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Abstract
Quantification of real-time informal feedback
delivered by an experienced surgeon to a trainee
during surgery is important for skill improve-
ments in surgical training. Such feedback in the
live operating room is inherently multimodal,
consisting of verbal conversations (e.g., ques-
tions and answers) as well as non-verbal ele-
ments (e.g., through visual cues like pointing to
anatomic elements). In this work, we leverage
a clinically-validated five-category classification
of surgical feedback: “Anatomic”, “Technical”,
“Procedural”, “Praise” and “Visual Aid”. We
then develop a multi-label machine learning
model to classify these five categories of sur-
gical feedback from inputs of text, audio, and
video modalities. The ultimate goal of our
work is to help automate the annotation of real-
time contextual surgical feedback at scale. Our
automated classification of surgical feedback
achieves AUCs ranging from 71.5 to 77.6 with
the fusion improving performance by 3.1%. We
also show that high-quality manual transcrip-
tions of feedback audio from experts improve
AUCs to between 76.5 and 96.2, which demon-
strates a clear path toward future improve-
ments. Empirically, we find that the Staged
training strategy, with first pre-training each
modality separately and then training them
jointly, is more effective than training different
modalities altogether. We also present intuitive
findings on the importance of modalities for dif-
ferent feedback categories. This work offers an

important first look at the feasibility of auto-
mated classification of real-world live surgical
feedback based on text, audio, and video modal-
ities.

Keywords: Surgical feedback, Multimodality,
Robot-Assisted Surgery, Deep Learning

1. Introduction

Importance: Real-time informal verbal feedback in
surgical settings is pivotal not just for immediate cor-
rection and guidance but also for long-term profi-
ciency and mastery (Agha et al., 2015). The qual-
ity of such feedback has been demonstrated to sig-
nificantly influence intraoperative performance (Bon-
rath et al., 2015), profoundly impact surgical skill ac-
quisition (Ma et al., 2022) as well as trainee’s sense
of autonomy (Haglund et al., 2021). It also has
broader implications for the overall surgical training
paradigm. Despite the inherent challenges posed by
the unstructured and personalized nature of surgical
feedback, it’s undeniable that a systematic approach
to understanding it is the linchpin to refining and
enhancing surgical training.

Challenges: However, quantifying and conducting
a systematic analysis of the properties of real-world
surgical feedback presents notable challenges. We,
therefore, adopt a recent clinically validated classi-
fication system for surgical feedback that has been
shown to offer high reliability and generalizability as
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Figure 1: Overview of the work. Multimodal inputs consist of text, audio, and video (A) and 5 binary multi-
label classification outputs adapted from a clinically validated framework introduced in Wong et al.
(2023) (B). We explore model architectures (C) and training strategies (D) for improving the
performance of surgical feedback classification using multimodal fusion.

well as practical utility (Wong et al., 2023). However,
their system requires manual annotations of surgi-
cal feedback, which is time and resource-demanding.
This is primarily due to the necessity for exper-
tise in comprehending both the surgical context and
the feedback’s intent (Agha et al., 2015). Further-
more, feedback delivery in the live operating room
is inherently multimodal and adds to the complex-
ity. The delivery encompasses verbal conversations,
non-verbal appraisals, and visual cues.

Approach: We explore automated intraoperative
surgical feedback classification with machine learning
techniques in this pilot study. Specifically, we lever-
age multi-modal inputs composed of text, audio, and
video (Fig. 1-A) in order to perform binary multi-
label classification of surgical feedback into 5 compo-
nents (Fig. 1-B). In our experiments we systemati-
cally vary 2 dimensions: 1) complexity of the fusion
model architecture (Fig. 1-C) and 2) training strat-
egy (Fig. 1-D). We arrive at an optimal Staged Fusion
approach which starts with independent training of

each modality and continues with training modalities
jointly. This approach helps mitigate the dominance
of one modality that can suppress extracting infor-
mation from other modalities.

Findings: We summarize our findings as follows:

• We achieve Areas under the ROC Curve (AUCs)
varying from 71.5 to 77.6 with automated surgical
feedback classification (Table 3).

• We further show that manual transcription of spe-
cialized surgical feedback by experts, though costly,
further improves AUCs to between 76.5 and 96.2,
indicating a path to further improvements.

• We find that the training process is more important
for fusion effectiveness (3.1% gain) than model ar-
chitecture (1.1%) in ablation studies.

