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Abstract

Identifying regions of late mechanical acti-
vation (LMA) of the left ventricular (LV) my-
ocardium is critical in determining the opti-
mal pacing site for cardiac resynchronization
therapy in patients with heart failure. Several
deep learning-based approaches have been de-
veloped to predict 3D LMA maps of LV my-
ocardium from a stack of sparse 2D cardiac
magnetic resonance imaging (MRIs). How-
ever, these models often loosely consider the
geometric shape structure of the myocardium.
This makes the reconstructed activation maps
suboptimal; hence leading to a reduced accu-
racy of predicting the late activating regions of
hearts. In this paper, we propose to use shape-
constrained diffusion models to better recon-
struct a 3D LMA map, given a limited num-
ber of 2D cardiac MRI slices. In contrast to
previous methods that primarily rely on spatial
correlations of image intensities for 3D recon-
struction, our model leverages object shape as
priors learned from the training data to guide
the reconstruction process. To achieve this, we
develop a joint learning network that simulta-
neously learns a mean shape under deforma-
tion models. Each reconstructed image is then
considered as a deformed variant of the mean
shape.

∗ These authors contributed equally

To validate the performance of our model,
we train and test the proposed framework on
a publicly available mesh dataset of 3D my-
ocardium and compare it with state-of-the-art
deep learning-based reconstruction models. Ex-
perimental results show that our model achieves
superior performance in reconstructing the 3D
LMA maps as compared to the state-of-the-art
models.

1. Introduction

Cardiac resynchronization therapy (CRT) is widely
used to treat cardiac conduction system disorders,
such as left bundle branch block (LBBB) and in-
trinsic myocardial diseases (Abraham et al., 2002;
Lindenfeld et al., 2007; Moss et al., 2009). How-
ever, standard CRT faces a substantial challenge
with a high non-response rate, approximately around
40% (Chung et al., 2008; Exner et al., 2012). Im-
planting the CRT LV lead at an area with delayed ac-
tivation may significantly decrease the non-response
rate (Bilchick et al., 2014; Ramachandran et al.,
2015). Cine displacement encoding with stimulated
echoes (DENSE) MR imaging is an accurate and re-
producible method for imaging regional myocardial
displacement and strain (Aletras et al., 1999; Kim
et al., 2004). Studies have shown that LMA can be
effectively measured on circumferential strains of tis-
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sue displacements imaged by DENSE (Bilchick et al.,
2014; Ramachandran et al., 2015). The LMA in heart
failure patients can be detected by the Time to the
Onset of circumferential Shortening (TOS) (Kv̊ale
et al., 2019; Xing et al., 2023, 2021). The 3D LMA
map is then obtained by projecting the TOS values
to a reconstructed 3D volume of the myocardium
from a stack of sparse 2D slices. Despite the suc-
cess of reconstructing the 3D LMA maps, current ap-
proaches (Kim et al., 2004; Kv̊ale et al., 2019; Xing
et al., 2023, 2021) do not achieve satisfactory results
since they rarely consider the shape variability among
patients’ hearts, resulting in unstable and poor per-
formance of locating the late activating regions from
reconstructed 3D LMA maps.

To address this challenge, recent advancements
have leveraged deep learning techniques to substan-
tially improve the performance of image reconstruc-
tion from a limited number of 2D slices (Cetin et al.,
2023; Goodfellow et al., 2020; Maaløe et al., 2019).
Extensive research has explored various network ar-
chitectures for 3D image reconstruction, including
UNets (Nguyen et al., 2021), transformers (Feng
et al., 2021; Korkmaz et al., 2022), and state-of-the-
art generative diffusion models (Waibel et al., 2023).
These works have significantly improved the recon-
struction efficiency by learning intricate mappings be-
tween stacks of 2D images and their corresponding 3D
volumes. While the deep learning-based approaches
have achieved impressive results in reconstructing de-
tailed 3D images, they often lack explicit considera-
tion of shape information during the learning pro-
cess. Consequently, important geometric structures
of objects depicted in the images may not be well
preserved. This may lead to the occurrence of arti-
facts, such as discontinuities, holes, or mismatched
connections between different parts, that break the
topology of the reconstructed objects.

