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Abstract
Cross-modal MRI segmentation is of great value
for computer-aided medical diagnosis, enabling
flexible data acquisition and model generaliza-
tion. However, most existing methods have dif-
ficulty in handling local variations in domain
shift and typically require a significant amount
of data for training, which hinders their us-
age in practice. To address these problems,
we propose a novel adaptive domain general-
ization framework, which integrates a learning-
free cross-domain representation based on im-
age gradient maps and a class prior-informed
test-time adaptation strategy for mitigating lo-
cal domain shift. We validate our approach on
two multi-modal MRI datasets with six cross-
modal segmentation tasks. Across all the task
settings, our method consistently outperforms
competing approaches and shows a stable per-
formance even with limited training data. Our
Codes are available now at https://github.

com/cuttle-fish-my/GM-Guided-DG.

Keywords: MRI Segmentation, Domain Gen-
eralization, Test Time Adaptation

1. Introduction

Semantic segmentation of Magnetic Resonance Imag-
ing (MRI) sequences, a core task in computer-aided
medical diagnoses, has achieved remarkable progress
due to the powerful representation learning based
on deep neural networks (Ronneberger et al., 2015;
Isensee et al., 2021). Conventional approaches typ-
ically assume the same data distribution and share
the same modality setting in both training and test
stages (Zhou et al., 2019). Despite their promising

Figure 1: (a) An illustration of original images
and Gradient-Map Representation (GMR)
which can effectively mitigate the domain
gap; (b) Comparison of segmentation out-
puts (GINIPA vs. our method) when local
variations exist for different modalities.

results, these methods either employ multi-modal in-
puts or learn a separate model for each modality,
which induces high time or financial costs. To al-
leviate this, one promising strategy involves train-
ing a model on one specific modality and enabling it
to adapt to other modalities during the test phase,
which is referred to as Single Domain Generalization
(SDG) (Qiao et al., 2020). However, it is challenging
to apply the common SDG strategy to MRI segmen-
tation due to the large domain gaps between different
modalities and often limited training data in med-
ical applications. There have been a few attempts
to tackle the problem of SDG for MRI image seg-
mentation, which mostly focus on learning a domain-
invariant feature space by designing specific learning
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strategies (Liu et al., 2020; Xu et al., 2022) or do-
main randomization techniques (Zhang et al., 2020;
Ouyang et al., 2022; Liu et al., 2021).
Nonetheless, the efficacy of these learned feature

spaces is highly contingent on the amount of training
data and their performance tends to degrade rapidly
with fewer data (see Figure 4 for details). Moreover,
most of these methods focus on generalization with
image-level domain variation and may struggle with
local variations in different domains, such as the dif-
ferent responses of lesion tissues across modalities.
More recent work (Liu et al., 2022) introduces Test-
Time Adaptation (TTA) techniques coupled with a
shape dictionary representation. However, such a
strategy requires spatial alignment of target regions,
and hence is limited in handling objects with di-
verse shapes and locations (e.g., brain tumors (Menze
et al., 2014)).
In this work, we aim to address the aforemen-

tioned limitations by introducing a novel gradient-
map-guided adaptive domain generalization frame-
work for MRI segmentation. In particular, we adopt
a learning-free domain-invariant input representation
based on the image gradient map, which is capable of
mitigating the global image style shift across different
modalities. Based on that, we then develop a new
test-time adaption strategy that integrates seman-
tic class prior with pseudo-label-based self-training.
This allows us to cope with local appearance varia-
tions and adapt to image-specific pixel-wise class dis-
tributions.
Specifically, we adopt a two-phase domain general-

ization procedure for cross-modal MRI segmentation.
During the training phase, our method encodes in-
put images into their gradient maps (see Figure 1 (a)
for an illustration), and trains a semantic segmenta-
tion network based on the training data of the source
modality. During the test phase, we further fine-tune
the segmentation model on each input image from
the target modality in an iterative manner using the
pseudo-labels of pixels generated with a dynamically-
estimated pixel-wise class prior.
We evaluate our method on two multi-modality

MRI datasets, including MS-CMRSeg2019 (Zhuang,
2018) and BraTS2018 (Menze et al., 2014), under
the standard and limited training data settings. The
results show the superiority of our method in com-
parison with recent domain generalization and TTA
methods. We summarize our contributions as follows:

• We propose an adaptive single domain gener-
alization method for cross-modal semantic seg-

mentation of MRI images to better cope with
both global and instance-specific domain gaps.

• We introduce an efficient gradient-based domain-
invariant representation in MRI image segmenta-
tion and develop an effective TTA strategy based
on class prior-aware self-training.

• Our method achieves state-of-the-art perfor-
mance on cross-modal cardiac segmentation and
brain tumor segmentation tasks.