• We confirm our intuition that video modality is
most important for the classification of “Visual
Aid” feedback, while emotion extracted from au-
dio is important for the detection of “Praise”.
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Feedback Description

Anatomic Familiarity with anatomic structures and landmarks.
Procedural Pertains to timing and sequence of surgical steps.
Technical Performance of discreet task with appropriate knowledge of exposure, instruments, traction, etc.
Praise A complementary remark
Visual Aid Addition of visual element to direct trainee’s attention or focus

Table 1: Categories of surgical feedback adapted from recent clinically validated classification system intro-
duced in Wong et al. (2023)

.

Contributions: Our main contributions include:

• To the best of our knowledge, we are the first to ex-
plore the feasibility of the automated classification
of live surgical feedback.

• We systematically explore model architectures and
training strategies for multi-modal fusion in a novel
context of real-world live surgical feedback. The
emphasis on training strategy distinguishes our ap-
proach as significantly novel, given that most prior
work focused on exploring model architectures.

2. Background and Related Work

Feedback in Robot-Assisted Surgery . Wong
et al. (2023) first report on the development of a man-
ual classification system for verbal feedback during
robot-assisted surgery. This work also demonstrates
the reliability, generalizability, and utility of this
manual classification system. It specifically shows
that using the proposed feedback categorization it
is possible to detect significant differences in feed-
back type frequency and subsequent trainee reactions
based on surgeon experience level and the surgical
task being performed. For example, technical feed-
back with a visual component was associated with
an increased rate of trainee behavioral change or ver-
bal acknowledgment responses. Hence we adopt this
classification system as it offers a tangible link be-
tween feedback and subsequent trainee behavior.
To the best of our knowledge, there exists no prior

work on automated surgical feedback classification.
Our work pioneers predicting real-time verbal feed-
back for robotic-assisted surgery with multi-modal
sensory inputs.

Deep Learning for Multi-Modality Data .
Prior work mostly focused on fusing visual modal-
ities but not the importance of training strategies.
Boulahia et al. (2021) explore early, intermediate,

and late fusion for general activity recognition. Their
method focuses on visual channels and is not directly
applicable to surgical feedback which includes text
and audio modalities. We borrow the late fusion
concept from their work, but expand on aspects of
model complexity and training strategy. Li et al.
(2020) align text and image modalities for image cap-
tioning task. This fusion approach aims to generate
output in one modality based on input from other
modalities, which is substantially different than our
task. Walsman et al. (2019) focus on the fusion of vi-
sual channels for the scene and goal representation in
robotic vision. Their work applies fusion in 3D sim-
ulated setting with clear and distinct objects, which
are not present in our context. In the medical do-
main, Narazani et al. (2022) explore fusion for PET
and MRI visual modalities. Their work, again focuses
on visual channels only and reports no gains from the
proposed fusion approaches. In contrast, our research
systematically investigates a range of multi-modal fu-
sion techniques and training strategies.

3. Methods

3.1. Data Acquisition

We used a dataset of real-life feedback delivered by
trainers to trainees during live robot-assisted surgery
cases from Wong et al. (2023). Trainers were de-
fined as those providing feedback and trainees were
those receiving feedback while actively operating on
the surgeon console. This feedback has been recorded
using wireless microphones worn by the surgeons
and video capturing the surgeon’s point-of-view (i.e.,
endoscope camera view). Video and audio were
recorded synchronously with an external recorder.
All surgeries were performed using da Vinci Xi sur-
gical robotic system (DiMaio et al., 2011). The feed-
back instances were timestamped and manually tran-
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Figure 2: Examples of video (frame) along with the dialogue between trainee (feedback recipient) and at-
tending surgeon (feedback provider) from different surgical cases in our dataset.

Figure 3: Most frequent words used in the delivery of each type of feedback visualized via word clouds. The
larger the word, the more frequently it has been used in this category of feedback. For example,
Anatomic feedback includes words related to physical structures like “prostate” and “bladder”,
while Technical feedback includes words describing the use of instruments like “grab” and “hand”.