In this paper, we propose to utilize a recently devel-
oped work, shape-aware diffusion model (Jayakumar
et al., 2023), to reconstruct 3D volumes of the my-
ocardium from sparse 2D slices. We will introduce
a jointly trained atlas-building network to determine
the atlas (Wang and Zhang, 2022) (i.e., the mean
image), along with a stack of sparse 2D slices, used
as the input prior to train the diffusion model. In this
framework, the predicted 3D volume is considered to
be a deformed variant of the myocardium atlas. This
reconstructed 3D volume can then be used to inter-
polate the predicted TOS values to obtain the car-
diac mechanical activation maps. Due to the lack of

3D ground truth cine DENSE cardiac MRI scans, we
train and validate our model on a public dataset of
3D myocardium mesh data and evaluate the results of
the TOS prediction and LMA detection on the clini-
cal test data. Our method is generally applicable to
similar clinical applications, where collecting a com-
plete 3D volume with high resolution is challenging.
For example, reconstructing intra-operative 3D brain
MRIs in real-time during brain surgeries.

2. Background

This section provides a brief background on the com-
putation of strain matrices used as input to the neural
network and an unbiased atlas-building framework
trained to estimate the Fréchet mean of group-wise
images.

2.1. Quantification of Late Mechanical
Activation Through Strain Analysis

Circumferential strain has been demonstrated to de-
pict myocardial contraction along the circular out-
line in the short axis, typically with a negative
value (Budge et al., 2012). There are several advan-
tages of analyzing strain values as it significantly re-
duces the computational complexity of the network
input, shifting from vector-valued displacement data
V to real-valued strain images represented as func-
tions (S). Also, it provides more robustness by miti-
gating the impact of body motion artifacts commonly
encountered in the original signals and it improves
our ability to quantify dyssynchrony, as evidenced by
studies such as (Budge et al., 2012). Following a re-
cent work (Dandel et al., 2009), we calculate the acti-
vation time of the left ventricle using strains derived
from the displacement maps. In Fig. 1a, we show
examples of MR images overlaid with displacement
maps over time.

Given a d-dimensional displacement map u(x) :
Ω → Rd, a Jacobian matrix Dd×d of u at each spatial
location is

D =

∆u11 · · · ∆ud1
...

. . .
...

∆u1d · · · ∆udd

 ,

where ∆uji = dui

dxj
, with i, j ∈ {1, · · · , d} and Ω =

Rd/Zd be a d-dimensional torus domain with periodic
boundary conditions, obtained from cine images. A
strain matrix E is then computed as E = 1

2 (D
TD−I),
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Figure 1: Example of (a) temporal DENSE mag-
nitude MRIs overlaid with displacement
maps; (b) myocardial sectors of left ventri-
cles with strain values (blue color indicates
contraction vs. red color indicates expan-
sion); (c) strain matrix and its correspond-
ing TOS curve. Blue circles in (a) and (b)
indicate intersections of left and right ven-
tricles (Xing et al., 2021).

where T denotes a matrix transpose and I is a d× d
identity matrix. This paper focuses on the circumfer-
ential strain, which is the component of strain along
the myocardium. In practical clinical applications,
the muscle area of the left ventricle is often divided
into a variable number of sectors (Cerqueira, 2002).
In this work, we divide each of the 2D slices in the
volumetric stack into 18 sectors which helps in under-
standing the motion of the myocardial wall in detail.
Then we compute an 18 − dimensional strain vec-
tor from the full-resolution strain vector of the my-
ocardium, where the strain value is extracted from
the center of each of the 18 sectors for each slice. To
facilitate the automatic estimation of TOS, we then
rearrange the slices into a 2D matrix consisting of all
strain vectors over a temporal dimension of the car-
diac phases ((Xing et al., 2021)). An example of a
spatiotemporal strain matrix overlaid with a circum-
ferential TOS curve is shown in Fig. 1c.

