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Abstract
Practitioners building classifiers often start with
a smaller pilot dataset and plan to grow to larger
data in the near future. Such projects need a
toolkit for extrapolating how much classifier ac-
curacy may improve from a 2x, 10x, or 50x
increase in data size. While existing work has
focused on finding a single “best-fit” curve us-
ing various functional forms like power laws, we
argue that modeling and assessing the uncer-
tainty of predictions is critical yet has seen less
attention. In this paper, we propose a Gaussian
process model to obtain probabilistic extrapola-
tions of accuracy or similar performance metrics
as dataset size increases. We evaluate our ap-
proach in terms of error, likelihood, and coverage
across six datasets. Though we focus on medi-
cal tasks and image modalities, our open source
approach1 generalizes to any kind of classifier.
Keywords: Learning curve; Gaussian process

1. Introduction

Consider the development of a medical image classifier
for a new diagnostic task. In this and other appli-
cations of supervised machine learning, the biggest
key to success is often the size of the available la-
beled training set. When a large dataset of labeled
images is not available, research projects often have a
common trajectory: (1) gather a small “pilot” dataset
of images and corresponding class labels, (2) train
classifiers using this available data, and then (3) plan
to collect an even larger dataset to further improve
performance. When gathering more labeled data is

1. We open source our code at https://github.com/
tufts-ml/extrapolating-classifier-accuracy-to-
larger-datasets

Figure 1: Example learning curves for predicting infil-
tration from chest x-rays assessed using area under the
receiver operating characteristic (AUROC). Left: Single
“best-fit” using power law (Rosenfeld et al., 2020). Right:
Our probabilistic Gaussian process with a power law mean
function and 95% confidence interval for uncertainty.

expensive, practitioners face a key decision in step 3:
given that the classifier’s accuracy is y% at the current
size x, how much better might the model do at 2x, 10x,
or 50x images?

Despite decades of research, practitioners lack stan-
dardized tools to help answer this question of how to
extrapolate classifier performance to larger datasets.
We argue that tools that help manage uncertainty
are especially needed. As illustrated in the left panel
of Fig. 1, recent approaches have focused almost en-
tirely on estimating one single “best-fit” curve, using
power laws (Hestness et al., 2017; Rosenfeld et al.,
2020), piecewise power laws (Jain et al., 2023), or
other functional forms (Mahmood et al., 2022a). In
practice, however, no single curve fit to a limited set
of size-accuracy pairs can extrapolate perfectly. Prob-
abilistic methods that can model a range of plausible
curves, as illustrated in Fig. 1 (right), are thus a more
natural solution. Surprisingly, however, most existing
methods focus on deterministic rather than probabilis-
tic modeling (see Tab. 1). The few methods that do
explain how to provide probabilistic intervals for their
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predictions lack careful evaluation of their ability to
quantify uncertainty.

In this work, we provide a portable modeling toolkit
to help practitioners extrapolate classifier performance
probabilistically. We pursue a Bayesian approach via
an underlying Gaussian process (GP) model (Ras-
mussen et al., 2006). The mean function of our GP
can match common curve forms like power law or
arctan, but is adjusted to encode desirable inductive
biases (e.g., more data implies better performance) as
well as common sense (e.g., accuracy or AUROC can
never exceed 100%). We further use prior distributions
over model hyperparameters to encode domain-specific
knowledge (e.g., where might accuracy saturate for
this task given enough data). The whole pipeline
remains learnable from a handful of size-accuracy ex-
emplars gathered on a small pilot dataset.

To summarize, our contributions are: (1) a reusable
GP-based accuracy probabilistic extrapolator (APEx-
GP) that can match existing curve-fitting approaches
in terms of error while providing additional uncer-
tainty estimates, and (2) a careful assessment of our
proposed probabilistic extrapolations compared to
ground truth on larger datasets across six medical
classification tasks involving both 2D and 3D images
across diverse modalities (x-ray, ultrasound, and CT)
with various sample sizes. While we focus on image
analysis tasks here, nothing about our methodology
is specialized to images; our pipeline could be repur-
posed for tabular data, genomics, text, time series, or
even heterogeneous data from many domains. Ulti-
mately, we hope our methods help research teams and
sponsoring funding agencies assess data adequacy for
proposed research studies.

2. Background

We wish to build a classifier for a task of interest
using a bespoke dataset. We assume the largest avail-
able labeled dataset D for our task has limited size,
which we operationalize as roughly 500-20000 total
images with corresponding labels. We partition D
into non-overlapping training and test sets. Given a
chosen classifier and a specific data partition with x
training images, we fit the classifier (including hyper-
parameter search) then evaluate on that partition’s
test set, obtaining a performance value y ∈ [0.0, 1.0].
We’ll assume throughout that higher y implies a bet-
ter model; we will informally refer to y as “accuracy”
for convenience, though y could measure any common

classifier metric like AUROC or balanced accuracy
where 1.0 means “perfect”.

To estimate how y changes with dataset size us-
ing available data, we construct a handful of nested
subsets, following Mahmood et al. (2022a); Jain et al.
(2023). First, pick R desired train-set sizes {xr}Rr=1 in
increasing order. Next, stochastically sample training
sets S1 ⊂ S2 ⊂ . . . ⊂ SR, such that |Sr| = xr for each
index r. Also sample a non-overlapping test set. Fi-
nally, fit the classifier to each train set Sr and record
the performance on the test set as yr. Averaging over
yr from multiple random partitions of D into train
and test sets can obtain smoother estimates of heldout
performance at each data size xr.

Problem statement. We now present two possible
formulations of our extrapolation problem.

(i) Point estimate extrapolation. Given a small
dataset of R size-accuracy pairs {xr, yr}Rr=1, fit a
function fθ(x) so that we can extrapolate classifier
accuracy on larger datasets with size x∗ > xR.