Component Count Count/Case Word count

Anatomic 1104 35.6± 23.0 11.0± 7.7
Procedural 817 26.4± 14.9 9.8± 8.0
Technical 3223 104.0± 67.7 8.1± 6.8
Praise 262 9.0± 8.4 3.6± 3.7
Visual Aid 303 11.7± 10.2 10.5± 6.7

Any feedback 3912 126.2± 72.0 8.1± 6.8

Table 2: Statistics per surgical feedback category in-
cluding total instances, instances per indi-
vidual surgical case as well as mean word
count of transcribed feedback text. Any
feedback refers to feedback of any type.
One feedback might have multiple labels.

scribed from audio recordings. Feedback instance has
been defined as trainers’ utterances meant to alter or
approve trainee behavior. The dataset contains 3912
individual instances of feedback as shown in Table 2.

3.2. Surgical Feedback Categorization

Two medical students were involved in feedback iden-
tification and transcription. Manual transcription in-
cluded only utterances from the attending surgeon
providing feedback. Any utterances by trainees or
unrelated conversations were not transcribed.

This feedback has been categorized using surgi-
cal feedback quantification framework introduced by
Wong et al. (2023). This categorization scheme has
been shown to offer high reliability and generalizabil-
ity as well as practical utility in the clinical setting.
The five feedback dimensions from this framework
along with their definitions are presented in Table 1.
The categories are non-exclusive. Further details of
the annotation can be found in Wong et al. (2023).

Examples of aligned video frames and audio tran-
scriptions are shown in Fig. 2. Dialogue is very im-
portant in feedback categorization, whereas video of-
fers supplementary sources, but similar feedback can
be delivered in different visual contexts. Fig. 3 shows
the most frequent words for each feedback category
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as word clouds where the larger the word, the more
frequently it appears in the underlying feedback in-
stances. Anatomic type of feedback most frequently
includes words related to physical structures such as
“prostate”, “bladder”, and “vein”. At the same time,
Technical feedback frequently includes words such as
“grab” and “hand”, “pull’ referring to the use of in-
struments.

3.3. Speaker Diarization and Automated
Speech Recognition

In addition to manual transcription, we performed
Automated Speech Recognition (ASR) using pre-
trained Whisper medium model introduced in Rad-
ford et al. (2022). This model was pre-trained on 680k
hours of labeled English-only speech data specifically
for speech recognition. Speech data was annotated
using large-scale weak supervision. Given, the inter-
active dialogue-like structure of the exchanges around
and leading to feedback (see Fig. 2), we further ap-
plied speaker diarization, the concept of partitioning
speech from different speakers in a single audio clip,
using Pyannote (Bredin and Laurent, 2021; Bredin
et al., 2020). This was done to provide more context
about feedback such as the speaker and the conversa-
tions before and after the feedback delivery. Speaker
diarization was paired with the ASR to transcribe
each separate segment of audio.

3.4. Individual-Modality-Input Models

We leverage pre-trained transformer models to ex-
tract information from each individual modality.
Text: We fine-tune BERT base model with 110M
parameters introduced by Devlin et al. (2018). The
model has been pre-trained on general-knowledge
text including BooksCorpus and English Wikipedia.
We also experiment with specialized text models
pre-trained on biomedical datasets including BioBert
(Lee et al., 2020) and BioClinicalBert (Alsentzer
et al., 2019). However, no noticeable improvement in
performance has been observed, which we attribute
to the relatively casual and conversational nature of
the feedback with only occasional use of specialized
vocabulary.
Audio: We fine-tune Wave2Vec base model with
95M parameters introduced by Baevski et al. (2020).
We specifically use a model pre-trained on emotion
recognition tasks from “SUPERB” dataset (Yang
et al., 2021). This model extracts features related

to the emotion in the delivery of feedback from audio
and is different than text transcription.
Video: We fine-tune VideoMAE base model with
86M trainable parameters introduced by Tong et al.
(2022). This model is an extension of Masked Auto
Encoders introduced by He et al. (2022) from images
to video. We use a model pre-trained on Kinetics-
400 dataset (Kay et al., 2017) containing video clips
of 400 human action classes.