2. Related Work

The cross-modality MRI segmentation problem has
received significant attention in the literature, and a
variety of approaches have been developed under dif-
ferent problem settings. A straightforward solution is
to adapt a source-domain-trained model to the target
domain during training, which is referred to as Un-
supervised Domain Adaptation (UDA) (Chen et al.,
2020b; Vesal et al., 2021; Yang et al., 2019). However,
the requirement for target data during training poses
a practical challenge, as acquiring target data can be
arduous or infeasible in many real-world scenarios.
This limitation has led to the widespread use and
growing importance of Domain Generalization (DG)
and Test-Time Adaptation (TTA) methods, which
only require access to source domain data during the
training stage. In the subsequent sections, we offer
an overview of the relevant work within the domains
of DG and TTA.

Domain Generalization The goal of Domain
Generalization is to learn a model capable of gen-
eralizing to any other domain during the test. While
some techniques rely on training data from multi-
ple domains (Pereira et al., 2016; Dolz et al., 2018),
we focus on a more challenging setting where only
one domain is available during training. This is also
called Single Domain Generalization (SDG).

Existing methods address the problem by encour-
aging models to learn a domain-invariant feature
space implicitly. For instance, domain randomiza-
tion methods like random weighted network (Ouyang
et al., 2022) and data augmentations (Zhang et al.,
2020; Otálora et al., 2019; Chen et al., 2020a) simu-
late potential target domain information, promoting
the development of domain-robust models. In addi-
tion to these techniques, special learning strategies
like meta-learning (Oliveira et al., 2022; Liu et al.,
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2020), disentangle learning (Liu et al., 2021) and ad-
versarial learning (Xu et al., 2022) are used to reg-
ularize the model for domain invariance. However,
most of these methods focus on generalization on
global-level domain shifts, such as different styles,
and struggle with local appearance variations across
different domains. Besides, the efficacy of these
learned feature spaces could also be highly contin-
gent on the size of the training dataset. By contrast,
we utilize a learning-free gradient-map-based domain-
invariant representation to handle the global style
variation. During test time, we introduce a pseudo-
label-based self-training strategy to mitigate the local
domain shifts that can vary inconsistently across dif-
ferent modalities.

Test Time Adaptation The objective of Test-
Time Adaptation (TTA) is to harness online test data
to adapt the model during the testing phase. Sev-
eral techniques have been explored in this field. Wang
et al. (2020) introduce a novel method that employs
entropy minimization exclusively on BathNorm (BN)
layers to force a confident prediction. He et al. (2021)
utilize Auto Encoder (AE) as a domain distance in-
dicator and update the model via the reconstruction
loss. Wang et al. (2023b) introduces prototype-based
methods into the realm of TTA and harness the fea-
ture distance to different prototype as a measure of
classification probability. Tang et al. (2023) proposed
a BP-free TTA method using Hebbian layers that in-
spired from Hebbian learning (Hebb, 2005). Never-
theless, TTA methods often rely heavily on the base
model performance, and some require special net-
work designs such as AE and Hebbian layers. Re-
cently, Liu et al. (2022) introduced a novel approach
that combines DG and TTA by incorporating dictio-
nary learning during training and constraining the
consistency of the dictionary coefficient between two
different noise-disturbed images in test time. How-
ever, the strong assumption about shape-invariant
and location-invariant segmentation targets across
source and target domains limits the method when
handling objects with diverse shapes and locations.

In contrast, our proposed pseudo-label-based TTA
strategy utilizes class-prior to prioritize pseudo-label
generation of the foreground classes. This approach
empowers our models to produce high-quality seg-
mentations, even in cases where the initial predic-
tions are far from ideal. Besides, our method avoids
assumptions about the shape and location of the seg-

mentation target, which demonstrates the flexibility
and applicability of our proposed method.

3. Methodology

In this section, we introduce our adaptive do-
main generalization framework for MRI segmen-
tation, which proposes two novel components to
cross-modality segmentation network learning: 1) a
modality-robust input representation based on gra-
dient maps and 2) a class prior-informed test-time
adaptation strategy. An overview of our framework
is shown in Figure 2. Below, we first introduce the
problem setting in Section 3.1, then describe the de-
sign of our gradient-map-based semantic segmenta-
tion network and its training on the source domain
in Section 3.2. This is followed by our prior-informed
test time adaptation in Section 3.3.

3.1. Problem Setting

Consider a training dataset D = {xn,yn}Nn=1 with
{xn,yn} ∼ P s

XY , where xn ∈ RH×W is a 2D MRI
image from a source modality and yn ∈ [1, C]H×W is
the corresponding segmentation label. HereH,W are
the spatial dimensions and C is the number of seman-
tic classes. The goal of cross-modality semantic seg-
mentation is to learn a segmentation modelMθ from
D that can be generalized to images from any other
modalities during the test. In this paper, we aim to
design an adaptive domain generalization framework,
which utilizes both the source-modality data and the
online unlabeled test data to adapt the network to fit
the target modality, where the test image x ∼ P t

XY

with P t
X ̸= P s

X .

