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Abstract

Accurate diagnostic coding of medical notes is
crucial for enhancing patient care, medical re-
search, and error-free billing in healthcare orga-
nizations. Manual coding is a time-consuming
task for providers, and diagnostic codes often
exhibit low sensitivity and specificity, whereas
the free text in medical notes can be a more
precise description of a patient’s status. Thus,
accurate automated diagnostic coding of med-
ical notes has become critical for a learning
healthcare system. Recent developments in
long-document transformer architectures have
enabled attention-based deep-learning models
to adjudicate medical notes. In addition, con-
trastive loss functions have been used to jointly
pre-train large language and image models with
noisy labels. To further improve the automated
adjudication of medical notes, we developed an
approach based on i) models for ICD-10 diag-
nostic code sequences using a large real-world
data set, ii) large language models for medi-
cal notes, and iii) contrastive pre-training to
build an integrated model of both ICD-10 di-
agnostic codes and corresponding medical text.
We demonstrate that a contrastive approach for
pre-training improves performance over prior
state-of-the-art models for the MIMIC-III-50,
MIMIC-III-rare50, and MIMIC-III-full diagnos-
tic coding tasks.
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1. Introduction

Accurate and automated diagnostic annotations of
medical notes have become increasingly important
in healthcare systems for improving the efficiency of
care and enabling large-scale real-world data analy-
ses. While diagnostic codes are vital for healthcare
providers for tracking disease incidence and billing,
manual coding is often cumbersome, time-consuming,
and prone to errors. Machine learning methods have
been developed to automate the diagnostic coding
of medical notes. This is a complex task, as fre-
quently multiple codes are applicable for a single note
or single condition, and there are over 60,000 medical
codes of varying specificity in the hierarchical Inter-
national Classification of Diseases (ICD-10) system.
While the large number of different codes allows for
detailed and specific documentation of medical condi-
tions, some codes are used distinctively by individual
clinicians, or in different locations, and many are used
infrequently. Often, only the most relevant codes for
billing purposes are used per medical encounter. As
a result, accurate coding can be seen as a multi-label
problem with noisy training labels and a long tail of
rarely applied diagnostic codes.

Recent work has used long-document transform-
ers and contrastive pre-training to annotate notes
spanning thousands of tokens. However, these ap-
proaches typically depend on pre-defined biomedical
ontologies like the Unified Medical Language System
(UMLS) (Yang et al., 2022; Yuan et al., 2022), or
ICD-9 and ICD-10 hierarchies (Xie et al., 2019; Cao
et al., 2020) to derive meaningful distances between
different diagnoses, and often involve complex prepro-
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cessing. We sought to combine a data-driven contex-
tual embedding of diagnostic codes with a straight-
forward contrastive pre-training objective to improve
the automated annotation of medical notes. For this
we developed an approach based on i) contextual em-
bedding models for diagnostic codes based on a large
real-world data set ii) large language models for med-
ical notes and iii) contrastive pre-training to build
an integrated model of both ICD-10 codes and corre-
sponding medical text. We show that this contrastive
approach incorporating real-world data significantly
improved performance over prior state-of-the-art ap-
proaches using static sources of biomedical informa-
tion in the MIMIC-50, MIMIC-50 rare and MIMIC-
full benchmarks.

2. Related work

2.1. Diagnostic Coding

Automatic diagnostic coding is a multi-label classi-
fication task assigning ICD codes to medical notes,
typically ranging from several hundred to more than
2000 words per note. In addition, the label space
is large and sparse, with over 60,000 codes in the
most recent version of ICD-10, and a long tail of
rarely diagnosed conditions. Several studies have
proposed different methods to address this problem.
Complex patterns between text and ICD codes were
learned using variations of LSTM networks, dilated
convolutions, residual connections, and per-label at-
tention (Mullenbach et al., 2018; Li and Yu, 2020;
Ji et al., 2020; Vu et al., 2020). Label represen-
tations were further improved by using graph con-
volution networks to capture the hierarchical struc-
ture of diagnostic codes (Xie et al., 2019; Cao et al.,
2020; Michalopoulos et al., 2022). Shared represen-
tations can be further improved by extracting rep-
resentations from low- and high-frequency codes via
self-distillation (Zhou et al., 2021), and UMLS-based
code synonyms have been used to provide more com-
prehensive knowledge than capturing code hierar-
chies (Yuan et al., 2022). Other studies have pro-
posed various techniques to improve coding accuracy,
such as using pre-trained biomedical language models
with segment pooling to encode longer texts (Huang
et al., 2022), exploiting the discourse structure of
notes by utilizing section and reconciled label em-
beddings (Zhang et al., 2022), and incorporating tree-
based features constructed from structured electronic
health record (EHR) data such as lab values and med-

ications as additional embedding vectors (Liu et al.,
2022). Self-alignment learning with a hierarchical
contrastive loss has been used to inject knowledge
from biomedical ontologies, and prompt-based fine-
tuning has been shown to be a powerful approach for
predicting diagnostic codes (Yang et al., 2022).