3.5. Model Architectures of Multi-Modality
Fusion

We explore different variants of late fusion (Fig. 1-C)
varying the model complexity from a simple majority
vote to feature fusion with additional layers.
Voting Fusion (Best Voting): In this architecture,
each modality model predicts the label independently
(e.g., whether feedback component is “Anatomic” or
“Non-anatomic” based on video only). The predic-
tion given by the majority of models (i.e., at least 2
out of 3 models), is used as the final label for the fu-
sion model. We further explore voting fusion via max
of model predictions (i.e., at least 1 model predicts
a positive label). We report the best of these voting
approaches in our results.
Ensemble Fusion (Ensemble): In this architec-
ture, each model returns a size 2 vector representa-
tion of the modality. These reduced representations
are combined via a linear 6x2 layer which weights
each modality and returns the probability of each
class (e.g., “Anatomic” or “Non-Anatomic”) as the
final fusion output. Compared to Best Voting ap-
proach, the Ensemble architecture can learn the opti-
mal weighting for combining the representations from
each individual modality.
Feature Fusion (Feature): In this architecture, we
extract much richer representations from each modal-
ity in the form of 256-dimension vector. This can help
capture more detailed information, but may also add
complexity to the learning process. The representa-
tions are concatenated into one 756-dim vector and
passed via 2 fully-connected linear layers that reduce
the dimensions to 96 and finally 2 in a funnel fashion.
This sequential architecture is augmented with ReLu
activation and additional dropout in between. The
additional steps can help the model calculate inter-
mediate fusion features.
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Model Anatomic Procedural Technical Praise Vis. Aid Mean %

Text (Manual)1 81.53.3 69.33.6 74.31.9 95.22.4 78.43.1
Text (ASR)2 70.33.2 65.74.7 66.54.0 76.28.5

† 66.76.8
Audio (Emotion) 67.30.3 61.82.3 67.22.8 67.36.2

† 61.25.5
Video 65.72.1 64.02.8 66.00.5 57.02.2 73.06.4

‡

1Fusion Using Manual Transcription

Best Voting 79.72.0 ↓2.2% 72.02.2 ↑3.8% 74.25.0 ↓0.2% 76.94.3 ↓19.3% 78.41.3 ↓0.0% ↓3.6%

Joint-Ensemble 81.73.3 ↑0.2% 72.3∗0.8 ↑4.3% 74.74.4 ↑0.4% 95.51.1 ↑0.3% 82.2∗1.7 ↑4.9% ↑2.0%

Staged-Ensemble 86.0∗2.6 ↑5.5% 76.5∗2.3 ↑10.3% 78.8∗3.8 ↑6.1% 96.2∗1.9 ↑1.0% 86.1∗1.4 ↑9.8% ↑6.5%

Joint-Feature 81.81.5 ↑0.4% 72.25.6 ↑4.1% 76.2∗0.8 ↑2.5% 95.51.5 ↑0.3% 80.62.5 ↑2.8% ↑2.0%

Staged-Feature 86.0∗1.8 ↑5.5% 76.3∗2.8 ↑10.1% 80.3∗4.9 ↑8.1% 95.91.0 ↑0.7% 85.8∗1.7 ↑9.4% ↑6.8%

2Fusion Using Automated Transcription (ASR) and Speaker Diarization

Best Voting 69.20.3 ↓1.7% 63.81.9 ↓2.8% 68.52.7 ↑1.2% 70.53.4 ↓7.5% 70.53.6 ↓3.4% ↓2.8%

Joint-Ensemble 70.50.9 ↑0.2% 65.81.3 ↑0.3% 68.51.8 ↑1.4% 75.21.8 ↓1.2% 76.5∗3.9 ↑4.9% ↑1.1%

Staged-Ensemble 71.7∗3.3 ↑1.9% 71.5∗1.7 ↑8.9% 69.25.4 ↑2.2% 76.88.2 ↑0.9% 74.03.7 ↑1.5% ↑3.1%

Joint-Feature 68.32.8 ↓2.8% 66.31.5 ↑1.0% 66.51.0 ↓1.7% 75.62.7 ↓0.8% 76.08.5 ↑4.1% ↑0.0%

Staged-Feature 70.52.5 ↑0.2% 66.73.0 ↑1.5% 72.2∗2.6 ↑6.7% 76.27.4 ↑0.0% 77.6∗5.8 ↑6.4% ↑3.0%

Table 3: Feedback classification results based on Manual Transcription - Text (Manual) and Automated
Speech Recognition - Text (ASR). Mean % refers to the average gain of the model taking multi-
modality over the best performing single modality input. The subscripts are the standard deviation
of different runs. ∗ indicates a statistically significant gain compared to the best individual modality
model at p<0.05. Note that for Praise, due to the information contained in particular modalities,
is expected that †Text input only leads to high classification performance while video only leads
to relatively low performance. Similarly for Visual Aid due to reliance on visual pointing, the
‡Video modality is expected to perform particularly well. See Fig. 4 for details.