(ii) Probabilistic extrapolation. Given a small
dataset of R size-accuracy pairs {xr, yr}Rr=1, fit a prob-
ability density function pθ(Y |x) treating accuracy Y
as the random variable so that we can extrapolate
classifier accuracy on larger datasets with appropriate
uncertainty.

Evaluation metrics. Given a heldout set of size-
accuracy pairs x∗, y∗, we consider several evaluation
metrics. The first applies to both deterministic (i)
and probabilistic (ii) methods. The latter two are
only for probabilistic methods.

• Error (i or ii). For each heldout pair x∗, y∗, assess
the error between y∗ and fθ(x∗), via root mean
squared error or mean absolute error.

• Quantized likelihood (type ii only). For each pair
x∗, y∗, we compute the probability mass assigned
to a narrow interval around the true observation
p(Y ∈ (y∗ −∆, y∗ + ∆)|x∗), with ∆ = 0.01. As-
sessing an interval ensures this metric is always
between 0 and 100% (higher is better).

• Coverage (type ii only) (Dodge, 2003, p. 93). Here
we assume that for each x∗ we observe many repli-
cates of y∗ (via re-sampling train-test splits). From
the model’s probability density function (PDF)
p(Y |x∗) we obtain an interval ya, yb corresponding
to the P% high-density interval. We then measure
the fraction of times the measured replicates of y∗
falls in that interval: this empirical fraction should
match P% if the model is well-calibrated.
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Table 1: Related work focused on predicting model performance.

Related work Models uncertainty? Evaluates
uncertainty?

Validated on
medical data?

Power law (Rosenfeld et al., 2020) No N/A No
Arctan + other functions (Mahmood et al., 2022a) No N/A No
Learn-Optimize-Collect (Mahmood et al., 2022b) Post-hoc PDF over x not y No No
Piecewise power law (Jain et al., 2023) Yes, but PDF p(y|x)

via asymptotic formulas
No No

APEx-GP (ours) Yes, via direct model Yes Yes

3. Related Work

Data scaling. Prior works have empirically vali-
dated that generalization in deep learning scales with
dataset size according to a power law function in both
computer vision (Sun et al., 2017; Bahri et al., 2021;
Hoiem et al., 2021; Zhai et al., 2022) and natural lan-
guage processing (Hestness et al., 2017; Kaplan et al.,
2020). Sun et al. (2017) find that image classification
accuracy increases logarithmically based on the train-
ing dataset size. Hestness et al. (2017) show test loss
decreases according to a power law as training dataset
size increases in machine translation, language model-
ing, image processing, and speech recognition. Zhai
et al. (2022) scale vision transformer (ViT) (Dosovit-
skiy et al., 2021) models and data, both up and down,
and find the power law characterizes the relationships
between error rate, data, and compute.

Predicting model performance. Other works
look at predicting model performance at larger dataset
sizes (Cortes et al., 1993; Frey and Fisher, 1999; John-
son et al., 2018; Rosenfeld et al., 2020; Jain et al.,
2023) and estimating data requirements given perfor-
mance targets (Mahmood et al., 2022a,b) (see Tab. 1).
Rosenfeld et al. (2020) develop a model for predict-
ing performance given a specified model. They find
that errors are larger when extrapolating from smaller
dataset sizes. Jain et al. (2023) propose a piecewise
power law that models performance as a quadratic
curve in the few-shot setting and a linear curve in the
high-shot setting. They estimate confidence intervals
using a formula from Gavin (2019) inspired by esti-
mators of covariance matrices for parameters fit by
maximum likelihood (Murphy, 2022). However, such
estimators are only justified asymptotically as sample
size increases; use when estimating from only a few
data points seems questionable.

Mahmood et al. (2022a) consider a broad class of
computer vision tasks and systematically investigate

a family of functions that generalize the power law
function to allow for better estimation of data re-
quirements. They focus on estimating target data
requirements given an approximate relationship be-
tween data size and model performance; such as a
power law function. Mahmood et al. (2022b) pro-
pose a new paradigm for modeling the data collection
workflow as a formal optimal data collection problem
that allows designers to specify performance targets,
collections costs, a time horizon, and penalties for
failing to meet the targets. They estimate the distri-
bution of x that achieves the target performance y
by bootstrapping size-accuracy pairs, estimating the
dataset size, and fitting a density estimation model;
in contrast, we directly model uncertainty in y.

Sample size estimation. Loosely related to our
work are traditional sample size estimation calulations.
Riley et al. (2020) provide practical guidance for calcu-
lating the sample size required for the development of
clinical prediction models. These include calculations
that might identify datasets that are too small (for
example, if overall outcome risk cannot be estimated
precisely).

4. Probabilistic Model

We now develop our approach to modeling a proba-
bility density function p(y|x) that can estimate the
distribution in accuracy y at any specific training set
size x.

4.1. GP extrapolation model

For each possible dataset size x, we imagine there
is an unobservable random variable f representing
true classifier performance, as well as an observable
random variable y representing realized classifier per-
formance on a finite test set. To achieve a flexible
model for function f(x), we turn to a Gaussian process
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Figure 2: Example varying parameters for the power law
(left) and arctan function (right) with ε = 0.05.

prior with mean function m and covariance function k.
Given true accuracy f , we then model each observable
accuracy y as a perturbation of true accuracy f by in-
dependant and identically distributed (IID) Gaussian
noise with scalar variance τ2. When we condition on
a finite set of data size inputs x = {xr}Rr=1 of interest,
our model’s joint distribution p(y, f |x) factorizes as

p(f | x) = N (f | m(x), k(x,x)) (1)

p(y|f ,x) =
∏R

r=1N (yr|fr, τ2)
where f ,y, and m(x) are each R-dimensional vectors
whose entry at index r corresponds to the provided
data size input xr. Similarly, k(x,x) is an R × R
covariance matrix, with entry s, t equal to k(xs, xt).