2.2. Language Models for Biomedical Text

There are many pre-trained transformer-based lan-
guage models for clinical and biomedical tasks, in-
cluding those trained on masked language modeling
(MLM) as the original BERT architecture (Devlin
et al., 2019) and other pre-training objectives. No-
table MLM models in the biomedical domain include
SciBERT (Beltagy et al., 2019), BioBERT (Lee et al.,
2019), ClinicalBERT (Alsentzer et al., 2019), and Bi-
oLM (Lewis et al., 2020), which are trained on the
semantic scholar , scientific abstracts from PubMed
and PMC or the MIMIC-III dataset (Johnson et al.,
2016). Most of these models work at a sentence level
and can handle up to 512 tokens, but for longer
document-level tasks, the Clinical Longformer and
Clinical BigBird (Li et al., 2022) models can handle
up to 4096 tokens and are based on Longformer (Belt-
agy et al., 2020) and BigBird (Zaheer et al., 2020)
architectures, respectively.

2.3. Medical Code Representations

Transformer models have also been used to encode
temporal sequences of diagnostic codes across mul-
tiple hospital visits. These models are pre-trained
with a masked language model objective on diagnos-
tic, billing, and procedure code sequences. BEHRT
(Li et al., 2020) is a BERT model that uses additional
position and segment embeddings to distinguish be-
tween visits and encode temporal information. It was
trained on EHR data from 1.6 million patients and
tested on three disease prediction tasks (disease diag-
nosis on the next visit, within 6 months, and within
12 months). MedBERT (Rasmy et al., 2021) is con-
ceptually similar to BEHRT but encodes both ICD-9
and ICD-10 codes and uses an additional serializa-
tion embedding to maintain the relative order of di-
agnostic codes within a visit. Lastly, G-BERT (Shang
et al., 2019) combines graph neural networks and
BERT to encode ICD-9 diagnostic codes and ATC
drug classification codes. The model is evaluated on
a multi-label medication recommendation task given
medication and diagnostic history.
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2.4. Contrastive Learning

Contrastive learning involves training a model on a
batch of examples that contain positive and nega-
tive pairs, maximizing the agreement among positive
pairs while minimizing the agreement between nega-
tive pairs. This method has been applied for general-
purpose pre-training and in specific domains, such
as medical imaging. The ConVIRT model (Zhang
et al., 2020) was an early model to use a contrastive
learning objective for medical visual representations,
followed by several approaches focusing on medical
images with accompanying textual descriptions such
as radiology reports (Müller et al., 2021; Huang et al.,
2021; Wang et al., 2021, 2022). CLIP (Radford et al.,
2021) is a general large-scale contrastive learning
model trained on 400 million image-text pairs from
the internet and ALIGN (Jia et al., 2021) was trained
on over one billion noisy image alt-text pairs. Con-
trastive approaches have also been applied to the im-
age or text domain separately; for example, SimCLR
(Chen et al., 2020) is a framework for visual rep-
resentations based on image-image contrastive loss
and augmentations. Text-text contrastive approaches
sample pairs based on neighboring text segments on
the internet (Neelakantan et al., 2022) or independent
cropping data augmentations (Izacard et al., 2021)
and have achieved state of the art results on clas-
sification, semantic search, sentence similarity, and
retrieval. Contrastive learning is increasingly being
applied to specific domains and shows promising re-
sults in improving performance on various tasks. For
example, SCEHR (Zang and Wang, 2021) is a con-
trastive learning framework based on EHR time series
data applied to clinical risk prediction problems.

3. Methods

We propose learning diagnostically relevant repre-
sentations of medical notes by aligning medical text
with corresponding sequences of one or more ICD-10
diagnostic codes used during the same clinical en-
counter. We use a contrastive learning approach for
pre-training the model, where the associated ICD-10
diagnostic codes of a medical note are used as positive
signal and contrasted against the diagnostic codes be-
longing to other medical notes. We describe this ap-
proach as a combination of three components, an en-
coder for sequences of ICD-10 diagnostic codes, an
encoder for medical text, and a joint model for con-

trastive training and alignment of these components,
each of which are described in more detail below.