3.6. Training Strategies of Multi-Modality
Fusion

We explore 3 training strategies as depicted in Fig.
1-D: 1) Individual training of each modality, 2) Joint
training (J) of all modalities, 3) Staged training (S),
which starts with individual training followed by fur-
ther joint training.
Individual Training: Each modality model is
trained independently for the same number of epochs.
Each modality also makes an independent prediction
about the final label. This setup offers a simple no-
fusion baseline. We further use the independently
trained models with the voting fusion model (Best
Voting) to offer the basic fusion baseline.
Joint Training (Joint): The individual modality
models are combined under one fusion architecture
(Ensemble or Feature) and trained jointly for the
whole duration of the training. This approach al-
lows the fusion model to learn how to extract relevant
information from each modality simultaneously and

possibly also learn the differences between modalities
relevant to the task.
Staged Training (Staged): The models for each
modality are first pre-trained independently on the
same task for half of the training time (Stage 1 “Indi-
vidiual”). Then the pre-trained models are combined
under the fusion model (Ensemble or Feature) and
trained further jointly for the remainder of the train-
ing time (Stage 2 “Joint”). The first stage helps each
model extract relevant information from its modality
without interference from other modalities. Extrac-
tion of such information from less predictive modali-
ties can otherwise be suppressed.

3.7. Evaluation Schemes and Setups

We obtain baselines for each individual modality by
fine-tuning models for the same number of epochs
and reporting the top AUC score obtained on the test
set. For all our experiments, we use label-balanced
datasets for each feedback dimension obtained via
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random downsampling of the majority class. We use
an 80%/20% random train/test split and perform
each experiment 3 times with a controlled random
seed and report mean AUC as well as standard de-
viation. Dimension-specific label balancing leads to
variable dataset size for each dimension, specifically:
Anatomic (N=2208), Procedural(N=1634), Techni-
cal(N=1378), Praise (N=524), Visual Aid (N=606).
We further compare the performance of the fusion

approaches to the best-performing individual modal-
ity model using McNemar’s non-parametric statisti-
cal test as suggested in Dietterich (1998) and fur-
ther adapted to the settings involving expensive deep
learning setups by Vanwinckelen and Blockeel (2012).
We use a Python implementation of McNemar’s test
provided in Raschka (2018).

3.8. Data Processing and Model Training

We trim a 10-second video with audio information
when human-annotated feedback appears. This in-
cludes 5 seconds before (to capture context) and 5
seconds after (to capture delivery) the feedback on-
set. We preprocess the video by downsampling the
resolution to 320 × 250 and extracting 16 randomly
uniformly sampled frames. We preprocess the audio
by downsampling it to 16kHz mono. We train all the
fusion models for a total of 20 epochs with the same
initial learning rate (LR) of 5e− 6, Adam optimizer,
and a scheduler that reduces LR when an AUC has
stopped improving for 2 epochs (patience) with a re-
duction factor of 0.5. We use a batch size of 2 with a
gradient accumulation of 10.

4. Results

4.1. Feedback Classification Results

Table 3 summarizes the results of the classification
of feedback components. The top rows report AUCs
for individual modalities. We include 2 versions of
transcribed text from audio. Text(Manual) - costly
manual transcription by human experts, Text(ASR)
- automated transcription from audio using ASR and
Speaker Diarization as described in §3.3. Text modal-
ity itself is highly predictive for each component. In
the subsequent two sections of the table we report
AUCs for multi-modal fusion approaches relying on
high quality, but costly manual transcriptions - “Fu-
sion Using Manual Transcription and same fusion ap-
proaches relying on automated transcription from au-

dio - “Fusion Using Automated Transcriptions (ASR)
and Speaker Diarization”.

In each row we report the AUCs for different fu-
sion approaches. The Best Voting is a majority vote
fusion baseline. The following rows report results for
joint (Joint) and staged (Staged) training approaches
of the same architecture Ensemble Fusion (Ensem-
ble) model. The last two rows report the results of
joint (Joint) and staged (Staged) training for Feature
Fusion (Feature) model. Next to each AUC score for
fusion approaches, we report relative gain or loss with
respect to the highest AUC from individual modali-
ties. We also underscore the highest AUC per each
feedback component across all models.