Below, we provide recommended options for both
mean m and covariance function k. We pay particular
attention to the mean, offering two concrete choices, a
power law and an arctan, inspired by the best perform-
ing methods from prior work on point estimation of
“best-fit” curves for size-accuracy extrapolation. Fig. 2
shows both possible mean functions across a range
of parameters θ while saturating at a maximum ac-
curacy of 1− ε. Other uses of GPs in practice often
assume a constant mean of zero; we select forms that
deliberately allow accuracy to grow as more data is
added.

Power law mean. Our power law function is

mpow(x) = (1− ε)− θ1x
θ2 , (2)

with two trainable parameters θ1 ≥ 0 and θ2 ∈ [−1, 0].
Similar power law forms have been previously recom-
mended (Cortes et al., 1993; Frey and Fisher, 1999;
Johnson et al., 2018; Rosenfeld et al., 2020). Our
version guarantees that limx→∞ m(x) = 1− ε.

Arctan mean. Our arctan mean function is

marc(x) =
2

π
arctan

(
θ1

π

2
x+ θ2

)
− ε (3)

with two trainable parameters: θ1 ≥ 0 and θ2 ≥ 0.
Similar forms were recommended by recent work (Mah-

mood et al., 2022a). Our modified version guarantees
that limx→∞ m(x) = 1− ε.

Encoding saturation limits via ε. Our definition
of both power law and arctan means above deliberately
includes an ε term to allow domain experts to define
how the function should saturate as the training set
size grows x → ∞. Setting ε = 0 allows a “perfect
classifier” with m(x) = 1, while setting ε = 0.05
reflects a lower ceiling that may be more appropriate.
Even with an infinite training set, we might not be
able to build a perfect classifier (e.g., due to image
noise, label noise, insufficiency of images alone for the
diagnostic task, and interrater reliability issues).

Covariance function. The classic radial basis func-
tion (RBF) kernel (Rasmussen et al., 2006) applied
to logarithms of input sizes defines our covariance:

k(x, x′) = σ2 exp

(
− (log(x)− log(x′))2

2λ2

)
(4)

where both the output-scale σ > 0 and length-scale
λ > 0 are trainable parameters. This log-RBF form
implies that f(x) and f(x′) values have high covari-
ance at similar sizes x and x′ , while at very different
sizes (numerator ≫ 2λ2) the f values have near-zero
covariance. We select the log-RBF because it tends
to produce smooth functions f(x), and we expect the
idealized classifier accuracy as a function of data size
to be smooth (Mahmood et al., 2022a,b). We ex-
pect selecting other stationary kernels like Matern or
avoiding the log would have relatively minor impact
on overall model quality, as long as output scale and
length scale are trainable.

4.2. Prior control of extrapolation uncertainty

Our GP model has two kinds of parameters. Let
η = {τ, σ, λ, ε} denote the parameters that control un-
certainty (in the likelihood or the GP covariance func-
tion) or asymptotic behavior (e.g., ε sets the saturation
value of m(x)). We argue that domain knowledge can
and should guide learning of η. In this section, we
develop prior distributions for each parameter in η.
In contrast, parameters θ = {θ1, θ2} define the shape
of the mean function and thus are more straightfor-
ward to estimate even given a small training set of R
size-accuracy pairs. We do not define priors for θ.

Likelihood scale τ . The scalar τ > 0 represents
the standard deviation of each realized accuracy y
given ideal accuracy f . We expect a priori that re-
alized accuracy y does not vary too much around f ;
any deviation of more than 0.03 seems undesirable.
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We operationalize our desiderata (details in App. A.2)
with a truncated normal prior (Fisher, 1931).

Kernel output-scale σ. Scalar σ > 0 controls the
magnitude of variance for random variable f . Along
with τ , it also controls the variance of accuracy y if
f is marginalized away (as we do in extrapolation).
Given only a small dataset of size-accuracy pairs, we
a priori should have considerable uncertainty about
realized accuracy y(x∗) at sizes x∗ much larger than
seen in the pilot set. This matches past empirical
evidence (Rosenfeld et al., 2020; Mahmood et al.,
2022a; Jain et al., 2023). We operationalize the prior
as a truncated normal and do a numerical grid search
for mean and variance hyperparameters such that a
desired wide 20-80 percentile range is satisfied (details
in App. A.2).

Kernel length-scale λ. Scalar λ > 0 controls the
rate at which the correlation between f(x) and f(x′)
decreases as the distance between log(x) and log(x′)
increases. A reasonable a priori belief is that strong
correlations may only exist when the distance between
x and x′ is less than 1.5x; at larger distances we should
not expect strong correlation as the dataset would
have nearly doubled in size. We chose a truncated
normal prior that which gives roughly the desired
behavior (details in App. A.2).

Saturation limit ε. Scalar ε ≥ 0 represents one
minus the maximum accuracy we expect as dataset
size gets asymptotically large, using domain knowl-
edge. Given plausible lower and upper bounds from
domain experts (see App. A.1 and A.2), we form a
uniform prior over ε.

4.3. Fitting to data via MAP estimation

Given a training set of R size-accuracy pairs, repre-
sented by sizes x and accuracies y, fitting the model
means estimating the parameters θ and η, defined
early in Sec. 4.2. We can take advantage of our model’s
conjugacy to integrate away our latent variable f . This
leaves the marginal likelihood of the observable train-
ing set as:

pθ,η(y|x) =
∫
f

pη(y|f ,X)pθ,η(f |X)df . (5)

We then optimize the following maximum a-posteriori
(MAP) objective to obtain point estimates of θ and η:

θ̂, η̂ = argmax
θ,η

log pθ,η(y|x) + log p(η). (6)

The objective works in log space for numerical stabil-
ity, where the log of the marginal likelihood has the

following closed-form

log p(y|x) =− R

2
log 2π − 1

2
log |K+ τ2IR| (7)

− 1

2
(y −m)T (K+ τ2IR)

−1(y −m).