3.1. Modeling ICD-10 Sequences

We trained a RoBERTa model (Liu et al., 2019) on
temporal sequences of diagnostic codes using real-
world data of a large patient cohort. To learn long-
term temporal associations as well as co-occuring di-
agnoses, we used sequences of ICD-10 codes across
multiple clinical encounters of a patient over time.
We selected one encounter as the “encounter of in-
terest”, and calculated the time difference (in days)
for past and future encounters, with 0 indicating all
diagnostic codes in the current encounter. These rel-
ative position values were used to calculate positional
embeddings based on sine and cosine functions of dif-
ferent frequencies (Vaswani et al., 2017). In addition,
token type identifiers distinguished between the cur-
rent encounter and others. This approach allowed
us to encode past diagnostic history, future events,
and patterns in the sequences. Figure 1A shows an
example of the sequence of ICD-10 codes for a sin-
gle patient, who had 6 hospital encounters in their
history that have been coded, and the 4th encounter
was randomly selected to be the current encounter.
We consider each ICD-10 code as a single token, and
trained the ICD-10 sequence model using the masked
language modeling objective, where 20% of the ICD-
10 codes in each sequence are masked out and the
model needs to predict the original ICD-10 code of
the masked token relying only on the surrounding
context of codes. We increased the mask percent-
age from the standard 15% to 20% based on (Wettig
et al., 2023) and evaluated the model using perplexity
values during training. See Table 4 for hyperparam-
eter choices for pre-training all models.

3.2. Modeling Medical Text

Since medical notes commonly contain more than 512
tokens, it was essential to develop models for med-
ical text that can support much longer sequences
(Figure 1B). We trained different models for med-
ical text which support document lengths of up to
8192 tokens. We used the BioLM (Lewis et al., 2020)
RoBERTa-base-PM-M3-Voc-distill-align as the start-
ing model checkpoint. These models were pre-trained
on text in PubMed, PMC, and MIMIC-III with a byte
pair encoding vocabulary learned from PubMed. We
converted them to a BigBird model to handle long
sequences using the method presented in (Beltagy
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Figure 1: A) The input to the diagnosis model is a sequence of ICD-10 codes, where positions and token
type ids are relative to a “current encounter” (shown in red). B) The text encoder is a language
model for long documents pre-trained on medical notes. C) Contrastive training of corresponding
ICD-10 code sequences and medical note pairs. D) Pairs of ICD-10 codes are matched to textual
descriptions of the codes as a fine-tuning step. E) For prompt-based classification (Yang et al.,
2022), the labels are concatenated with the medical note text. The prompt is a textual description
of the ICD-9 code, and the outputs at the masked positions are processed to obtain the final
multi-label classification output.

et al., 2020). In short, we repeatedly copied over
512-position embeddings and pre-trained the model
on longer text using the MIMIC-III dataset before ap-
plying additional training objectives. We refer to this
model trained solely on the MIMIC-III MLM task as
NoteLM.

3.3. Contrastive Training

For the contrastive training, we used pairs of med-
ical notes and their corresponding ICD-10 codes as
positive pairs, and all other pairs as negatives. Dur-
ing training, we sampled batches of pairs and trained
the model to predict which of the (text, ICD-10
code) pairs match across the batch (Figure 1C). This
was done by jointly training the text and diagnostic
encoders to maximize the cosine similarity between
the text and code embeddings of the positive pairs
while minimizing that of the incorrect pairs in the
batch. We used the pre-trained transformer mod-

els described above to encode the text and ICD-10
diagnostic code sequence and used the hidden state
of the CLS token to embed the ICD-10 sequence
and the medical note. Compared to the diagnostic
model pre-training, which used sequences spanning
multiple medical encounters, we used only a single
note and diagnostic codes from the same clinical en-
counter, not any past or future diagnostic codes, for
the contrastive training step. The model represen-
tations are then projected into a multi-modal em-
bedding space (TN and DN ), and the InfoNCE loss
(Oord et al., 2018) was computed as contrastive loss
among positive and negative text-ICD and ICD-text
pairs. In addition to the contrastive loss, we included
the masked language modeling objective for the text
model during training. This helped maintain existing
textual properties while contrastively learning diag-
nostic properties. The contrastive and masked lan-
guage losses were combined and weighted using un-
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Table 1: Performance on MIMIC-III-50 dataset containing common ICD-9 codes. NoteLM and NoteContrast
were run 5 times with different seeds to report mean and standard deviation. Performance of other
methods is based on results collected from papers.

Model AUC F1 Precision
Macro Micro Macro Micro P@5

JointLAAT (Vu et al., 2020) 92.5 94.6 66.1 71.6 67.1
MSMN (Yuan et al., 2022) 92.8 94.7 68.3 72.5 68.0
KEPT (Yang et al., 2022) 92.6 94.8 68.9 72.9 67.3
ISD (Zhou et al., 2021) 93.5 ±0.4 94.9 ±0.1 67.9 ±0.9 71.7 ±0.3 68.2 ±0.5
TreeMAN - all EHR (Liu et al., 2022) 93.7 ±0.2 95.3 ±0.0 69.0 ±0.2 72.9 ±0.2 68.2 ±0.1
TreeMAN - Text (Liu et al., 2022) 92.6 94.5 67.4 71.4 66.6