2.2. Atlas Building Network

The deformation-based shape features of objects in
an image can be utilized for image generation and
registration tasks to ensure that the generated ob-
jects preserve the topological structures (Wang and
Zhang, 2021; Zhang et al., 2013; Wu et al., 2022).
Here, we briefly explain the notion of atlas-building
((Joshi et al., 2004)), which computes a Fréchet
mean of a group of images as a deformation-based
shape representation. For a given group of N images
{X1,X2, · · · ,XN}, each image can be represented as a

deformed version of the mean image. The problem of
atlas building is to find the template or mean image
S and deformation field {ϕ1, ϕ1, · · ·ϕN} with derived
initial velocity fields v1, v2, · · · vt. This is achieved by
minimizing the following energy function:

E(S, ϕn) =
N∑

n=1

1

σ2
Dist [S ◦ ϕn(vt), Xn ]

+ Reg (ϕn(vt)),

(1)

where σ2 is the noise variance, Dist[·, ·] is a metric of
dissimilarity such as local or global normalized cross-
correlation, mean squared error, cosine distance, and
mutual information. The ◦ denotes an interpola-
tion operator that deforms image Xn with an esti-
mated transformation ϕn. The Reg(·) is a regularizer
that guarantees the smoothness of the transformation
which can be denoted as

Reg[ϕn(vt)] =

∫ 1

0

(Lvt, vt) dt,

with
dϕn(t)

dt
= −Dϕn(t) · vn(t), (2)

where L : V → Ṽ is a symmetric, positive-definite
differential operator that maps a tangent vector vt ∈
V into its dual space as a momentum vector mt ∈ Ṽ .
This can be represented as mt = Lvt, or vt = Kmt,
with K being an inverse operator of L. The operator,
D, denotes a Jacobian matrix and · represents the
operation of element-wise matrix multiplication. For
the metric L, we consider L = (−α▽2 + γI)3 in this
paper, where ▽2 is the discrete Laplacian operator,
α is a positive regularity parameter that controls the
number of continuous derivates over the domain of
the deformation fields, γ is a weighting coefficient,
and I denotes an identity matrix.

With a given initial condition of velocity fields
vn(0), the minimum of Eq. (2) is uniquely deter-
mined by solving a Euler-Poincaré differential equa-
tion (EPDiff) (Arnold, 1966; Miller et al., 2006) which
is known as the geodesic shooting algorithm (Vialard
et al., 2012) which can be represented as

∂vt
∂t

= −K
[
(Dvt)

T ⋆ mt +∇ · (mt ⊗ vt)
]
, (3)

where ⋆ is the truncated matrix-vector field auto-
correlation. The operator ∇· is the discrete diver-
gence of a vector field and K is a smoothing opera-
tor with its inverse L. The computation of solving
the EPDiff is time-consuming and expensive, partic-
ularly when images are with high dimensions. An

192



Diffusion Models To Predict 3D Late Mechanical Activation

efficient reparameterization of the velocity fields was
then developed to drastically decrease the computa-
tional cost of LDDMM with geodesic shooting with-
out losing the model accuracy (Zhang and Fletcher,
2015, 2019).
We are now ready to minimize the atlas building

energy function in Eq. (1) as

E(S, ϕi) =
N∑

n=1

1

σ2
Dist[S ◦ ϕn(vn(t)), Xn ]

+ (Lvn(0), vn(0)), s.t. Eq. (2) & (3).

(4)

For the simplicity of notation, we will drop the tem-
poral index in the upcoming equations.

3. Our Method

In this section, we present a novel LMA prediction
framework based on SADIR, a recently developed dif-
fusion models (Jayakumar et al., 2023), from a lim-
ited number of sparse 2D cardiac MRIs. First, we
introduce shape-constrained diffusion models for my-
ocardium reconstructions via atlas building. Here,
we discuss two sub-modules, including an atlas build-
ing network, which enables us to learn shape priors
from a given set of 3D myocardium images, and a
forward-backward diffusion process leveraging the at-
las or mean image generated from the atlas building
network. Lastly, we discuss a pre-trained LMA quan-
tification network to predict 3D LMA maps of the left
ventricle using the reconstructed myocardium.

3.1. Diffusion Models For 3D Myocardium
Reconstruction Via Atlas Building

Given a number of N myocardium training im-
ages {Jn,Xn}Nn=1 where Jn represents a collection of
sparse 2D images paired with its corresponding full
3D volume Xn. We design two sub-modules to recon-
struct 3D myocardium from sparse 2D slices:

• (i) An atlas building network (Mθ) that provides
a mean image S of Xn. Followed by the net-
work architecture of Geo-SIC (Wang and Zhang,
2022), we develop a learning-based atlas build-
ing network characterized by an initial velocity
field (vn(0)).