Varying, but Consistent Gains from Fusion:
The top AUC for automated classification of “Praise”
is high at 76.8, and fusion provides the least gain of
0.9% for this component. This is likely because praise
can be delivered in different visual contexts and hence
video does not provide much more information. The
AUC is also high, at 77.6, for “Visual Aid”. In this
case, the gain from incorporating video is substantial
at 6.4%. This is due to the visually observable point-
ing associated with this feedback component. For
“Anatomic”, “Procedural”, and “Technical” the top
AUCs are 71.7, 71.5, and 72.2 respectively. The best
fusion approach provides a noticeable gain for these
components of between 1.9% and 8.9%.

Staged Training Outperforms Other Ap-
proaches: Looking at the results of staged training
(Staged-Ensemble and Staged-Feature) in comparison
to other fusion approaches, the staging outperforms
them all. We observe a mean gain of 3.0% to 6.8%
across fusion relying on automated and manual tran-
scription respectively. This is compared to smaller
gains of just 2.0% or even no gain for the joint train-
ing with the exact same model architectures (Joint-
Ensemble and Joint-Feature). At the same time, the
simple majority vote fusion (Best Voting) leads to
AUC loss in 4 out of 5 dimensions over the best indi-
vidual modality.

Given relatively high standard deviations we exam-
ine the statistical significance of the observed gains
as described in §3.7. Statistically significant gains
are marked with “∗” in Table 3. For fusion rely-
ing on manual transcriptions, the best-performing fu-
sion architecture offers statistically significant gains
over the best-performing single modality model for all
feedback components: Anatomic (M=4.5, p<0.01),
Procedural (M=7.2, p<0.01), Technical (M=6.0,
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p<0.01), Praise (M=1.0, p<0.05), and Visual Aid
(M=7.7, p<0.01); where M denotes the best mean
absolute AUC gain.
For fusion relying on automated transcription, we

observe statistically significant gains from the best-
performing architecture for 4 out of 5 feedback com-
ponents: Anatomic (M=1.4, p<0.05), Procedural
(M=5.7, p<0.01), Technical (M=5.0, p<0.01), Praise
(M=0.6, p=0.58, n.s.), Visual Aid (M=4.6, p<0.05).

Intuitive Value of Individual Modalities: We
further note intuitive patterns in the predictive value
of individual modalities per feedback components.
For “Praise”, text and audio modalities alone achieve
relatively higher AUCs of 76.2 and 67.3 respectively
compared to video with AUC of 57.0. This is intuitive
as this component captures the feedback delivery and
can contain emotional undertones, but praise can be
delivered in any visual context. On the other hand,
for “Visual Aid” video alone achieves a high AUC of
73.0, while audio alone achieves a much lower AUC of
61.2. This is again intuitive as this component cap-
tures the surgeon using a visual aid in the form of a
cursor or surgical instrument as a pointer (see Fig.
4-A).

Manual v.s. Auto Transcription: Table 3 shows
that the experiments leveraging fusion using man-
ual expert-provided transcriptions offer higher AUCs
ranging from 76.5 to 96.2. This represents a 15.3%
average improvement over fusion relying on fully au-
tomated ASR transcription and speaker diarization.
These results offer a likely upper bound for classifica-
tion performance as well as show the potential of im-
proving the processing of audio. However, obtaining
manual expert transcriptions of live surgical feedback
is costly. While there exist services for medical text
transcription (Princeton-Transcription, 2023), they
are still costly and may not offer the same quality
for specialized surgical domains.

4.2. Additional Analysis

To better understand the value of fusion, we man-
ually inspect several examples of disagreements be-
tween simple majority vote fusion, the true label,
and the prediction from the best-performing fusion
model. In Fig. 4 we show two illustrative examples
of such disagreements. In A) we show an example of
“Visual Aid” component classification, where neither
text nor audio provides the correct label. Looking at

the video, it is clear that the trainer is using a visual
pointer, but pointing can also happen using instru-
ments. In example B) for classification of “Praise”
the feedback text by itself is insufficient to correctly
determine if the feedback is intended to be positive.
The inclusion of delivery aspects from audio is im-
portant in that case.