NoteLM 4k 92.3 ±0.10 94.3 ±0.07 65.2 ±0.35 71.1 ±0.22 66.7 ±0.11
NoteContrast 4k 93.1 ±0.09 94.9 ±0.06 67.4 ±0.28 72.6 ±0.24 67.6 ±0.17
NoteContrast 8k 93.5 ±0.14 95.3 ±0.06 68.7 ±0.46 73.4 ±0.18 68.1 ±0.21
NoteContrast 8k ICD 93.8 ±0.04 95.4 ±0.03 69.2 ±0.21 73.6 ±0.17 68.6 ±0.18

Table 2: Performance on MIMIC-III-50-rare dataset containing uncommon ICD-9 codes. All methods were
run 5 times with different seeds to report mean and standard deviation.

Model
AUC F1

Initialization
Macro Micro Macro Micro

MSMN (Yuan et al., 2022) 75.35 ± 1.32 77.41 ±0.66 15.3 ±2.77 16.65 ±1.48

Pre-trained

KEPT (Yang et al., 2022) 79.39 ±1.47 80.66 ±1.41 24.61 ±2.84 23.32 ±2.15
NoteLM 4k 82.04 ±2.01 81.93 ±1.51 24.89 ±7.31 26.38 ±6.11
NoteContrast 4k 86.86 ±1.02 86.45 ±0.89 36.76 ±2.56 36.25 ±5.77
NoteContrast 8k 85.65 ±1.16 87.13 ±1.23 38.15 ±3.55 39.88 ±2.44
NoteContrast 8k ICD 85.70 ±0.49 86.72 ±1.12 39.08 ±2.15 41.84 ±1.56

MSMN (Yuan et al., 2022) 58.95 ±4.16 58.9 ±4.6 3.54 ±2.18 5.48 ±1.21

MIMIC-III-50
KEPT (Yang et al., 2022) 82.30 ±1.73 83.66 ±1.51 28.94 ±1.04 31.43 ±1.3
NoteContrast 8k 88.40 ±0.33 90.01 ±0.6 39.75 ±1.48 43.3 ±1.5
NoteContrast 8k ICD 88.92 ±1.23 89.9 ±0.65 40.26 ±2.96 42.64 ±1.97

certainty weighting (Kendall et al., 2018). We trained
three model versions to be able to compare perfor-
mance on downstream tasks. We first trained the
NoteContrast 4k model, which supports documents
of length 4096. We started the training of this model
using the NoteLM weights. We trained the model
to minimize the weighted contrastive-ICD and MLM
loss for 10,000 steps with a batch size of 64 and 16
gradient accumulation steps. Then, we converted the
NoteContrast 4k model to handle sequences of length
8192 and trained the NoteContrast 8k model using
the same loss for 10,000 steps with a batch size of
32 and 32 gradient accumulation steps. The Note-

Contrast 8k ICD model was based on the NoteCon-
trast 8k model with additional fine-tuning using the
contrastive loss objective. Here, the textual descrip-
tion for each ICD-10 diagnosis was treated as a very
short medical note, and the associated ICD-10 code
was considered a ”sequence” of length 1 (Figure 1D).
This step brought relevant codes/text closer and sep-
arated dissimilar codes/text, improving downstream
task performance.
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3.4. Prompt-based fine-tuning

We followed the prompt-based fine-tuning approach
from Yang et al. (2022) for the ICD-9 coding task.
Prompt-based fine-tuning is an alternative approach
to multi-label classification where the multi-label
classification task is reformulated as a cloze task.
Each label is assigned a prompt template as shown
in Figure 1E and the model fills the MASK token to
indicate the presence or absence of the label in the
multi-label space.

3.5. Pre-training Data

ICD-10 diagnostic codes. A RoBERTa-style
model for ICD-10 sequences was trained on hospital
encounters with ICD-10 codes, consisting of nearly
60 million real-world hospital encounters from 1.5
million patients. We first prepared a sequence for
each patient containing all available ICD-10 diagnos-
tic codes, leading to 1.5 million sequences of varying
lengths. We randomly selected an encounter to be the
“current encounter” and by changing the current en-
counter, generated 5 sequences per patient that con-
tained the same sequence of codes, but different rel-
ative position and token type values, resulting in a
final dataset of 7.5 million sequences.

Medical notes and contrastive training. The
NoteLM and NoteContrast models were pre-trained
on medical notes from the MIMIC-III dataset (John-
son et al., 2016), a collection of medical notes from
over 40,000 patients. We used nearly 2 million notes
for the MLM pre-training and around 50,000 notes
for the contrastive language-diagnostic pre-training.
Refer to Appendix A.2.2 for more details. For better
clinical utility, we trained our diagnostic code model
with a vocabulary of ICD-10 codes and translated
ICD9 codes to ICD-10 codes1. To resolve ambigu-
ous mappings, we selected an ICD10 code at random.
We applied two pre-processing steps where we re-
moved all de-identification placeholders and stripped
extra white space. The NoteContrast 8k ICD model
was also fine-tuned on textual descriptions of ICD-10
codes from the python package icd10-cm v0.0.5.