3.2. Modality-robust Segmentation Network

We adopt a U-Net (Ronneberger et al., 2015) as our
segmentation backbone, and first build a modality-
robust model using the source-modality datasetD. In
particular, as detailed below, we introduce an image
gradient map-based representation as the network in-
put and a heavy data augmentation strategy in model
training, both of which mitigate the modality bias in
the learned segmentation network.

Gradient-Map Representation We first intro-
duce our Gradient-Map Representation (GMR) as a
modality-invariant input representation, which lever-
ages the image prior to achieve modality generaliza-
tion with high data efficiency. Our design is inspired
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Figure 2: Overview of our method. Subgraph (a) and (b) refer to the training and test stage pipeline
respectively. For the training state, we employ the gradient map G(x) as a domain-invariant
representation to mitigate image-level domain shift. For test stage, we utilize class prior p to
adapt posterior P (y|x) for N times, alleviating local discrepancy.

by a key observation that while different modalities
may have unique global styles, the most pronounced
variations in intensity occur at relatively consistent
locations, typically at the boundaries between adja-
cent tissues. This observation motivates us to use
the gradient map, which captures these relative inten-
sity changes (structural information), as a modality-
robust representation.
Formally, the gradient map of an input image x,

denoted as G(x), is computed as follows:

G(x) = HE

(√
corr (x,K)

2
+ corr (x,KT )

2

)
, (1)

where HE(·) refers to the histogram equalization,
corr(·, ·) represents the correlation operation and
K = [−1 0 1]. We visualize GMR examples in Fig-
ure 1 (a), which shows that the discrepancy between
different modalities has been effectively reduced and
the structural information is well preserved.

Model Training We employ the Heavy Augmen-
tation (Vesal et al., 2021) technique in the training
process. This method involves augmenting both the
source image x and its corresponding annotation y
using a transformation T ∈ T sampled from a distri-

bution P (T ). The optimization problem of the train-
ing process can be described as follows:

min
θ

ET

[
Lce

(
Mθ

(
T (X) (G (x))

)
, T (Y )(y)

)]
(2)

where Lce(·, ·) is the Cross-Entropy (CE) loss and
T (X)/(Y )(·) refer to the data augmentation function
applied to input data x and annotation y.

3.3. Prior-Informed Test-Time Adaptation

While the GRM representation reduces the modality
gap in terms of global intensity style shift, it is un-
able to eliminate modality-specific local appearance
variations. For instance, Figure 1 (b) displays a brain
MRI with arrows indicating the local intensity varia-
tion that is inconsistent across four modalities. Such
modality-specific variation hinders the model from
generalizing across different modalities.

To tackle this, we propose a test-time adaptation
strategy to finetune the segmentation network with
unlabeled test data in an online fashion. In particu-
lar, we develop a self-training method that gradually
expands the regions of certain classes, which typi-
cally include the regions with modality-specific vari-
ation (e.g., lesion areas), via an iterative self-labeling
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scheme. We refer to this process as Prior-Informed
Test Time Adaptation (PITTA).
Specifically, given a test image x, we start from

the model trained on the source modality as in Sec-
tion 3.2 and perform N adaptation iterations. For
each iteration, we first merge the BatchNorm (BN)
statistics from the source and target domain to stabi-
lize prediction (Wang et al., 2023a), and then employ
consistency loss and Masked Cross Entropy (MCE)
loss to dynamically adjust the model. Below we will
introduce the details of each step in PITTA.

Test Time Augmentation Instead of direct pre-
diction, we leverage Test Time Augmentation (Zeng
et al., 2017; Ronneberger et al., 2015; Beier et al.,
2017) to improve the robustness of model prediction.
In detail, for the n-th iteration, we utilize a test-time
augmentation function AT (·)1 generate two logit pre-
dictions from the original input and its augmented
version, respectively. We denote those two outputs
as S(n) and S′(n), which are computed as follows:

S(n) =Mθ(G(x)) (3)

S′(n) = A−1
T (Mθ(AT (G(x)))) (4)

where A−1
T (·) refers to the inverse augmentation func-

tion, which serves to counteract the initial spatial
augmentations. We take the average of the two logit
outputs to generate the pixel-wise class probabilities
as follows,

P (n)(y|x) = softmax
((

S(n) + S′(n)
)
/2
)
. (5)

Prior-Informed Self-training We now introduce
our self-training strategy to finetune the model on the
test data. In each iteration, our training loss consists
of two terms: one is a consistency loss Lcons and the
other is a pseudo-label-based MSE loss Lmce. We
fine-tune the segmentation network with the follow-
ing total loss:

Ltotal = Lmce + λLcons (6)

where λ is the weighting coefficient. Below we de-
scribe the details of two losses in the n-th iteration.
1) Consistency Loss. Given the two outputs

S(n),S′(n), we define the consistency loss as below:

Lcons = |S(n) − S′(n)|. (7)

1. Note that our test-time augmentation AT (·) differs from
the Heavy Augmentation in model training (Section 3.2).
to augment the input MRI, and

2) Pseudo label-based Loss. We design an adap-
tive pseudo-label generation scheme that utilizes the
class prior information to better cope with the local
variations across modalities and the distinctive class
distribution of each input. Specifically, we first es-
timate a per-image class distribution p(n) from the
class distribution of the training set and the model
prediction on the current test input. Based on this
estimation, we then perform a re-weighting on predic-
tion probability to increase the proportion of pseudo
labels from smaller classes with less data.