• (ii) A diffusion reconstruction network Gθ, con-
sidering each reconstructed myocardium X̂n as
a deformed variant of the obtained atlas, i.e.,

X̂n
∆
= S ◦ ϕn(vn(Gθ)). We use the mean im-

age fromMθ as the conditional shape feature for
the myocardium reconstruction network Gθ to
predict the velocity field vn. Similar to the ex-
isting diffusion models (Ho et al., 2020; Waibel
et al., 2023), we develop a forward process to
generate an isotropic Gaussian distribution and
a backward diffusion process to predict the ve-
locity fields (Jayakumar et al., 2023) associated
with the pair of input training myocardium im-
ages and an atlas image. For notation simplicity,
we will omit the index n for each subject in the
following sections.

An overview of our network architecture is shown
in Fig. 2.

Forward diffusion process. For a given 3D vol-
ume of the myocardium x0 and the time point of the
diffusion process Υ, we assume the data distribution
of xΥ is a normal distribution which can be defined
as xΥ ∼ N (µ, η), where µ is the mean and η is the
variance. The forward diffusion process for time steps
T is recursively defined via the posterior

q(xΥ|xΥ−1) = N (xΥ;
√
1− ηΥxΥ−1, ηΥ I), (5)

where I denotes an identity matrix and ητ ∈ [0, 1]
denotes the variance scheduler increased along the
time steps with η1 < η2 < · · · < ηΥ. We repeat
the forward diffusion process for a fixed, predefined
number of steps.

Following (Ho et al., 2020; Waibel et al., 2023), we
obtain the result of the forward diffusion process as
a one-step forward transition from x0 to xT as

q(xΥ|x0) = N (xΥ;

√
ψ̄Υx0, (1− ψ̄Υ) I). (6)

where ψΥ = 1− ηΥ and ψ̄T =
∏Υ

i=1 ψ
i. Hence, we

can write xτ in terms of x0 as

xΥ =

√
ψ̄Υx0 +

√
1− ψ̄Υϵ, with ϵ ∼ N (0, I). (7)

Reverse diffusion process. In the reverse pro-
cess, we employ a conditional diffusion model, where
the output mean 3D myocardium S from the atlas
building networkMθ, along with a stack of sparse 2D
slices of the volume to be reconstructed Jn is concate-
nated with xτ from the forward diffusion process as
the condition c to form the input of the network Gθ.
This network is trained as the reverse process of the
diffusion model.
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Figure 2: An overview of our proposed LMA prediction model from sparse 2D cardiac MRIs.

The joint probability distribution of the reverse
process is given by q(xΥ−1|xΥ), that is learned by
an Attention-UNet (Ronneberger et al., 2015), which
is a type of Convolutional Neural Network with skip
connections, residual blocks and excitation layers (Hu
et al., 2019).

Defining the network parameter as Gθ, we can for-
mulate the reverse process as

qGθ
(xΥ−1|xΥ) = N (xΥ−1; µGθ

(xΥ, ji,S,Υ),

ΣGθ
(xΥ, ji,S,Υ))

(8)

As seen in (Jayakumar et al., 2023), the cor-
responding deformation field ϕ is then generated
from the initial velocity field v0, obtained from the
network Gθ, to deform the atlas S, thus giving us a
reconstructed myocardium X̂ = S ◦ ϕ(v0(Gθ)) for a
given stack of sparse 2D myocardium slices Jn.

3.2. LMA Prediction using Reconstructed
Myocardium Volumes

To predict the 3D LMA map, we start by mapping
the predicted TOS curves from each sparse 2D slice
to their corresponding sectors in the myocardium seg-
mentation of these slices. This produces a collec-
tion of sparse 3D vertices, each assigned a specific
TOS value. To ensure consistency between the sparse
slices and the overarching 3D model, we introduce an
alignment procedure, refining the spatial positioning
of these slices to fit well with the reconstructed 3D
surface (Xing et al., 2021). Since the sparse slices
are sampled from the dense slices, and the dense
slices are the ground-truth of our model, we auto-
matically know the spatial relationship between the
sparse slices and reconstructed 3D model. The align-
ment procedure mainly builds a 3D coordinate system
to hold both the sparse slices and the reconstructed
3D model.