Here, K is a R × R matrix defined as k(x,x) and
depends on σ, λ ∈ η. Vector m is defined as m(x)
and depends on θ and ε. We suppressed the explicit
dependence on θ, η in this notation for simplicity.

4.4. Extrapolation via the posterior predictive

Given a fit model via estimates θ̂, η̂, our target use for
our model is to extrapolate probabilistically. Condi-
tioning on a pilot training set of R size-accuracy pairs
x,y, we wish to estimate the posterior over accuracies
y∗ at a set of Q larger dataset sizes x∗. Again using
well-known properties of GPs, specifically the joint-
to-conditional transformation of Gaussian variables
(details in App. A.3), we can directly compute the
PDF of the posterior predictive

p(y∗|x∗,y,x) = N (y∗|µ,Σ), (8)

µ = m∗ +KT
∗ (K+ τ2IR)

−1 (y −m)

Σ = K∗∗ + τ2IQ −KT
∗ (K+ τ2IR)

−1K∗.

Here K∗ is a R×Q matrix and K∗∗ is a Q×Q matrix,
where each entry is a call to covariance function k
with appropriate inputs from the train or test sets.
All calls to m or k use estimated parameters θ̂, η̂.

Constraining y to [0,1]. A careful reader will note
that in our application the “accuracy” y must be a
positive real confined to the interval [0.0, 1.0]. In con-
trast, throughout our modeling derivation we allow y
broader support over the whole real line. We chose this
broader support for the computational convenience
it provides at training time: our training objective
in Eq. (6) and our posterior predictive in Eq. (8) are
both computable in closed-form. To avoid extrane-
ous predictions, for any scalar invocation of Eq. (8)
after forming the univariate posterior prediction, we
truncate the predictive density to the unit interval
[0.0, 1.0]. This support broadening has statistical
justification (Wojnowicz et al., 2023).

5. Experimental Procedures

We now describe how we gather the size-accuracy
pairs used to train and evaluate models from various
2D and 3D medical imaging datasets. We then outline
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procedures for assessing predictions for both short-
range (up to 2x the train set size) and long-range (up
to 50x) settings.

5.1. Datasets and Classifier Procedures

Our chosen 2D datasets all use 224x224 resolution
and span x-ray and ultrasound modalities, including
ChestX-ray14 (Wang et al., 2017), Kermany et al.
(2018)’s Chest X-Ray Pneumonia dataset, the Breast
Ultrasound Image dataset (BUSI) (Al-Dhabyani et al.,
2020), and the Tufts Medical Echocardiogram Dataset
(TMED-2) (Huang et al., 2021, 2022). We also study
two 3D datasets of head CT scans: the Open Access
Series of Imaging Studies (OASIS-3) dataset (LaM-
ontagne et al., 2019) and a proprietary pilot neu-
roimaging dataset. See App. B for detailed dataset
descriptions and preprocessing steps.

From each dataset, we form one or more separate
binary classification tasks, using only labels with suf-
ficient data (at least 10% prevalence). When raw
labels are multiclass, we transform to several one-vs-
rest binary tasks. This choice allows using the same
pipeline and same evaluation metrics in all analyses,
substantially simplifying the work and presentation.

All datasets contain fully deidentified images gath-
ered during routine care. Only the last one is not
public. The use of these deidentified images for re-
search has been approved by our Institutional Review
Board (Tufts Health Science IRB #11953).

Classifiers. For all tasks, we fine-tune the classifi-
cation head of a ViT pretrained on ImageNet (Deng
et al., 2009). For 2D tasks, the pretrained ViT pro-
cesses each 224x224 image and produces an image-
specific embedding hi ∈ RD, where D = 768. We
then model the binary label of interest Ci given hi as

Ci|hi ∼ Bern(Ci | σ(wThi)), (9)
where w ∈ RD are learnable weights and σ is the
sigmoid function.

For 3D tasks, we feed each 224x224 2D slice into
the pretrained ViT, apply a linear per-slice classifier,
and then aggregate via mean pooling to produce a
scan-level prediction. Let hi,n ∈ RD denote ViT
embedding of the n-th slice (out of N) of the i-th
image, where D = 768. We model binary label Ci

given all embeddings hi,1:N as

Ci|hi,1:N ∼ Bern(Ci | 1
N

∑N
n=1 σ(w

Thn)), (10)
where again w ∈ RD are learnable weights and σ is
the sigmoid function. While other flexible 3D archi-
tectures are possible, we chose this path for simplicity.

Training details. For all tasks, we fit weights via
MAP estimation, maximizing the above Bernoulli like-
lihoods plus a Gaussian prior on w (also known as
weight decay). We fit using L-BFGS for 2D and SGD
with momentum for 3D. For grayscale images, we
replicate to 3 channels to feed into the 3-channel pre-
trained ViT. For 3D images, we reduce computational
costs by subsampling at most 50 slices.

5.2. Experimental protocol

For each dataset, we randomly assign images at an
8:1:1 ratio into training, validation, and testing sets,
ensuring each patient’s data belongs to exactly one
split and stratifying by class to ensure comparable
class frequencies. We repeat this process with three
data-split random seeds; each seed selects a different
train, validation, and test partition.