Such a scheme improves the model adaptation from
two aspects: First, we observe that cross-modal local
variations are typically associated with foreground
classes with smaller regions. Our re-weighting en-
ables the model fine-tuning to focus on those classes
by generating more training pixels with pseudo la-
bels from them. Second, by gradually shifting from
the training class prior to (estimated) per-image class
distribution, our model is able to adapt to each test
image by properly re-balancing the probability scores
of all the classes.

Formally, we initialize p as the empirical class dis-
tribution estimated from the training set in the first
iteration (i.e., n = 1). Denote the number of classes
as C, and at the n-th iteration, we compute a re-
weighting probability vector q(n) from the estimated
per-image class distribution p(n) as follows:

q(n) = α
1

C
1+ (1− α)p(n) (8)

where α is the coefficient for smoothing and 1 is a full-
one vector of length C. We then generate our pseudo
labels for the input x using a re-weighted probability
output as below:

ŷ
(n)
ij = argmax

(
P (n)(yij |x)/q(n)

)
(9)

where ij is the pixel index and / denotes element-wise
division of two vectors.

Given the generated pseudo labels ŷ(n), we define
our pseudo-label-based loss using a masked version of
the Cross-Entropy (MCE). This choice is motivated
by the fact that cross-modal local variations typically
fall within a subset of classes, and the classes that are
already well-segmented provide little loss feedback.
Specifically, denote the subset as Clv and the corre-
sponding pixel mask as M, we introduce our MCE
loss term as follows,

Lmce = Lce

(
M⊙ P (n)(y|x), ŷ(n)

)
(10)
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where Mi,j =
⋃

c∈Clv
1
(
ŷ
(n)
i,j = c

)
, 1(·) is the indica-

tor function and ⊙ is the element-wise multiplication.
After the model update, we compute the class fre-

quency from the model output ŷ(n) on the test image
and update the per-image class distribution p based
on the Exponential Moving Average (EMA) as below:

p(n+1) = αp(n) + (1− α)#
{
ŷ(n)

}
(11)

where α is the weight coefficient and #{·} indicates
the function computing the class frequency from the
pseudo labels. After the N -th iteration, the model
outputs the final prediction ŷ as follows:

ŷij = argmax
(
P (N)(yij |x)/q(N)

)
(12)

Note that we use re-weighted probability scores in
order to take into account per-image class imbalance.
The pseudo-code of our Prior-Informed Adaptation
process is shown in Appendix A Algorithm 1.

4. Experiments

We evaluate our method on two public cross-modality
MRI datasets, MS-CMRSeg2019 (Zhuang, 2018; Qiu
et al., 2023) and BraTS2018 (Menze et al., 2014;
Lloyd et al., 2017; Bakas et al., 2018, 2017) with var-
ious cross-modal segmentation tasks. Below, we first
introduce the dataset information in Section 4.1 and
experiment setup in Section 4.2. Then we present
our experimental results in Section 4.3 and ablation
study in Section 4.4.

4.1. Datasets

The MS-CMRSeg2019 Dataset (Zhuang, 2018;
Qiu et al., 2023) features cardiac MRIs from 35 pa-
tients across three modalities: balanced Steady-State
Free Precession (bSSFP), Late Gadolinium Enhance-
ment (LGE), and T2-weighted MRI. Each patient has
multiple slices (typically 8-12 for bSSFP, 10-18 for
LGE, and 3-7 for T2). The patients have an aver-
age age of 56.2± 7.92 years and an average weight of
74.4±5.65 kg (Zhuang et al., 2022). The dataset tar-
gets the segmentation of three essential cardiac struc-
tures: Myocardium (Myo), Left Ventricle (LV), and
Right Ventricle (RV). Given that bSSFP offers clearer
visibility for these structures and is preferred for clini-
cal annotations, we designate it as the source domain,
and treat LGE and T2 as the target domains (Zhuang
et al., 2022).

The BraTS2018 Dataset (Menze et al., 2014;
Lloyd et al., 2017; Bakas et al., 2018, 2017) features
brain MRI scans of 285 patients, captured across
four modalities: T1, T2, post-contrast T1-weighted
(T1ce), and T2 Fluid Attenuated Inversion Recovery
(FLAIR). The dataset includes annotations across
four categories, but we follow previous work (Xie
et al., 2022; Zou et al., 2020; Han et al., 2021), to fo-
cus on the domain generalization of the Whole Tumor
(WT) region. Given that the T2 and FLAIR modal-
ities provide clearer visibility of the WT region, we
select them as our source domains, and experiment
with the domain generalization settings from T2 to
T1 and T1ce, as well as from FLAIR to T1 and T1ce.