The sparse slices in our datasets (particularly
breath-hold MRIs) are set to be sampled at the same
location of the subject’s heart. A TOS curve com-
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prises TOS values from specific sectors evenly spaced
along the middle line of the left ventricle myocardium
in the corresponding sparse slice. During the align-
ment process, the spatial positions of these TOS sec-
tors adjust along with the sparse slices while main-
taining their relative positions. For the alignment, we
first build a 3D coordinate for the sparsely sampled
2D slices, based on their spatial information (includ-
ing the slice spatial location and pixel resolution).
The coordinates of the 3D mesh face vertices are au-
tomatically determined, as the 3D volume should oc-
cupy the same room as the sparsely sampled slices.
With this data, we can conduct interpolation in the
3D space, enabling us to calculate the interpolated
TOS values for each mesh face. For TOS prediction,
we adopt a pre-trained model developed by (?). Af-
ter the network predicts the TOS curve for all 2D
sparse slices from the same subject, we create a 3D
activation map by interpolating TOS values onto the
left ventricles of the reconstructed 3D myocardium
obtained Gθ.

3.3. Network Loss and Joint Training.

The network loss of the 3D myocardium reconstruc-
tion is a joint loss of the atlas building network Mθ

and the reconstruction network Gθ. First, we can
define the atlas building loss as

L(Mθ) =

N∑
n=1

1

σ2
|| S(Mθ) ◦ ϕn(vn)−Xn ||22

+ (Lvn, vn) + reg(Mθ),

(9)

where reg(·) denotes a regularization on the atlas
building network parameters.
Then we define the loss function of the diffu-

sion reconstruction network from 2D sparse slices
as a combination of sum-of-squared differences and
Sørensen−Dice coefficient (Dice, 1945) loss between
the predicted reconstruction and ground-truth in the
following

L(Gθ) =

N∑
n=1

∥S ◦ ϕn(vn(Gθ))−Xn∥22

+ λ [1−Dice(S ◦ ϕn(vn(Gθ)),Xn)] + reg(Gθ),

(10)

where λ is a weighting factor that obtains the ex-
tent of overlap between the predicted and ground-
truth volumes. We can define the dice similarity score

Dice(·, ·) as

Dice(X̂ ,Xn) = 2(|X̂ | ∩ |Xn|)/(|X̂ |+ |Xn|), (11)

where X̂n
∆
= S◦ϕn(vn(Gθ)). Defining α as the weight-

ing parameter, we are now ready to define the joint
loss of the reconstruction networks as

L = L(Mθ) + αL(Gθ). (12)

Alternative optimization for the joint network
learning. We employ an alternative optimization
scheme (Nocedal and Wright, 1999) to minimize the
network loss defined in Eq. (12). Here, we jointly
optimize all network parameters by alternating be-
tween the atlas building network Mθ and reconstruc-
tion network Gθ without sharing weights. We sum-
marize the joint training of our reconstruction model
in Alg. 1.

Algorithm 1 Joint Training of the Diffusion Model
for 3D Myocardium Reconstruction.

Input : A group of N input images with full 3D vol-
umes {Xn} and a stack of sparse 2D images
{Jn}.

Output: Generate mean shape or atlas S, initial ve-
locity fields vn, and reconstructed volumes
X̂n

. for i = 1 to p do
/* Train geometric shape learning

network */

Minimize the atlas building loss in Eq. (9)
Output the atlas S;
/* Train diffusion reconstruction

network */

Minimize the diffusion reconstruction loss in
Eq. (10);
Output the initial velocity fields {vn} and the re-
constructed images X̂n;

end
Until convergence

4. Experimental Evaluation

We validate our proposed model to predict LMA
through reconstructed 3D myocardium from 2D
sparse cardiac MRIs.

Dataset. For 3D myocardium reconstruction net-
work, we use 215 publicly available 3D myocardium
mesh data from MedShapeNet data repository (Li,
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2023). Using 3D slicer, we convert the mesh data
to binary label maps (Fedorov et al., 2012). All the
images were preprocessed as 222×222×222 and pre-
aligned with affine transformation.