At scale, we quantified the impact on Precision and
Recall. In the case of fusion relying on manual tran-
scription, for “Visual Aid” the best fusion model im-
proved Precision by 15.5% and Recall by 0.6% com-
pared to the Best Voting (see Appendix A). It also im-
proved Precision by 10.5% and Recall by 9.2% com-
pared to the best single modality. A similar impact
can be observed for “Praise” with improvement in
Precision by 21.6% and Recall by 35.1% compared to
baseline Best Voting and improvements in Precision
by 1.9% and Recall by 0.7% compared to the best
single modality. Similar trends can be seen in fu-
sion relying on automated transcription. For “Visual
Aid” there is an improvement in Precision by 10.0%
and in Recall by 13.2% when using the best fusion
approach compared to Best Voting. Similarly, com-
pared to the best single modality, fusion improves
Precision by 6.7% and Recall by 8.1%. Enhanced
Precision indicates fewer false positives, affirming the
relevance of the identified feedback instances of a par-
ticular type. Improved Recall signifies fewer missed
authentic feedback cases of that type. Improvement
in both Precision and Recall underscores not only an
increase in the accurate detection of specific feedback
types but also a broader and more reliable capture of
feedback components.

5. Discussion

We thoroughly evaluate different multi-modality fu-
sion architectures and training strategies across 3
data splits and 5 surgical feedback classification di-
mensions. The low effectiveness of a simple majority
vote gives us insights into the manner in which the
modalities need to be combined. It seems important
to have a number of trainable parameters in order to
learn how to combine the information across modal-
ities. We gain evidence for this via examination of
disagreements between Best Voting and the staged
fusion setting, which shows that improvements are
based on both precision and recall scores.

Further increase in the number of trainable param-
eters does not translate to improvements. It is likely
that only a limited complexity is needed to relate the
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Figure 4: Examples of video clips where a single modality does not contain enough information to make a
correct classification. A) The verbal feedback itself is not enough to determine whether a trainer
is pointing to anything specific. It is necessary to look at video modality and the use of a pointer
(teal cone) to make a correct determination. Please note that we enlarged the pointer for visual
clarity. B) The text itself is too ambiguous to determine whether the feedback is positive or not.
Additional information from the tone of voice provides the necessary distinction.

modalities effectively. We did not freeze any of the
individual model weights and these models are them-
selves complex.
We introduce staged training to address the issue

of dominance of the text modality over other modal-
ities. We observe that this approach led to the high-
est gain across classifications of all the feedback com-
ponents irrespective of the fusion model complexity.
This shows the importance of considering the train-
ing process itself for fusion, while most of the prior
work focused on model architectures.
We further note that the automated multimodal

classification we introduced in this work is based on
a clinically validated manual system from Wong et al.
(2023). As such, these classification dimensions have
been shown to be generalizable across 6 types of sur-
gical procedures. They have also been shown to
predict significant differences in surgeon experience
level, the surgical task being performed, as well as the
likelihood of behavioral adjustment observed among
trainees (a measure of feedback effectiveness). This
further shows the practical real-world utility of the
automation of this classification system through the
novel deep multimodal fusion approach we proposed.
We note several future directions. First, the quan-

tification of surgical feedback is an important first
step towards generating the optimal feedback auto-
matically using retrieval or generative models in the
future (Laca et al., 2022). Second, in this study,
we experimented with both manual and automated
transcription of feedback from audio. We show that
manual transcription, which requires substantial ef-
fort, offers better performance. Further experiments
should try to improve the performance of automated

transcription (Moore, 2015). Finally, our individual
models are all transformer architectures capable of
unsupervised pre-training, which could improve the
overall performance even further.

6. Conclusion

We present the first work to explore an automated
classification of components of real-world informal
live surgical feedback using a clinically validated clas-
sification scheme. We show that it is feasible to
classify components of such feedback with promising
AUCs varying from 71.5 up to 77.6. Secondly, we
show that this feedback is indeed inherently multi-
modal and fusion can meaningfully improve AUC by
as much as 8.9%. Third, we show that the multi-
modal fusion through staged training is more effec-
tive than the fusion model architecture itself. This
work provides important insights into the importance
of training strategy for effective multi-modal fusion.
We open up opportunities for quantification of sur-
gical feedback at scale from text, audio, and video
recordings, which can lead to improvements in surgi-
cal training and outcomes.
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Appendix A. Additional Classification
Metrics

In Table 4 we present additional F1-binary, Precision,
and Recall metrics from Visual Aid feedback com-
ponent classification. Tables 5, 6, 7, and 8 contain
additional metrics for Praise, Anatomic, Procedural,
and Technical components respectively.