Given a split’s particular training set, we form
R = 5 log-spaced subsets with 60 to 360 training sam-
ples: {60, 94, 147, 230, 360}. We select these subset
sizes because small pilot datasets used for demon-
strating feasibility typically have only a few hun-
dred samples. Log-spacing captures macro trends
rather than micro fluctuations. We then evaluate
approaches for short-range extrapolation on five log-
spaced subsets between 360 and 720 training samples
{414, 475, 546, 627, 720}, and long-range extrapolation
on five log-spaced subsets between 360 and 20000
training samples {804, 1796, 4010, 8955, 20000}. For
both short-range and long-range, we omit any values
beyond total available training set size.

When fitting each model on each train-set size, we
tune hyperparameters including weight initialization
seed, weight decay, and number of epochs (to ap-
proximate early stopping, see App. C), selecting the
configuration that maximizes validation performance.

At each train-set size x, we record as “accuracy” y
the average AUROC. We average across 3 data-split
seeds for 2D (15 for 3D) to mitigate high-variance
estimates from small test sets. We can then finally
fit extrapolation models and assess error (RMSE),
quantized likelihood, and coverage (see Sec. 2) using
these x, y pairs.

Dense Coverage evaluations. For the two largest
2D datasets, ChestX-ray14 and TMED-2, we evaluate
coverage on 100 replicates of the above protocol using
long-range coverage train-set sizes of {5k, 10k, 20k}
training samples. Each accuracy value y∗ still repre-
sents the mean test performance across three distinct
data-split seeds. Having 100 replicates at each train-
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Table 2: Quantized likelihood evaluations at heldout x, y pairs for short-range and long-range extrapolations, with
∆ = 0.01 (see Sec. 2). Standard deviations generated from 500 bootstrapping rounds to select data-split seeds to
average across. We bold values with non-overlapping intervals. As a baseline, we form a uniform distribution from the
minimum accuracy observed in training up to the task-specific maximum accuracy (Sec. A.1).

Short-range extrapolation Long-range extrapolation
Dataset Label Baseline GP pow GP arc GP pow GP arc

ChestX-ray14 Atelectasis 6.1± 0.0% 45.2± 4.5% 44.3± 4.8% 29.2± 2.6% 22.1± 2.6%
Effusion 6.2± 0.0% 37.7± 4.8% 38.3± 4.4% 15.3± 1.9% 15.2± 2.0%
Infiltration 4.6± 0.0% 44.7± 3.8% 24.0± 5.4% 25.2± 2.4% 1.1± 1.4%

Chest X-Ray Bacterial 11.3± 0.0% 42.3± 8.0% 42.5± 7.7% 38.2± 10.5% 43.5± 8.6%
Viral 6.4± 0.0% 39.8± 6.2% 38.9± 6.6% 12.3± 5.2% 24.6± 6.9%

BUSI Normal 20.3± 0.0% 48.8± 9.4% 48.8± 9.1% — —
Benign 8.5± 0.0% 27.9± 10.8% 28.7± 11.2% — —
Malignant 15.1± 0.0% 27.0± 13.3% 27.5± 12.5% — —

TMED-2 PLAX 20.8± 0.0% 65.6± 1.5% 64.5± 1.9% 64.8± 1.0% 39.0± 1.6%
PSAX 9.6± 0.0% 62.6± 1.5% 62.6± 1.5% 63.2± 1.1% 58.4± 1.4%
A4C 14.3± 0.0% 62.8± 2.4% 56.1± 3.4% 58.2± 3.2% 24.5± 3.8%
A2C 8.5± 0.0% 18.0± 2.5% 61.3± 0.7% 24.9± 2.8% 20.8± 3.2%

OASIS-3 Alzheimer’s 4.6± 0.0% 22.5± 12.5% 23.6± 12.3% — —
Pilot neuro- WMD 6.0± 0.0% 29.3± 14.0% 27.8± 14.6% — —
imaging dataset CBI 5.9± 0.0% 29.6± 14.8% 27.4± 14.4% — —

set size x∗ allows better estimation of the coverage
percentage P%. We include single point coverage
evaluations for each dataset in App. H.

6. Results

Using the procedures described above, we performed
extensive experiments designed to answer several key
research questions. First, “which mean function per-
forms best?” Second, “in terms of predictive error, is
there a substantial difference between our probablis-
tic approach and previous deterministic approaches?”
Finally, “is the coverage obtained by our probabilistic
approach compelling?”

Our major findings are highlighted below.

For short-range extrapolation (up to 2x train
size), both mean functions seem competitive.
Tab. 2 reports quantized likelihoods (higher is better).
Looking at short-range results, both mean functions
perform similarly. The difference between power law
and arctan in 12 of 15 tasks is less than 2%.

For long-range extrapolation (from 2x-50x
train size), the power law mean function seems
best. Looking at the long-range results in Tab. 2,
power law wins clearly in 5 of 6 cases and essentially
ties in the other cases. In the other case where arctan
wins, power law still clearly outperformas a simpler

baseline (arctan can be worse than this baseline some-
times). Power law’s superiority in long-range settings
is also supported by coverage results in Tab. 3, and
RMSE results in App. D). Unlike the power law, the
arctan function seems to produce learning curves that
asymptote quickly. This results in minimal change
in predicted performance after 5000 samples and in
some cases overestimates of performance (see curve
for infiltration on ChestX-ray14 in Fig. 3).

Error from our GP models is competitive with
deterministic models. By design, our GP models
use mean functions shown by past work to be effective
deterministic predictors. We therefore intend that
in terms of pointwise error metrics like root mean
squared error, our GP approach is indistinguishable
from the non-probabilistic “best-fit” curve approach
of past works. RMSE results in App. D suggest that
on 13 of 15 short-range tasks and 7 of 9 long-range
tasks, our GP power law model is either clearly better
or within 0.04 RMSE of deterministic power law.