4.2. Experiment Setup

Baselines We compare our methods with a diverse
set of existing techniques to establish a comprehen-
sive performance benchmark. These include single-
domain generalization approaches, test-time adap-
tation techniques, unsupervised domain adaptation
methods, and several other baseline models. Be-
low, we outline the specific methods used for com-
parison: (a) SrcOnly, a baseline method that trains
models on the source domain without any DG tech-
niques. (b) SAM++ (Kirillov et al., 2023), a
zero-shot large-scale segmentation model. We use
bounding box prompts generated from the predic-
tion of our model. For the myocardium class, we
also incorporate a negative point at its geometrical
center. (c) MinEnt (Vu et al., 2019), an Unsu-
pervised Domain Adaptation (UDA) technique that
aims to minimize the entropy of target predictions
during the training phase. (d) HA (Vesal et al.,
2021), A DG approach that leverages a variety of
pre-defined transformations to augment the training
data. (e) GINIPA (Ouyang et al., 2022), a DG
method that uses a random weighted network and
random spatial interpolation to stylize the image. (f)
Tent (Wang et al., 2020), a TTA method that
employs entropy minimization during the test stage.
(g) HA (Vesal et al., 2021)+Tent (Wang et al.,
2020), a DG+TTA baseline that integrates HA and
Tent for training and test stage.

Evaluation Following the literature (Ouyang
et al., 2022; Vesal et al., 2021, 2019), we employ the
Volumetric Dice Score as the evaluation metric. we
conducted all experiments three times and report
the results with mean and standard derivation.
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Table 1: Quantitative comparisons in terms of Volumetric Dice scores on MS-CMRSeg2019 dataset.

Setting bSSFP→T2

Method Category Myo LV RV Average

SrcOnly - 0.0712± 0.0386 0.0687± 0.0490 0.0068± 0.0093 0.0489± 0.0302

SAM++ - 0.8364± 0.0004 0.8370± 0.0014 0.7619± 0.0060 0.8118± 0.0017

MinEnt - 0.0482± 0.0067 0.0513± 0.0051 0.0153± 0.0108 0.0382± 0.0067

HA DG 0.6600± 0.0064 0.7576± 0.0145 0.6295± 0.0256 0.6824± 0.0126

GINIPA DG 0.7862± 0.0272 0.8435± 0.0208 0.7676± 0.0122 0.7991± 0.0134

Tent TTA 0.1952± 0.0963 0.3426± 0.1302 0.1982± 0.0903 0.2453± 0.0806

HA&Tent DG&TTA 0.6698± 0.0296 0.7568± 0.0229 0.6838± 0.0305 0.7035± 0.0191

Ours DG&TTA 0.8516± 0.0031 0.8934± 0.0040 0.8166± 0.0063 0.8539± 0.0044

Setting bSSFP→LGE

Method Category Myo LV RV Average

SrcOnly - 0.5625± 0.0316 0.7046± 0.0392 0.6329± 0.0323 0.6333± 0.0341

SAM++ - 0.6997± 0.0089 0.8773± 0.0014 0.8158± 0.0084 0.7976± 0.0031

MinEnt - 0.6021± 0.0075 0.7486± 0.0051 0.6677± 0.0049 0.6728± 0.0014

HA DG 0.7389± 0.0065 0.8880± 0.0016 0.8509± 0.0028 0.8259± 0.0023

GINIPA DG 0.7557± 0.0114 0.9021± 0.0022 0.8437± 0.0139 0.8338± 0.0074

Tent TTA 0.5739± 0.0359 0.7658± 0.0348 0.6260± 0.0355 0.6552± 0.0351

HA&Tent DG&TTA 0.7188± 0.0133 0.8765± 0.0050 0.7935± 0.0078 0.7963± 0.0016

Ours DG&TTA 0.7964± 0.0020 0.9091± 0.0031 0.8560± 0.0091 0.8538± 0.0043

Implementation Details We employ U-Net ar-
chitecture (Ronneberger et al., 2015) as the segmen-
tation model. During the training phase, the batch
size is 24, and the learning rate is 0.0001. All models
undergo training for 10000 iterations. In the train-
ing stage, we utilize an online imaging library (im-
gAug2) to implement Heavy Augmentation (Vesal
et al., 2021). In the test stage, we adopt horizon-
tal flipping as the Test Time Augmentation func-
tion. The parameter ρ remains constant at 0.4 for
all experiments, while λ is set to 1. Additionally,
α is configured as 0.9 for MS-CMRSeg2019 and 0.5
for BraTS2018. The adaptation learning rate is set
at 0.01, and each image undergoes two adaptation
iterations. Moreover, Clv used for MCE loss is set
to be {Myo} and {WT} for MS-CMRSeg2019 and
BraTS2018 respectively. We implemented the code
framework via PyTorch on a single NVIDIA A40
(48GB). More implementation details are described
in Appendix C.