1. ICD-9 to ICD-10 mapping: https://github.com/

AtlasCUMC/ICD-10-ICD9-codes-conversion/blob/

master/ICD_9_10_d_v1.1.csv

4. Experiments

We conducted experiments with a series of NoteCon-
trast models capable of handling document lengths of
up to 4096 and 8192 tokens. Experimental results on
the MIMIC-50, MIMIC-rare50, and MIMIC-III-full
evaluations are shown in Tables 1, 2, 3. Our con-
trastive pre-training method demonstrated improved
performance on most metrics in downstream ICD
classification compared to the standard masked lan-
guage modeling objective and existing state-of-the-
art models for these tasks, including ISD, TreeMAN
and KEPTLongformer (Zhou et al., 2021; Liu et al.,
2022; Yang et al., 2022). It is important to note that
our models were pre-trained on ICD-10 codes (i.e.,
have not seen ICD-9 codes during pre-training), and
later fine-tuned for MIMIC-50, MIMIC-rare50 and
MIMIC-III-full tasks with textual ICD-9 descriptions
in the prompt based fine-tuning paradigm. Despite
the ICD system change from pre-training to fine tun-
ing, our model outperforms prior approaches devel-
oped specifically for ICD-9 coding. Implementation
details are discussed in Appendix A.3 and Tables 5, 6
and 7 list hyperparameter choices selected based on
dev set performance for the MIMIC-III tasks.

4.1. Dataset

We trained and evaluated our models using de-
identified discharge summaries from the MIMIC-III
dataset (Johnson et al., 2016), which has been widely
adopted for benchmarking ICD-9 coding tasks. To al-
low comparison with other approaches, we adopted
multiple tasks based on the MIMIC-III dataset:
MIMIC-III-50, MIMIC-III-rare50, and MIMIC-III-
full as previously described (Yang et al., 2022).
The creation, size and preprocessing details of the
datasets can be found in Appendix A.2.3

4.2. Metrics

We report micro and macro averaged F1 scores, micro
and macro averaged AUC scores, precision at K (K =
{5, 8, 15}), and recall at K (K = {8, 15}). All exper-
iments were repeated 5 times with different random
seeds (including model fine-tuning), and we present
mean test results and standard deviation unless oth-
erwise specified. The best thresholds for classification
and computing precision, recall, and F1 were selected
using the dev set for each task.
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Table 3: Performance on MIMIC-III-full dataset, when using NoteContrast as a re-ranker of the top 300
MSMN predictions. Our model was run 5 times to report mean and standard deviation.

Model
F1 Precision

Macro Micro @8 @15

JointLAAT (Vu et al., 2020) 10.7 57.5 73.5 59
ISD (Zhou et al., 2021) 11.90 ±0.2 55.90 ±0.2 74.50 ±0.1 -
MSMN (Yuan et al., 2022) 10.3 ±0.3 58.2 ±0.4 74.9 ±0.3 59.5 ±0.1
PLM-ICD (Huang et al., 2022) 10.40 ±0.1 59.80 ±0.3 77.10 ±0.2 61.30 ±0.1
KEPT (Yang et al., 2022) 11.8 ±0.4 59.9 ±0.5 77.1 ±0.3 61.5 ±0.2
DiscNet+RE (Zhang et al., 2022) 14 58.8 76.5 61.4
NoteContrast 8k ICD 11.9 ±0.3 60.7 ±0.03 77.8 ±0.1 62.2 ±0.1