Our chosen priors improve long-range coverage
over no priors. In Tab. 3, we include coverage at
20k training samples from our GP power law model
without priors. When performance is low and there
is room for variation in performance as dataset size
grows, coverage with priors is significantly better than
without. However, when performance is high at small
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Figure 3: Long-range extrapolation results for atelectasis, effusion, and infiltration from the ChestX-ray14 dataset;
bacterial and viral pneumonia from the Chest X-Ray dataset; and PSAX, A4C, and A2C from the TMED-2 dataset.

Table 3: Coverage rates for long-range extrapolations, using a target interval of 95% from our GP model and 100
replicates. Standard deviations generated from 500 bootstrapping rounds to select data-split seeds to average across.

5k training samples 10k training samples 20k training samples

Dataset Label GP pow GP arc GP pow GP arc GP pow
w/o priors GP pow GP arc

ChestX-ray14 Atelectasis 100.0± 0.0% 100.0± 0.0% 100.0± 0.0% 100.0± 0.1% 55.4± 2.8% 100.0± 0.0% 99.7± 0.5%
Effusion 100.0± 0.2% 99.9± 0.3% 94.4± 1.9% 91.0± 2.1% 0.0± 0.0% 48.9± 3.0% 39.6± 2.8%
Infiltration 100.0± 0.0% 0.0± 0.0% 100.0± 0.0% 0.0± 0.0% 14.5± 2.6% 100.0± 0.0% 0.0± 0.0%

TMED-2 PLAX 100.0± 0.0% 98.5± 1.1% 100.0± 0.0% 83.2± 2.6% 100.0± 0.0% 100.0± 0.0% 45.0± 2.9%
PSAX 100.0± 0.0% 100.0± 0.0% 100.0± 0.0% 100.0± 0.0% 100.0± 0.0% 100.0± 0.0% 100.0± 0.0%
A4C 100.0± 0.0% 27.3± 2.8% 100.0± 0.0% 20.5± 2.7% 100.0± 0.1% 100.0± 0.1% 20.7± 2.7%
A2C 98.5± 1.1% 0.2± 0.4% 100.0± 0.0% 0.1± 0.3% 100.0± 0.0% 100.0± 0.0% 0.2± 0.4%

dataset sizes coverage with priors is just as good as
without (see coverage for TMED-2 dataset).

Our GP power law model tends to have decent
coverage, but over-estimates the intervals a
bit. Looking at coverage in Tab. 3, our GP power
law model consistently achieves 100% coverage, over-
estimating a well calibrated interval. Although wider
intervals are preferred to narrow ones that miss the
truth, we emphasize that our goal in Tab. 3 is to
achieve 95% coverage.

7. Discussion and Conclusion

We introduced a portable GP-based probabilistic mod-
eling pipeline for classifier performance extrapolation
that can match existing curve-fitting approaches in
terms of error while providing additional uncertainty
estimates. We compared our probabilistic extrapola-
tions to ground truth on 2-50x larger datasets across

six medical classification tasks involving both 2D and
3D images across diverse modalities (x-ray, ultrasound,
and CT). We recommend the power law mean func-
tion based off its superior long-range error, quantized
likelihood, and coverage.

Limitations. We acknowledge that APEx-GP is
not universally preferred over previous deterministic
alternatives; on some tasks (effusion on ChestX-ray14)
our error was worse than the power law baseline. More
work is needed to understand if our model would be
effective beyond the data modalities, train set sizes,
classifier architectures, and AUROC metric used here.
However, we designed our approach to be effective
out-of-the-box for other “accuracy”-like metrics that
satisfy two properties: higher is better and 1.0 is a
“perfect” score.

Outlook. We hope our approach provides a useful
tool for practitioners in medical imaging and beyond
to manage uncertainty when assessing data adequacy.
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Appendix A. GP Model Details

A.1. Plausible Upper and Lower Bounds

Given plausible lower and upper bounds from domain
experts, we form a uniform prior over ε. We can
elicit a plausible upper bound for ε as 1− y′, where
y′ is the maximum accuracy observed in the pilot
set. We can elicit a plausible lower bound by talking
with task experts, which we define as εmin. Based off
plausible upper bounds from domain experts, we use
εmin = 0.05 for 3D datasets of head CT scans. For all
other datasets we use εmin = 0.0.
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A.2. Chosen Priors

However, the variation we model for y(x∗) should be
at most the width W of interval [y′, 1.0], where y′ is
the largest accuracy observed in pilot set. We typically
expect less deviation than W : we suggest that the
marginal of y(x∗), whose variance is approximately
s2 = τ2 + σ2 if x∗ ≫ xR, should have a 3-standard-
deviation window w whose 20-80 percentile range is
between W

2 and 3W
4 . We therefore seek a prior on σ

such that if we draw many samples of σ as well as
many samples of τ from its prior above, the implied
window has the desired properties:

Prctile(w, 20) ≈ W
2 ,Prctile(w, 80) ≈ 3W

4 . (11)

where w ← 6s, s←
√
τ2 + σ2, τ ∼ p(τ), σ ∼ p(σ)

We operationalize the prior as a truncated normal
p(σ) = N[0,∞)(µσ, νσ), and do a numerical grid search
for hyperparameters µσ and νσ such that our desired
20-80 range is satisfied. Figure A.1 shows the implied
distribution on w (the two-sided 3-std.-dev. window
for y∗) given our chosen prior p(σ).

Figure A.1: PDF for the margin of 95% of the posterior
distribution based off the prior on τ , a clinically informed
maximum performance of 0.95, a test performance of 0.7
for the small initial dataset, and the 20th and 80th per-
centile of the margin of the majority of the posterior
density to be a fourth and a half of the maximum perfor-
mance minus the performance of the small initial dataset.
The 20th and 80th percentile of the distribution are 0.0625
and 0.125, as desired. The histogram was generated with
10 million samples from the prior on τ and σ.