2. https://github.com/aleju/imgaug

4.3. Results

MS-CMRSeg2019 Results As demonstrated in
Table 1, our approach consistently surpasses previous
methods across all classes and settings. Its perfor-
mance is particularly noteworthy in the T2 target do-
main, where the domain shift from the source domain
bSSFP is significant, as visualized in Figure 1 (a).
Specifically, our method improves the baseline aver-
age class Dice score from a mere 4.9% to an impres-
sive 85%. Furthermore, it outperforms the previous
state-of-the-art (SOTA) method, GINIPA (Ouyang
et al., 2022), by an average of 5.4% in Dice score.

BraTS2018 Results Table 2 showcases the quan-
titative performance comparison on the BraTS2018
dataset, where our method achieves the best perfor-
mance for all settings. Interestingly, we observe that
most previous methods fall short on this dataset. One
possible reason for this could be the pronounced lo-
cal variations among different modalities, as shown
in Figure 1 (b). These local variations seem to
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Table 2: Quantitative comparisons in terms of Dice scores on BraTS2018 dataset.

Setting T2→T1 T1→T1ce Flair→T1 Flair→T1ce

SrcOnly 0.0805± 0.0032 0.1528± 0.0134 0.0616± 0.0026 0.3423± 0.0061

SAM++ 0.6475± 0.0024 0.6224± 0.0188 0.4048± 0.0113 0.5492± 0.0079

MinEnt 0.0657± 0.0058 0.1157± 0.0156 0.0755± 0.0022 0.3647± 0.0102

HA 0.0778± 0.0017 0.1724± 0.0244 0.0699± 0.0034 0.3630± 0.0027

GINIPA 0.2302± 0.0107 0.2840± 0.0093 0.1865± 0.0118 0.3607± 0.0068

Tent 0.0327± 0.0034 0.1117± 0.0075 0.0463± 0.0045 0.2790± 0.0167

HA&Tent 0.0585± 0.0078 0.1371± 0.0183 0.1012± 0.0159 0.3688± 0.0143

Ours 0.6793± 0.0028 0.6876± 0.0035 0.4260± 0.0074 0.5958± 0.0038

present difficulties for previous techniques that ex-
clusively depend on image-level augmentations, such
as HA(Vesal et al., 2021) and GINIPA(Ouyang et al.,
2022).

Result Visualization As evidenced by Figure 3,
our method generates segmentation masks that
closely resemble the ground truth. Notably, it ac-
curately segments regions impacted by local appear-
ance discrepancies, as indicated by the arrows in the
graph. This underscores the effectiveness of our pro-
posed PITTA component in mitigating the effects of
local domain shifts. Additional visual results are pro-
vided in Appendix E, Figure 5.

Table 3: Ablation study on our model components.
Performed on MS-CMRSeg2019 Dataset.

HA GMR PITTA bSSFP→T2 bSSFP→LGE

✓ ✗ ✗ 0.6824± 0.0126 0.8259± 0.0023

✓ ✓ ✗ 0.8430± 0.0066 0.8383± 0.0044

✓ ✗ ✓ 0.7393± 0.0257 0.8400± 0.0012

✓ ✓ ✓ 0.8539± 0.0044 0.8538± 0.0043

4.4. Ablation Study

We assess the effectiveness of our proposed architec-
ture by conducting ablation studies on its two main
components: GMR and PITTA. Table 3 presents a
performance comparison of our method’s variants on
the MS-CMRSeg2019 dataset under two different set-
tings. In the 2nd row, incorporating the GMR com-
ponent improves the baseline method (HA) by in-
creasing the average volumetric Dice score by 16%

and 1.2% on the two target datasets, respectively.
Similarly, in the 3rd row, adding the PITTA compo-
nent boosts the baseline performance, leading to an
average Dice score improvement of 5.7% and 1.4%.
The final row shows that our complete method, which
integrates both components, achieves the best per-
formance, thereby confirming the effectiveness of our
design choices.

Data Efficiency Given the challenges of obtain-
ing sufficient data and annotations, data-efficiency
becomes crucial in medical settings. To evaluate this,
we examine the stability of our method under varying
training dataset sizes, with the results shown in Fig-
ure 4. Specifically, in the MS-CMRSeg2019 dataset,
we adjust the number of training patients from the
original 35 down to subsets of 15, 20, 25, and 30 and
compare our performance to the existing state-of-the-
art, GINIPA. Our findings indicate that our model is
less sensitive to reductions in dataset size. For in-
stance, when the dataset is trimmed from 35 to 15
patients, the performance of our model declines by
only 0.44%, compared to a 2.89% drop for GINIPA.
This underscores the robustness of our method when
data is limited.