4.3. Results

In the MIMIC-III-50 task, shown in Table 1, the
NoteContrast 8k ICD model achieved a macro-AUC
of 93.8 (+0.3), micro-AUC of 95.4 (+0.5), macro-F1
of 69.2 (+0.3), micro-F1 of 73.6 (+0.7), and preci-
sion@5 of 68.6 (+0.4). Numbers in parentheses show
differences to prior best results. We excluded Tree-
MAN - all EHR from direct comparisons, since it
uses text and structured data (e.g., lab results and
medications), giving it additional information com-
pared to the other methods. Under the MIMIC-
III-rare50 setting, shown in Table 2, the best perfor-
mance was achieved by a NoteContrast 8k ICD model
which had previously been fine-tuned on the MIMIC-
III-50 task: macro-AUC of 88.92 (+6.62), micro-
AUC of 89.90 (+6.24), macro-F1 of 40.26 (+11.32),
micro-F1 of 42.64 (11.21). This approach performed
better than fine-tuning the NoteContrast 8k ICD
model on the MIMIC-III-rare50 dataset alone, which
yielded macro-AUC of 85.70 (+6.31), micro-AUC of
86.72 (+6.06), macro-F1 of 39.08 (+14.47), micro-F1
of 41.84 (+18.52). For the MIMIC-III-full task,
shown in Table 3, using the NoteContrast 8k ICD
model to re-rank the top 300 candidate codes from
MSMN improved over the previous state-of-the-art
method for most metrics. We achieved macro-F1 of
11.9 (-2.1), micro-F1 of 60.7 (+0.8), precision@8 of
77.8 (+0.7), precision@15 of 62.2 (+0.7), recall@8
of 41.1 (+0.4), and recall@15 of 58.3 (+0.9). In
agreement with prior work, we observed that prompt-
based fine-tuning improved performance over tradi-
tional multi-label classification (Yang et al., 2022).

5. Discussion

Our final NoteContrast 8k ICD model combines a
language model for clinical notes, contrastive train-
ing, and extends the document length to 8192 tokens.
Below we compare different model versions to assess
impact of each component.

Long-document language models offer a strong
foundation for diagnostic coding of clinical
notes. The NoteLM model, trained on 2 million
notes, demonstrated comparable performance to ear-
lier approaches such as ICD-BigBird, JointLAAT,
and MSMN in the MIMIC-III-50 and MIMIC-III-
rare50 tasks, without pre-training objectives related
to diagnostic coding (Tables 1 and 2).

Diagnostic representation learning improved
classification, especially for rare diagnoses.

By incorporating a contrastive training objective
between sequences of diagnostic codes and medi-
cal notes, we observed performance improvements
across all evaluation tasks. Rare codes in partic-
ular (MIMIC-III-rare50, Table 2), had strong im-
provements compared to language model pre-training
alone or prior work based on a hierarchical triplet-loss
(e.g., KEPT). For example, contrastive training im-
proved macro AUC by 4.82 points and macro F1 by
11.87 points for the NoteContrast 4k model compared
to the NoteLM 4k model. Scaling the model from
4096 to 8192 tokens, combined with contrastive pre-
training, further enhanced classification performance.
The NoteContrast 8k ICD model with MIMIC-50
finetuning improved macro AUC by 6.88 and macro
F1 by 15.37 points compared to the NoteLM 4k
model.
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Figure 2: Comparing outputs of the ICD-10 diagnosis model and text model before and after contrastive
pre-training (left and right panels, respectively). We used a sample of 5000 ICD-10 codes as
input to the ICD-10 encoder model, and textual descriptions of each code as input to the text
model. For visualization, 768-dimensional outputs were projected using UMAP into two dimen-
sions, scaled, and rotated using the Procrustes transformation. The contrastive pre-training step
aligns corresponding output vectors in both models, leading to a more finely resolved embedding
of all diagnoses.

Contrastive training aligns outputs from di-
agnostic code and text models. Joint training
of text and diagnostic code models enabled align-
ment of their output vectors by maximizing the co-
sine similarity of positive pairs and minimizing that
of incorrect pairs. Initially, the 2D UMAP projec-
tions of diagnostic code embeddings and their corre-
sponding textual descriptions were dissimilar (Figure
2, left panels). While the text model formed clusters
corresponding to high-level diagnostic categories, the
UMAP embedding primarily separated injury-related
codes (light blue) from other major diagnostic cate-
gories (Figure 2, bottom left). Conversely, the diag-
nostic code model assigned similar outputs to almost
all non-injury codes and primarily separated differ-

ent types of injuries (Figure 2, top left). However, af-
ter contrastive pre-training, embeddings of diagnostic
codes and text were similar, resulting in overall bet-
ter resolution when comparing diagnoses of different
major categories (Figure 2, right panels).

5.1. Limitations

There are several limitations to consider in our study.
Firstly, bias in the training data could affect the
generalizability of our findings. The MIMIC-III
dataset was sourced from a single medical institu-
tion and does not fully represent patient populations
and healthcare practices found in other settings. Sec-
ondly, the long tail issue in the frequency of ICD
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codes poses a challenge. Our model’s representa-
tions for very rare ICD codes may not be accurate,
as the training data did not contain many examples
for these codes. Due to vocabulary cutoff during
pre-training of the ICD10 diagnosis model, certain
rare codes are likely missing from our diagnostic code
model, limiting the coverage of our model. Another
limitation is the relatively small batch size used for
contrastive learning due to computational resource
limits. While our model showed promising results
with a batch size of up to 64 notes and diagnostic
code sequences, other contrastive models have been
pre-trained on much larger batch sizes and datasets
(e.g., 32k pairs of images and text in CLIP). The lim-
ited batch size might impact the stability and conver-
gence of the training process. Lastly, there are differ-
ences in the number and type of notes used for the
MLM and contrastive training steps. While we used
2 million notes of multiple types, such as progress
notes, radiology reports, and discharge summaries for
MLM training, we used only 50,000 discharge sum-
maries with corresponding ICD codes for contrastive
training. This could introduce biases and limitations
in our model when deployed on notes other than dis-
charge summaries.
Using real-world clinical datasets, ideally incorpo-

rating multiple institutions from different geographic
regions would yield much larger collections of medical
notes and diagnostic codes, improving performance
for rare diagnoses and better overall generalizability.

