoPBO and other methods on the four datasets on
HPO-Bench. Fig. 6 displays the performance trend of PoPBO and other methods on the validation
set and test set under the search space of NAS-Bench-201.

C.5 Is the gain in performance of PoPBO due to the complex representation of MLP in the surrogate
model?

We utilize the same MLP architecture and training settings as PoPBO’s to fit the Gaussian likelihood
of each candidate. We denote such a setting as GP-MLP. We plot the regret of GP-MLP, GP, and our
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Figure 7: Performance trend of GP, GP-MLP, and PoPBO on Hartmann and Rosenbrock simulated

benchmarks.
Table 3: Ablation study about rectified hyperparameter 𝑞 on NAS-Bench-201.

Methods CIFAR-10 CIFAR-100 ImageNet-16-120

valid test valid test valid test

PoPBO (ERI, q=0.1) 91.41±0.15 94.22±0.15 72.70±0.63 72.68±0.69 45.93±0.61 46.45±0.34
PoPBO (ERI, q=0.2) 91.47±0.12 94.26±0.16 72.96±0.59 73.00±0.53 45.90±0.66 46.33±0.55
PoPBO (ERI, q=0.4) 91.52±0.04 94.33±0.08 73.21±0.36 73.19±0.31 46.12±0.43 46.61±0.32
PoPBO (ERI, q=0.5) 91.52±0.04 94.33±0.08 73.21±0.36 73.19±0.31 46.12±0.43 46.61±0.32
PoPBO (ERI, q=0.6) 91.52±0.04 94.33±0.08 73.21±0.36 73.19±0.31 46.12±0.43 46.61±0.32
PoPBO (R-LCB, q=0.1) 91.33±0.19 94.19±0.23 72.62±0.82 72.52±0.67 45.71±0.56 46.10±0.65
PoPBO (R-LCB, q=0.2) 91.50±0.06 94.30±0.11 73.04±0.56 73.04±0.45 46.07±0.38 46.37±0.30
PoPBO (R-LCB, q=0.4) 91.52±0.04 94.33±0.08 73.21±0.36 73.19±0.31 46.12±0.43 46.61±0.32
PoPBO (R-LCB, q=0.5) 91.52±0.04 94.33±0.08 73.21±0.36 73.19±0.31 46.12±0.43 46.61±0.32
PoPBO (R-LCB, q=0.6) 91.52±0.04 94.33±0.08 73.21±0.36 73.19±0.31 46.12±0.43 46.61±0.32

PoPBO on Hartmann and Rosenbrock in Fig. 7. We observe that GP-MLP performs much worse
than GP and ours, showing that the complex representation of the MLP in the surrogate model is
not the main reason for the gain in performance.

C.6 Ablation Study about the Worst Tolerant Ranking 𝐾𝑚 in ERI

Fig. 8 compares the performance of ERI under various settings for the worst tolerant ranking 𝐾𝑚 .
We observe that PoPBO-ERI is not very sensitive to 𝐾𝑚 . Specifically, for Branin, ERI with larger 𝐾𝑚
converges faster but ERI with various 𝐾𝑚 have similar ultimate performance after 80 iterations. For
Rosenbrock that has larger search space and more complex landscape, better exploitation ability is
more important than exploration, and thus ERI with lower 𝐾𝑚 achieves better performance.

C.7 Ablation Study about the Rectified Technique on NAS-Bench-201

Table 3 evaluates the effect of quantile parameters 𝑞 on both R-LCB and ERI on NAS-Bench-201.
We adopt the same ten random seeds for different settings for fair comparison. The results show
that our settings of q (0.4 for ERI and 0.6 for R-LCB) perform still well on the real-world benchmark.
Moreover, we observe that the results are the same when 𝑞 = 0.4, 0.5, 0.6. We analyze that ERI and
R-LCB have the same effect as the vanilla EI and LCB respectively when 𝑞 ≥ 0.4.