Kernel length-scale λ. Scalar λ > 0 controls the
rate at which the correlation between f(x) and f(x′)
decreases as the distance between log(x) and log(x′)
increases. Setting x′ = rx for r ≥ 1, the distance
becomes log(x′) − log(x) = log(r). A reasonable a
priori belief is that strong correlations may only exist

when r is less than 1.5; at larger distances we should
not expect strong correlation as the dataset would
have nearly doubled in size. We thus seek a prior p(λ)
whose 10th percentile is around λ = 0.13 (implying
a low covariance k(r) = 0.01σ2) and 90th percentile
around λ = 2.86 (implying a high covariance of k(r) =
0.99σ2). These desired λ values were obtained by
solving for λ > 0 in the relation

k(r) = σ2 exp
(
− 1

2λ2
log(r)2

)
, (12)

with r = 1.5. Concretely, we chose a truncated normal
prior p(λ) = N[0,∞)(−1.23, 2.142), which gives roughly
the desired behavior.

Saturation limit ε. Scalar ε ≥ 0 represents one
minus the maximum accuracy we expect as dataset
size gets asymptotically large, using domain knowl-
edge. We can elicit a plausible upper bound for ε as
1 − y′, where y′ is the maximum accuracy observed
in the pilot set. We can elicit a plausible lower bound
by talking with task experts, which we define as εmin.
For example, we may not expect to beat accuracy of
0.95 on some task due to inherent interrater reliability
issues. Given these two bounds, we form a uniform
prior over ε.

Figure A.2: Example PDF for ε prior with εmin = 0.05
and y′ = 0.7.

A.3. Conditional Gaussian Math

Given a marginal Gaussian distribution for f and a
conditional Gaussian distribution for y given f[

f
f∗

]
∼ N

([
m
m∗

]
,

[
K K∗
KT

∗ K∗∗

])
[
y
y∗

]
|
[
f
f∗

]
∼ N

([
f
f∗

]
,

[
τ2IR 0
0 τ2IQ

])
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the marginal distribution of y is given by

[
y
y∗

]
∼ N

([
m
m∗

]
,

[
K+ τ2IR K∗

KT
∗ K∗∗ + τ2IQ

])
.

Appendix B. Dataset Details

ChestX-ray14 is an open access dataset comprised
of 112,120 de-identified frontal view X-ray images
of 30,805 unique patients with fourteen text-mined
disease image labels. For preprocessing we resize the
images to 224 × 224 pixels, rescale pixel values to
[0.0, 1.0], and normalize pixel values with the source
mean and standard deviation.

Chest X-Ray is an open access dataset comprised
of 5,856 de-identified pediatric chest X-Ray images.
For preprocessing we center-crop the images using a
window size equal to the length of the shorter edge,
resize them to 224 × 224 pixels, rescale pixel val-
ues to [0.0, 1.0], and normalize pixel values with the
source mean and standard deviation. We evaluate our
Gaussian process’ extrapolation performance for the
classification of bacterial and viral pneumonia.

BUSI is an open access dataset comprised of 780
de-identified breast ultrasound images from 600 fe-
male patients with an average image size of 500× 500
pixels. For preprocessing we center-crop the images
using a window size equal to the length of the shorter
edge, resize them to 224 × 224 pixels, rescale pixel
values to [0.0, 1.0], and normalize pixel values with
the source mean and standard deviation. The images
are categorized into three classes, which are normal,
benign, and malignant.

OASIS-3 is a open access project aimed at making
neuroimaging datasets freely available to the scientific
community. The dataset includes 895 de-identified
CT scans from 610 patients where the patient has a
diagnosis at least 80 days before or up to 365 days after
the CT scan was taken. We use these diagnoses for
binary classification. Each 3D scan contains a variable
number (74-148) of 512× 512 transverse slices. The
images are provided in Hounsfield Units (HU). For
preprocessing we skull strip images (only including
-100 to 300 HU) (Muschelli, 2019), resize each 3D
scan to N × 224× 224 voxels (where N is the number
of transverse slices), rescale pixel values to [0.0, 1.0],
and normalize pixel values with the source mean and
standard deviation. We do not correct gantry-tilt
since each image’s degree of gantry-tilt is not include
in the header.

TMED-2 is a clinically-motivated benchmark
dataset for computer vision and machine learning
from limited labeled data. The dataset includes 24964
de-identified echocardiogram images with view labels
from 1280 patients. We use these view labels for bi-
nary classification. For preprocessing we resize the
images to 224 × 224 pixels, rescale pixel values to
[0.0, 1.0], and normalize pixel values with the source
mean and standard deviation.

Pilot neuroimaging dataset is a sample of de-
identified CT scans from 600 patients. 500 scans were
randomly sampled from the cohort of patients 50+
years of age who reveived MRI in 2009-2019 and 100
were randomly sampled from the cohort members who
had covert brain infarction (CBI) and/or white mat-
ter disease (WMD). This yielded a total sample that
included 142 CBI cases and 156 WMD cases. The
dataset includes scans from multiple planes for each
patient in the Digital Imaging and Communications
in Medicine (DICOM) CT format. To simplify the
input of our model, we use the largest scan from the
axial plane for each patient. Each 3D scan contains
a variable number (23-373) of 512 × 512 transverse
slices. For preprocessing we correct gantry-tilt, con-
vert images into HU using each image’s rescale slope
and intercept, skull strip images, resize each 3D scan
to N × 224 × 224 voxels (where N is the number
of transverse slices), rescale pixel values to [0.0, 1.0],
and normalize pixel values with the source mean and
standard deviation.