6. Conclusion

The InfoNCE objective has been related to maximiza-
tion of mutual information between different modal-
ities of the same concept (Oord et al., 2018), which
is a powerful approach to utilize large collections of
weakly labeled data. In this work, we built contextual
embeddings of diagnoses based on their occurrence in
a real-world data set, which has the potential to cap-
ture co-morbidities and temporally related diagnoses
that occur in clinical settings. By aligning domain-
specific text models with diagnostic code represen-
tations in a contrastive pre-training step, we were
able to better annotate medical notes with diagnostic
codes. The improvement was especially strong for in-
frequently occurring diagnoses, where our approach
significantly improved over prior work that use fixed
hierarchical sources of biomedical knowledge such as
UMLS or ICD-9/ICD-10 ontologies. While this work
focused on diagnostic coding of medical notes, data-

driven contrastive pre-training can offer a powerful
framework for other types of biomedical data with
noisy labels.
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Appendix A. Appendix

A.1. Ethics Approval

The study protocol was approved by the Mass Gen-
eral Brigham Institutional Review Board.

A.2. Dataset Processing

A.2.1. ICD-10 diagnostic codes.

ICD-10 codes from real-world hospital encounters
from the MassGeneral Brigham hospital system were
used to build the ICD-10 sequence dataset. We ex-
cluded any patient that had less than 5 hospital en-
counters. For each patient, we generated 5 sequences
with the same set of codes but with different ”cur-
rent encounters” resulting in different relative posi-
tion and token type values. The final dataset con-
sisted of 7,502,320 sequences of hospital encounters
from 1,500,464 patients of which 7,447,575 were used
for training and the remaining 54,745 was used for
validation. All sequences belonging to a given patient
are either in the train or dev set (i.e., a patient cannot
have sequences in both the train and dev set). Each
ICD-10 sequence on average contained 86.64 ICD-10
codes.

A.2.2. Medical notes and contrastive
training.

The MIMIC-III dataset (Johnson et al., 2016) con-
tains 2,083,180 million de-identified notes. We re-
moved all patients that appear in the test dataset of
any evaluation task (MIMIC-50, MIMIC-rare50, and
MIMIC-III-full). For masked language model (MLM)
pre-training, the training set consisted of 2,059,772
notes and the dev set contained 20,036 notes. In
the contrastive language diagnostic pre-training, we
utilized only those notes that have diagnostic codes
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available. We used a training set of 47,707 notes
and a dev set of 1,631 notes. All notes that were
used for contrastive pre-training were discharge sum-
maries. The pre-processing of the data for both MLM
and contrastive pre-training was minimal and only
included removal of all de-identification placeholders
present in the MIMIC dataset and stripping of extra
white spaces.

A.2.3. Fine-tuning and evaluation

We used the steps described by (Yang et al., 2022)
for creating the train, dev and test datasets for
the MIMIC-50, MIMIC-rare50, and MIMIC-III-full
tasks2. MIMIC-50 contains instances that had at
least one of the top 50 most frequent codes. MIMIC-
rare50 introduced by (Yang et al., 2022) is built by
selecting the top 50 codes with less than 10 occur-
rences and contains instances that have at least one
of these rare codes. MIMIC-III-full includes all dis-
charge summaries. The processing of this dataset and
the resulting train, dev and test splits have been used
to benchmark multiple previous approaches (Mullen-
bach et al., 2018; Vu et al., 2020; Yuan et al., 2022).

A.3. Implementation Details

The ICD sequence encoder model was trained for
200K steps with a 2K batch size and took about
4 days of training time. The NoteLM and Note-
Contrast models were trained with a 1k batch size
with varying gradient accumulation steps. NoteLM
was trained for 7K steps and took about a day to
train. The NoteLM model checkpoint with the low-
est perplexity on the dev set was selected for all ex-
periments. NoteContrast 4k and NoteContrast 8k
were trained for 10K steps, NoteContrast 4k took
about 2.5 days to train, while NoteContrast 8k took 5
days. NoteContrast 8k ICD was trained for 250 steps
and took less than 5 minutes. The NoteContrast
model checkpoints with the lowest contrastive loss
on the dev set were used for all downstream evalua-
tion tasks. We list the detailed hyperparameters for
the pre-trained ICD and text models in Table 4. For
the 3 downstream tasks (MIMIC-50, MIMIC-rare50,
and MIMIC-III-full) we tuned the learning rate and
weight decay using the dev set. The MIMIC-III-50
task took between 1-2 hours to complete training, the
MIMIC-III-rare50 took between 25-50 minutes, and