C.8 More iterations on 6-d Rosenbrock for GP and PoPBO

Since 6-d Rosenbrock has a large search space and is hard to converge, we run GP and PoPBO for
more iterations (200 queries) and plot the regret in Fig. 9. We observe that PoPBO consistently
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Figure 8: Ablation study of ERI on the two simulation functions. 𝐾𝑚𝑎𝑥 is the worst tolerable ranking,

and a higher 𝐾𝑚𝑎𝑥 leads to a higher rate of exploration.
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Figure 9: Performance trend of PoPBO and GP by running 200 iterations on 6-d Rosenbrock. For each
setting, we conduct replicated experiments for six times with various random seeds.

outperforms GP after 50 epochs. Moreover, both PoPBO-ERI and PoPBO-R-LCB have lower variance
than GP-EI and GP-LCB.

C.9 Fewer Initial Points on 6-d Rosenbrock

We set the number of initial points to 30 for a better preview of the Rosenbrock landscape for
all methods. To demonstrate the sample efficiency of our algorithm, we use fewer initial points
(7 points for each algorithm) and compare PoPBO with GP-based BO, SMAC and TPE on 6-d
Rosenbrock benchmark. The results can be found in Fig. 11.

C.10 Robustness to various noise level

In our settings, the observations in the simulation function are noiseless, while the observations
in the real-world benchmark (HPO-Bench and NAS-Bench-201) are noisy. For HPO-Bench, the
performance of each configuration (hyperparameters of FCNet) is evaluated 4 times under different
random seeds. In the experiment settings of HPO-Bench, the average performance is used as the
observation, which is naturally noisy. NAS-Bench-201 attempts to search for a neural architecture
that performs best after 200 training epochs. However, following the experiment settings of NAS-
Bench-201, only the validation accuracy after 12 training epochs of each architecture can be queried,
making the observations noisy.

To verify the robustness to noise of PoPBO on simulated benchmarks, we add Gaussian noises
with zero mean and various standard deviation (𝜎) to Hartmann, Branin, and Rosenbrock simulation
functions and run GP-BO and PoPBO separately. Trends of average regret among six parallel tests
are plotted in Fig. 10, showing that GP performs worse with the increment of noise level. In contrast,
PoPBO performs much more stable. Moreover, PoPBO outperforms GP when the objective function
has large noise (𝜎 = 0.1 for Hartmann, 𝜎 = 5 for Branin and Rosenbrock). The results demonstrate
the robustness of PoPBO to noise.
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Figure 10: Comparison of the robustness to noise between GP-BO and PoPBO. We add Gaussian noises

with zero mean and various standard deviation 𝜎 to the objective function. Notice that
Branin and Rosenbrock have much larger range of value than Hartman, so we add noises
with larger variance to them.
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Figure 11: Performance on 6-d Rosenbrock with fewer initial points (dimension + 1 = 7 points). For
each setting, we conduct replicated experiments for six times with various random seeds.
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D Notations

1 𝑋 is the whole feasible domain (search space). If 𝑋 is continuous, |𝑋 | is the volume of 𝑋 . While
𝑋 is discrete, |𝑋 | is the cardinality of it.

2 𝑆𝑥 = {𝑦 |𝑦 ∈ 𝑆, 𝑓 (𝑦) < 𝑓 (𝑥)} is the set of better points than 𝑥 in 𝑆 ⊂ 𝑋 , where 𝑆 can be any
continuous domain or discrete set.

3 𝑆 is a discrete set containing both initial samples for BO and the history queries.

4 Given a specific 𝑆 , 𝑅𝑥 (𝑆) is a random variable denoting possible ranking of 𝑥 over a discrete set
𝑆𝑥 ∩ 𝑆 . Hence, 𝑅𝑥 (𝑆) depends on 𝑆 , we utilize a hat symbolˆon 𝑅𝑥 to omit 𝑆 for conciseness.

E Broader Impact and Limitations

This paper addresses the problem of Bayesian Optimization (BO) to enable efficient and effective
black-box optimization. It has broad applications in perception tasks, especially computer vision,
robotic control and biology. This, on the one hand, would facilitate our daily life, and on the
other hand, we shall be careful about their abuse which may break one’s privacy. In this sense,
privacy-protection BO is also needed for development, and our techniques can also be of specific
help for its generality.
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