For LMA prediction, we obtain cine DENSE vol-
umes of 57 subjects along with 282 strain matrices.
All the scans were acquired using a 1.5T MR scan-
ner with a four-channel phased array radio-frequency
coil. The cine DENSE imaging was performed in four
short-axis planes at the basal, two ventricular, and
apical regions with a resolution of 2.65 × 2.65mm2,
and the temporal resolution 17ms. The field of view
was 240×240mm2, displacement encoding frequency
ke = 0.1 cycles/mm, echo time = 1.08ms, and flip
angle 15◦. Displacement was encoded in two orthog-
onal directions and a spiral k-space trajectory was
used with six interleaves per image. The ground-
truth TOS curves were manually labeled by experts.

We augment the dataset by shifting the strain ma-
trices and their corresponding labels along the sector
dimension. The last 5 frames of the strain matrices
are trimmed due to noisy image signals. Also, we
employ mixup (Zhang et al., 2017) to augment the
dataset yielded 3844 strain matrices together with
the ground truth. All datasets used in our work were
publicly released or pre-collected. As such, no ethical
considerations are necessary.

4.1. Experimental Settings.

We first validate our proposed model for recon-
structing 3D myocardium from a sparse stack of
eight 2D slices. We compare the performance of
our model with three state-of-the-art deep learning-
based reconstruction models: 3D-UNet (Çiçek
et al., 2016b); DDPM, a probabilistic diffusion
model (Ho et al., 2020); and DISPR, a diffusion
model based shape reconstruction model with the
consideration of geometric topology (Waibel et al.,
2023). We visualize and compare the reconstructed
3D myocardium of all models. We evaluate all
the reconstruction models using three evaluation
metrics, including, the Sørensen–Dice coefficient
(DSC) (Dice, 1945), Jaccard Similarity (Jaccard,
1908), and RHD95 score (Huttenlocher et al., 1993),
validating the prediction accuracy of 3D myocardium
for all methods. Lastly, we show the predicted 3D
activation maps and compare them with the clinical
reference model, concentrating on the LMA region
in the reconstructed myocardium.

Parameter Setting. We set the mean and standard
deviation as 0 and 0.1, respectively, for the forward
diffusion process. We use linear scheduling for the
noising process and is scaled to reach an isotropic
Gaussian distribution irrespective of the value of T .
In the reverse diffusion process, we set the depth of
the 3D attention-UNet backbone as 6, introducing an
attention mechanism via spatial excitation channels
(Hu et al., 2019) with ReLU (Rectified Linear Unit)
activation. For the atlas building network, we set
the depth of the UNet architecture as 4. We set the
number of time steps for Euler integration in EPDiff
(Eq. (3)) as 10, and the noise variance σ = 0.02. We
use a kernel map valued [0.5, 0, 1.0] for the shooting
operation. Besides, we set the parameter α = 3 for
the operator L. Similar to (Waibel et al., 2023), we
set the batch size as 1 for all experiments.

We split the dataset into 70% training, 15% valida-
tion and 15% testing, utilizing cosine annealing learn-
ing rate scheduler that starts with a learning rate of
η = 1e−3. We run all models on training and valida-
tion images using the Adam optimizer and save the
networks with the best validation performance. We
conduct all experiments on one 80GB NVIDIA A100
GPU for ∼ 18 hours. For both training and testing,
we downsample the volumes to 64× 64× 64.

4.2. Experimental Results

Fig. 3 shows a comparison of the 3D myocardium be-
tween the ground truth and all reconstruction mod-
els, including such as 3D-UNet (Çiçek et al., 2016a),
DDPM (Ho et al., 2020), DISPR (Waibel et al., 2023),
and our model. It shows that our method outper-
forms other baselines in maintaining the topology of
the myocardium. Besides, compared to the SOTA
models, our reconstruction framework produces little
to no artifacts, preserving the original shape of the
organ. Our work uses sparse 2D binary label-maps
of the myocardial walls to reconstruct the 3D vol-
ume by deforming the 3D atlas with the predicted
deformation fields. This ensures that our model per-
forms with similar scores when there are significant
variations in image quality since it relies on the seg-
mentations obtained from these scans. Moreover, the
stack of sparse 2D slices provides sufficient informa-
tion on patient-specific differences in the anatomy of
the myocardium.