2. MIMIC-III preprocessing code: https://github.com/

whaleloops/KEPT#download--preprocess-data

the MIMIC-III-full task took about 20 hours. The
fine-tuning hyperparameters are listed in Tables 5, 6
and 7 for the MIMIC-III-50, MIMIC-III-rare50 and
MIMIC-III-full tasks. The macro-AUC and micro-
AUC performance on the dev set was used to select
the model checkpoints for evaluation in the afore-
mentioned tasks. All models were trained and fine-
tuned on a DGX-2 node with 8 A100 GPUs. We
used Adam (Kingma and Ba, 2015) as the optimizer
with weight decay (Loshchilov and Hutter, 2019) for
pre-training and fine-tuning all models. Our code is
implemented based on PyTorch (Paszke et al., 2019)
and Huggingface Transformers (Wolf et al., 2020) and
available at https://github.com/obi-ml-public/

NoteContrast. Since real-world data were used to
train ICD-10 sequence models, we are unable to share
the resulting model weights.
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Hyper-parameter ICD-10 Encoder NoteLM NoteContrast 4k NoteC. 8k NoteC. 8k ICD

Base Model RoBERTa BigBird BioLM NoteLM NoteC. 4k NoteC. 8k
Dropout 0.1 0.1 0.1 0.1 0.1
Warmup Steps 4000 1000 1000 1000 50
Learning Rate 7.00E-04 5.00E-04 1.00E-04 7.50E-05 1.00E-04
Device Batch Size 64 64 64 32 1024
Gradient Accumulation 4 16 16 32 1
Effective Batch Size 2048 1024 1024 1024 1024
Weight Decay 0.01 0.01 0.1 0.1 0.1
Max Steps 200000 7000 10000 10000 250
Learning Rate Decay Linear Linear Linear Linear Linear
Adam e 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06
Adam b1 0.9 0.9 0.9 0.9 0.9
Adam b2 0.999 0.999 0.999 0.999 0.999
Gradient Clipping 1 1 1 1 1
Maximum Sequence Length 512 4096 4096 8192 8192

Table 4: Hyperparameters for pre-training models. Base model represents the starting model checkpoint for
pre-training. We convert the NoteContrast 4k model to support longer inputs (8192) before using
it to train the NoteContrast 8k model.

Hyper-parameter NoteLM NoteContrast 4k NoteContrast 8k NoteContrast 8k ICD

Dropout 0.1
Warmup Steps 200
Learning Rate 2.50E-05
Batch Size 64
Weight Decay 0.01
Max Steps 1500
Learning Rate Decay Linear
Adam e 1.00E-06
Adam b1 0.9
Adam b2 0.999
Gradient Clipping 1
Maximum Sequence Length 4096 4096 8192 8192
Training Time 1 hour 1 hour 2 hours 2 hours

Table 5: Hyperparameters for fine-tuning NoteLM and NoteContrast models on MIMIC-III-50.

215



NoteContrast

Hyper-parameter NoteLM NoteContrast 4k NoteContrast 8k NoteContrast 8k ICD

Dropout 0.1
Warmup Steps 200
Learning Rate 2.50E-05
Batch Size 48
Weight Decay 0.1
Max Steps 500
Learning Rate Decay Linear
Adam e 1.00E-06
Adam b1 0.9
Adam b2 0.999
Gradient Clipping 1
Maximum Sequence Length 4096 4096 8192 8192
Training Time 25 minutes 25 minutes 50 minutes 50 minutes

Table 6: Hyperparameters for fine-tuning NoteLM and NoteContrast models on MIMIC-III-rare50.

Hyper-parameter NoteContrast 8k

Dropout 0.1
Warmup Steps 2000
Learning Rate 5.00E-05
Batch Size 192
Weight Decay 0.01
Max Steps 10000
Learning Rate Decay Linear
Adam e 1.00E-06
Adam b1 0.9
Adam b2 0.999
Gradient Clipping 1
Maximum Sequence Length 8192
Training Time 20 hours

Table 7: Hyperparameters for fine-tuning NoteContrast 8k ICD on MIMIC-III-full.

Dataset Train Dev Test

MIMIC-III-full 47,723 1,631 3,372
MIMIC-III-50 8,066 1,573 1,729
MIMIC-III-rare50 249 20 142

Table 8: Number of samples in each split of MIMIC-III-full, MIMIC-III-50 and MIMIC-III-rare50 datasets
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