For other analysis experiments, please refer to Ap-
pendix D for details.

5. Conclusion

In this paper, we propose a novel adaptive domain
generalization framework to address the cross-modal
MRI segmentation problem. Our method integrates
a learning-free cross-domain representation based on
image gradient maps for coping with global domain
shift and a class prior-informed test-time adaptation
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Figure 3: Comparison of cross-modality segmentation results between baselines and our method under four
task settings. Our method achieves superior outcomes in these challenging cases.

Figure 4: Comparisons on data efficiency of our
model with GINIPA under bSSFP→ LGE
setting on MS-CMRSeg2019 dataset.

strategy for mitigating local domain shift. We ex-
tensively evaluate our method on two multi-modality
MRI datasets with six cross-modal segmentation
tasks. The results show the superior performance and
efficiency of our method in comparison with previous
domain generalization and TTA methods.
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versarial entropy minimization for domain adapta-
tion in semantic segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 2517–2526, 2019.

Dequan Wang, Evan Shelhamer, Shaoteng Liu,
Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimiza-
tion. arXiv preprint arXiv:2006.10726, 2020.

Wei Wang, Zhun Zhong, Weijie Wang, Xi Chen,
Charles Ling, Boyu Wang, and Nicu Sebe. Dynam-
ically instance-guided adaptation: A backward-
free approach for test-time domain adaptive se-
mantic segmentation. In Proceedings of the

302



Gradient-Map-Guided Adaptive Domain Generalization for Cross Modality MRI Segmentation

IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 24090–24099,
June 2023a.

Wei Wang, Zhun Zhong, Weijie Wang, Xi Chen,
Charles Ling, Boyu Wang, and Nicu Sebe. Dynam-
ically instance-guided adaptation: A backward-
free approach for test-time domain adaptive se-
mantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24090–24099, 2023b.

Qingsong Xie, Yuexiang Li, Nanjun He, Munan Ning,
Kai Ma, Guoxing Wang, Yong Lian, and Yefeng
Zheng. Unsupervised domain adaptation for med-
ical image segmentation by disentanglement learn-
ing and self-training. IEEE Transactions on Med-
ical Imaging, 2022.

Yanwu Xu, Shaoan Xie, Maxwell Reynolds, Matthew
Ragoza, Mingming Gong, and Kayhan Batmanghe-
lich. Adversarial consistency for single domain
generalization in medical image segmentation. In
International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages
671–681. Springer, 2022.

Junlin Yang, Nicha C Dvornek, Fan Zhang, Julius
Chapiro, MingDe Lin, and James S Duncan. Unsu-
pervised domain adaptation via disentangled repre-
sentations: Application to cross-modality liver seg-
mentation. In Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2019: 22nd
International Conference, Shenzhen, China, Octo-
ber 13–17, 2019, Proceedings, Part II 22, pages
255–263. Springer, 2019.

Tao Zeng, Bian Wu, and Shuiwang Ji. Deepem3d:
approaching human-level performance on 3d
anisotropic em image segmentation. Bioinformat-
ics, 33(16):2555–2562, 2017.

Ling Zhang, Xiaosong Wang, Dong Yang, Thomas
Sanford, Stephanie Harmon, Baris Turkbey, Brad-
ford J Wood, Holger Roth, Andriy Myronenko,
Daguang Xu, et al. Generalizing deep learning for
medical image segmentation to unseen domains via
deep stacked transformation. IEEE transactions on
medical imaging, 39(7):2531–2540, 2020.

Tongxue Zhou, Su Ruan, and Stéphane Canu. A re-
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Appendix A. PITTA Pseudo Code

Algorithm 1: Test Procedure of our method

Input: input image x, class prior p, α, λ, Clv
Output: Segmentation mask ŷ
q(0) ← α

C1+ (1− α)p(0)

for n← 1, toN do
S(n) ←Mθ(G(x))

S′(n) ← A−1
T (Mθ(AT (G(x))))

Lcons ← |S(n) − S′(n)|
P (n)(y|x)← softmax((S(n) + S′(n))/2)

ŷ
(n)
i,j ← argmax

(
P (n)(yi,j |x)/q(n)

)
Mi,j ←

⋃
c∈Clv

1(ŷ
(n)
i,j = c)

Lmce ← Lce(P
(n)(y|x)⊙M, ŷ(n))

Ltotal ← Lmce + λLcons

Update θ using Ltotal

p(n+1) ← αp(n) + (1− α)#
{
ŷ(n)

}
q(n+1) ← α

C1+ (1− α)p(n+1)

end

ŷ← argmax
(
P (N)(y|x)/q(N)

)

Appendix B. More discussion on
related work

B.1. Our method vs. style-transfer-based
techniques

Most style-transfer-based methods (Tran and Huang,
2019; Li et al., 2017; Atapour-Abarghouei and
Breckon, 2018) require target-domain images to train
the style-transfer function. In contrast, our approach
is designed for domain generalization, where no
target-domain information is available during train-
ing. Essentially, our method could be seen as defining
a training-free transfer function via the gradient map,
as in Eq. (1), to transfer MRI images to a domain-
agnostic feature space.