Model F1-binary Precision Recall

Text (Manual) 78.05 78.94 77.59
Text (ASR) 65.50 67.89 64.48
Audio (Emotion) 60.83 62.21 60.11
Video 73.19 72.64 73.77

Fusion using Manual Transcription

Best Voting 79.58 76.56 84.16

Joint-Ensemble 81.90 83.55 80.33
Staged-Ensemble 85.84 87.27 84.70

Joint-Feature 79.81 83.87 76.50
Staged-Feature 86.10 84.45 97.98

Fusion using ASR Transcription

Best Voting 70.47 70.48 70.49

Joint-Ensemble 76.42 76.93 75.96
Staged-Ensemble 72.86 77.34 69.40

Joint-Feature 73.20 81.16 67.21
Staged-Feature 78.11 77.51 79.78

Table 4: Additional metrics for Visual Aid compo-
nent - F1 binary, Precision and Recall.
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Model F1-binary Precision Recall

Text (Manual) 94.95 95.16 94.90
Text (ASR) 73.98 79.11 70.10
Audio (Emotion) 64.31 66.40 62.41
Video 54.35 59.88 52.20

Fusion using Manual Transcription

Best Voting 74.87 79.72 70.70

Joint-Ensemble 94.56 95.66 93.62
Staged-Ensemble 96.18 96.94 95.54

Joint-Feature 94.90 95.68 94.26
Staged-Feature 96.16 96.89 95.54

Fusion using ASR Transcription

Best Voting 71.09 69.27 73.24

Joint-Ensemble 75.25 73.82 78.41
Staged-Ensemble 75.42 79.29 72.04

Joint-Feature 77.49 71.51 84.68
Staged-Feature 74.27 80.01 69.45

Table 5: Additional metrics for Praise component -
F1 binary, Precision and Recall.

Model F1-binary Precision Recall

Text (Manual) 80.94 84.03 78.33
Text (ASR) 67.88 73.00 63.67
Audio (Emotion) 68.88 65.95 73.00
Video 66.19 65.61 67.00

Fusion using Manual Transcription

Best Voting 79.75 79.51 80.00

Joint-Ensemble 81.42 82.62 80.33
Staged-Ensemble 85.64 87.49 84.33

Joint-Feature 81.60 82.60 80.67
Staged-Feature 85.68 87.53 84.00

Fusion using ASR Transcription

Best Voting 69.92 68.25 71.67

Joint-Ensemble 70.03 71.32 69.00
Staged-Ensemble 71.65 71.72 71.63

Joint-Feature 67.58 69.98 66.00
Staged-Feature 70.24 71.54 69.33

Table 6: Additional metrics for Anatomic compo-
nent - F1 binary, Precision and Recall.

Model F1-binary Precision Recall

Text (Manual) 70.39 68.02 73.33
Text (ASR) 65.71 65.76 65.67
Audio (Emotion) 64.89 60.29 70.67
Video 63.88 64.10 63.67

Fusion using Manual Transcription

Best Voting 72.04 71.83 72.33

Joint-Ensemble 72.80 71.90 74.33
Staged-Ensemble 77.16 75.19 79.67

Joint-Feature 73.43 70.06 77.33
Staged-Feature 76.75 75.66 78.33

Fusion using ASR Transcription

Best Voting 64.56 63.23 66.00

Joint-Ensemble 64.69 67.29 63.00
Staged-Ensemble 72.89 69.59 76.67

Joint-Feature 64.77 68.39 62.67
Staged-Feature 67.39 66.00 69.33

Table 7: Additional metrics for Procedural compo-
nent - F1 binary, Precision and Recall.

Model F1-binary Precision Recall

Text (Manual) 74.48 74.26 75.00
Text (ASR) 63.98 66.86 65.00
Audio (Emotion) 68.11 67.97 69.00
Video 64.99 67.13 63.67

Fusion using Manual Transcription

Best Voting 73.84 75.15 72.67

Joint-Ensemble 74.85 74.18 75.67
Staged-Ensemble 80.06 76.18 84.67

Joint-Feature 74.28 80.88 69.00
Staged-Feature 80.67 79.77 81.67

Fusion using ASR Transcription

Best Voting 64.64 71.01 63.00

Joint-Ensemble 65.48 69.70 67.00
Staged-Ensemble 70.34 69.01 70.00

Joint-Feature 65.15 66.52 67.67
Staged-Feature 68.50 75.20 68.00

Table 8: Additional metrics for Technical compo-
nent - F1 binary, Precision and Recall.
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