Appendix C. Classifier Details

2D datasets. We tune hyperparameters including
weight initialization seed, weight decay, and number of
epochs to maximize validation AUROC. We select the
weight initialization seed from 5 different seeds and
weight decay from 11 logarithmically spaced values
between 1e5 to 1e−5.

3D datasets. We tune hyperparameters including
learning rate, weight initialization seed, weight decay,
and number of epochs to maximize validation AUROC.
We select the learning rate from 0.05 and 0.01, weight
initialization seed from 5 different seeds, and weight
decay from 6 logarithmically spaced values between
1e0 to 1e−5, as well as without weight decay.
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Appendix D. Results: RMSE

Table D.1: AUROC RMSE for short-range extrapolations.

Dataset Label Power law GP pow (ours) Arctan GP arc (ours)

ChestX-ray14 Atelectasis 0.344 0.329 0.397 0.396
Effusion 0.673 0.859 0.671 0.811
Infiltration 0.320 0.433 2.264 2.192

Chest X-Ray Bacterial 0.212 0.225 0.164 0.169
Viral 1.012 1.046 1.095 1.095

BUSI Normal 0.705 0.705 0.705 0.705
Benign 1.539 1.544 1.543 1.547
Malignant 1.003 1.003 1.003 1.003

TMED-2 PLAX 0.124 0.126 0.261 0.261
PSAX 0.447 0.447 0.450 0.451
A4C 0.408 0.408 0.721 0.721
A2C 2.177 2.174 0.081 0.082

OASIS-3 Alzheimer’s 1.561 1.563 1.039 1.046
Pilot neuro- WMD 1.457 1.427 1.472 1.442
imaging dataset CBI 1.309 1.338 1.303 1.323

Table D.2: AUROC RMSE for long-range extrapolations.

Dataset Label Power law GP pow (ours) Arctan GP arc (ours)

ChestX-ray14 Atelectasis 1.855 1.722 2.949 2.947
Effusion 3.971 3.506 3.966 3.513
Infiltration 1.616 2.079 15.350 13.470

Chest X-Ray Bacterial 1.067 1.089 0.208 0.210
Viral 3.484 3.540 2.001 1.995

TMED-2 PLAX 0.401 0.403 1.312 1.312
PSAX 0.450 0.450 0.679 0.679
A4C 0.616 0.616 1.863 1.863
A2C 1.974 1.971 2.285 2.286

141



A Probabilistic Method to Predict Classifier Accuracy

Appendix E. Results: Curves for Short-Range

Figure E.1: Short-range extrapolations results from ChestX-ray14, Chest X-Ray, BUSI, TMED-2, OASIS-3, and Pilot
neuroimaging dataset (top to bottom).
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Appendix F. Results: Curves for Long-Range

Figure F.1: Long-range extrapolations results from ChestX-ray14, Chest X-Ray, and TMED-2 (top to bottom).
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Appendix G. Results: Dense Coverage

Table G.1: Coverage rates for long-range extrapolations, using a target interval of 80% from our GP model and 100
replicates. Standard deviations generated from 500 bootstrapping rounds to select data-split seeds to average across.

5k training samples 10k training samples 20k training samples

Dataset Label GP pow GP arc GP pow GP arc GP pow
w/o priors GP pow GP arc

ChestX-ray14 Atelectasis 100.0± 0.0% 97.9± 1.2% 100.0± 0.1% 77.7± 2.7% 12.1± 2.4% 100.0± 0.2% 29.6± 2.9%
Effusion 67.5± 2.7% 61.9± 3.0% 9.0± 2.1% 6.9± 1.9% 0.0± 0.0% 0.1± 0.3% 0.1± 0.2%
Infiltration 99.4± 0.8% 0.0± 0.0% 99.1± 0.9% 0.0± 0.0% 1.0± 1.0% 97.8± 1.3% 0.0± 0.0%

TMED-2 PLAX 100.0± 0.1% 3.9± 1.6% 100.0± 0.0% 0.1± 0.2% 100.0± 0.0% 100.0± 0.0% 0.0± 0.0%
PSAX 100.0± 0.0% 100.0± 0.2% 100.0± 0.0% 99.2± 0.8% 100.0± 0.2% 100.0± 0.2% 89.5± 2.4%
A4C 99.9± 0.2% 0.3± 0.6% 99.4± 0.7% 0.1± 0.2% 94.0± 1.8% 94.2± 1.8% 0.0± 0.2%
A2C 62.2± 2.8% 0.0± 0.0% 96.6± 1.6% 0.0± 0.0% 100.0± 0.2% 100.0± 0.2% 0.0± 0.0%

Appendix H. Results: Single Point Coverage

Table H.1: Single point coverage evaluations for 95% confidence interval for short-range and long-range extrapolations.

Short-range extrapolation Long-range extrapolation
Dataset Label GP pow GP arc GP pow GP arc

ChestX-ray14 Atelectasis 100.0% 100.0% 100.0% 100.0%
Effusion 100.0% 100.0% 60.0% 60.0%
Infiltration 100.0% 100.0% 100.0% 0.0%

Chest X-Ray Bacterial 100.0% 100.0% 100.0% 100.0%
Viral 100.0% 100.0% 33.3% 100.0%

BUSI Normal 100.0% 100.0% — —
Benign 100.0% 100.0% — —
Malignant 100.0% 100.0% — —

TMED-2 PLAX 100.0% 100.0% 100.0% 100.0%
PSAX 100.0% 100.0% 100.0% 100.0%
A4C 100.0% 100.0% 100.0% 40.0%
A2C 40.0% 100.0% 60.0% 40.0%

OASIS-3 Alzheimer’s 100.0% 100.0% — —
Pilot neuro- WMD 100.0% 100.0% — —
imaging dataset CBI 100.0% 100.0% — —
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