Appendix C. More Implementation
Details

C.1. Data Processing

For MS-CMRSeg2019 dataset, we resize the LGE and
T2 modality to match the shape of bSSFP images and
crop them into 128 × 128. For BraTS2018 dataset,
we crop the images via MRI volume bounding box

(where intensity > 0) and resize them into 128×128.
Unlike previous protocols (Xie et al., 2022; Zou et al.,
2020; Han et al., 2021) which use random data parti-
tioning, we designate the last 10% of HGG and LGG
data in BraTS2018 as test set to facilitate a fair com-
parison for the subsequent work.

C.2. Model Architecture

We utilize the U-Net (Ronneberger et al., 2015) as
our segmentation backbone and adapt the implemen-
tation from OpenAI 3 in our experiment. Our seg-
mentation model comprises 15 encoder blocks, one
middle block, and 15 decoder blocks with different
resolutions (from 128 × 128 to 8 × 8). The detailed
model structure can be found in the official imple-
mentation of OpenAI.

Appendix D. Additional Quantitative
Results

D.1. Effect of Averaging Two logits

In order to demonstrate the effect of taking an av-
erage on two logits in Eq.(5), we empirically com-
pared our method to using outputs from normal im-
ages alone. As demonstrated in Table 4, the averaged
outputs yield a slight performance improvement.

Table 4: A comparison between using only the
normal output (w/o prediction averaging)
and averaging the outputs from both
augmented and normal images (Ours).
The experiments were conducted on the
MS-CMRSeg2019 dataset, under the
bSSFP→LGE setting.

Myo LV RV Average

Normal Output 0.7961 0.9102 0.8594 0.8552
Averaged (Ours) 0.7987 0.9100 0.8600 0.8562

D.2. Effect of Transformation Type on Test
Time Adaptation

We assessed the performance impact of various trans-
formation functions in test-time augmentation. As

3. https://github.com/openai/guided-diffusion
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shown in Table 5, Horizontal Flip is the most efficient
for performance improvement in our specific task.

Table 5: Transformation type comparison conducted
on the MS-CMRSeg2019 dataset, under the
bSSFP→LGE setting.

Transformation types Myo LV RV Average

Rotation 90° 0.7722 0.9040 0.8537 0.8433

ColorJitter 0.7963 0.9108 0.8473 0.8515

Gaussian Blur 0.7852 0.9089 0.8468 0.8470

Horizontal Flip 0.7987 0.9100 0.8600 0.8562

Vertical Flip 0.7916 0.9074 0.8565 0.8518

Horizontal Flip
+ColorJitter

0.7980 0.9101 0.8521 0.8534

Horizontal Flip
+ Vertical Flip

0.7956 0.9090 0.8622 0.8556

Horizontal Flip
+Rotation 90◦

+ColorJitter
0.7734 0.9039 0.8442 0.8405

Horizontal Flip
+Rotation 90◦

+ColorJitter
+Gaussian Blur

0.7697 0.9060 0.8415 0.8391

D.3. Effect of Pixel Mask

The pixel mask is selected based on the classes signifi-
cantly impacted by local variations between domains.
In our case, myocardium tissue (Myo) is notably af-
fected due to variations like scar lesions being more
visible in LGE scans compared to bSSFP. So we fo-
cus on Myo during test time to amplify the effects
of these local variations. While domain expertise can
be beneficial for pinpointing these key classes, it’s not
a restriction. If such expertise is lacking, practition-
ers can opt to include all classes by setting the pixel
mask to ’true’ for all. As shown in Table 6, this ap-
proach results in only a minor performance drop of
approximately 0.1% in the Dice score.

D.4. Effect of Regularization Strength

We assessed the effect of the regularization strength
parameter, λ, on model performance on MS-
CMRSeg2019 dataset under bSSFP→T2 setting in
Table 7, revealing that our method is relatively ro-
bust to changes in this hyperparameter.

Table 6: Performance comparison between models
using pixel masks (Ours) and without pixel
masks.

Dataset BraTS MS-CMRSeg2019
Setting T2→T1 T2→T1ce Flair→T1 Flair→T1ce bSSFP→LGE bSSFP→2
Category WT WT WT WT Avg Avg

Ours w/o Mask 0.6803 0.6911 0.4091 0.5978 0.8500 0.8433
Ours 0.6813 0.6914 0.4189 0.5986 0.8562 0.8555

Table 7: Effect of λ on model performance. Results
are averaged over all classes.

λ 0.1 0.3 0.5 1 1.5 2

Avg Dice 0.7671 0.7738 0.7724 0.7663 0.7617 0.7588

Appendix E. More Result
Visualization
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Figure 5: More segmentation visualization between different methods under various settings
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