Tab. 1 reports the average DSC (Dice, 1945),
Jaccard similarity (Jaccard, 1908), and Hausdorff
distance (RHD95) (Huttenlocher et al., 1993) com-
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Table 1: A comparison of 3D myocardium reconstruction for our framework compared to other SOTA models

Model DSC ↑ Jaccard similarity ↑ RHD95 ↓
3D-Unet 0.870 ± 0.0158 0.771 ± 0.024 0.840 ± 0.202
DDPM 0.823 ± 0.014 0.668 ± 0.019 1.027 ± 0.093
DISPR 0.950 ± 0.017 0.906 ± 0.031 0.347 ± 0.032
Ours 0.978 ± 0.016 0.957 ± 0.031 0.341 ± 0.023

Ground	Truth 3D-UNet DDPM DISPR SADIR

Su
pe
rio
r

Le
ft

An
te
rio
r

Le
ft-

An
te
rio
r

Figure 3: A comparison of reconstructed 3D my-
ocardium between ground truth, 3D-UNet,
DDPM, DISPR, and our model over four
different views.

pared between the reconstructed myocardium from
the ground truth and all models. Comparing the re-
sults of all models, our method outperforms all the
baselines, achieving the best performance in DSC,
Jaccard similarity, and RHD95 with the lowest stan-
dard deviations across all metrics.

Fig. 4 shows the generated 3D late mechanical
activation maps using the reconstructed myocardial
meshes for two subjects over three different views.
The regions in red show larger TOS values, repre-
senting the late mechanical activation area while the
regions in blue show areas containing lower TOS val-
ues, representing as the are normal regions. The
3D LMA maps provide intuitive visual information
of LMA regions (highlighted in red in Fig. 4) loca-
tion on the subject’s left ventricle. Compared with
previous methods, our models have much more accu-
rate anatomical structures, which allows the doctors

to more precisely identify the anatomical structure of
the LMA regions. Additionally, it shows the differ-
ences between anatomical features of the myocardium
interpolated using the current reference model used
by clinicians, which does not provide information on
patient-wise variability in the anatomy of the my-
ocardium, and the myocardium reconstructed by our
framework. It is evident that our model efficiently
preserves the shape information of the organ. This
plays a vital role in an improved and clinically signif-
icant detection of LMA regions, hence allowing for
personalized surgical plans as opposed to the tra-
ditional one-size-fits-all model. While our method

Subject	1 Subject	2

Reconstructed	
Volume

Reference	
Volume

Reconstructed	
Volume

Reference	
Volume

TOS	(ms)

Figure 4: A comparison of 3D late mechanical activa-
tion maps using reconstructed myocardium
volume of two subjects between our model
and the clinical reference model.

effectively preserves the geometrical features of the
myocardium with an improved performance of recon-
struction, a thorough evaluation of the method on
a variety of large datasets is needed. This future
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work could further improve the model’s generalizabil-
ity across various image modalities with larger thick-
nesses of input slices.

5. Conclusion

This paper presents a shape-constrained diffusion
model to obtain the 3D late mechanical activation
of the myocardium given sparse 2D slices of DENSE
MRI. The introduction of the mean image as a prior
during the diffusion process helps the model to ef-
ficiently learn and preserve the inherent anatomical
structure of the myocardium. We train and evaluate
the performance of our reconstruction model on 3D
myocardium mesh data. Using this pre-trained net-
work, we predict the 3D volumes of the myocardium
for two subjects and compare them to the current 3D
reference model used in the clinical setting. Com-
pared to the state-of-the-art models, our proposed
network performed substantially well in predicting
3D late mechanical activations through myocardium
reconstruction from sparse 2D slices. The clinical ap-
plication of our framework would be pivotal since it
can help in the accurate detection of LMA regions,
thus allowing for effective CRT procedures.
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Miguel A González Ballester. Attri-vae: Attribute-
based interpretable representations of medical im-
ages with variational autoencoders. Computerized
Medical Imaging and Graphics, 104:102158, 2023.

Eugene S Chung, Angel R Leon, Luigi Tavazzi, Jing-
Ping Sun, Petros Nihoyannopoulos, John Merlino,
William T Abraham, Stefano Ghio, Christophe
Leclercq, Jeroen J Bax, et al. Results of the pre-
dictors of response to crt (prospect) trial. Echocar-
diography, 2608:2616, 2008.
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