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Abstract

Personalized adaptive interventions offer the
opportunity to increase patient benefits, how-
ever, there are challenges in their planning and
implementation. Once implemented, it is an
important question whether personalized adap-
tive interventions are indeed clinically more ef-
fective compared to a fixed gold standard in-
tervention. In this paper, we present an inno-
vative N-of-1 trial study design testing whether
implementing a personalized intervention by an
online reinforcement learning agent is feasible
and effective. Throughout, we use a new study
on physical exercise recommendations to reduce
pain in endometriosis for illustration. We de-
scribe the design of a contextual bandit rec-
ommendation agent and evaluate the agent in
simulation studies. The results show that, first,
implementing a personalized intervention by an
online reinforcement learning agent is feasible.
Second, such adaptive interventions have the
potential to improve patients’ benefits even if
only few observations are available. As one
challenge, they add complexity to the design
and implementation process. In order to quan-
tify the expected benefit, data from previous
interventional studies is required. We expect
our approach to be transferable to other inter-
ventions and clinical interventions.
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1. Introduction

Chronic diseases are frequently associated with
between-patient variability in their symptomatic
manifestations and other clinical features. Therefore,
one-size-fits-all interventions and strategies are not
ideal and yield heterogeneous results. This has led
to a shift in study designs in recent years focusing on
patients’ individual responses, like N-of-1 trials (Lil-
lie et al., 2011). N-of-1 trials are multi-crossover ran-
domized controlled trials within one individual that
in their classic set-up compare two interventions ap-
plied in a pre-determined crossover sequence. Then,
individual intervention effects can be estimated and
if a series of N-of-1 trials is performed with multi-
ple participants, population-level intervention effects
can also be estimated (Zucker et al., 1997). This
approach can be particularly promising for chronic
conditions without an established cure or treatment,
making patient self-management an important dis-
ease management component. While N-of-1 trials
are the gold standard study design for estimating in-
dividual causal intervention effects, comparing more
than two interventions can be inefficient as each addi-
tional intervention condition linearly extends the to-
tal study duration. In recent work, models for adap-
tive N-of-1 trials have been proposed where the in-
tervention allocation over time can depend on inter-
mediate analyses of the trial (Senarathne et al., 2020;
Malenica et al., 2021; Shrestha and Jain, 2021).

Contributions. As a first contribution, we de-
scribe an innovative novel study design that evaluates
in an N-of-1 trial whether a personalized intervention
is superior compared to a generic intervention, where
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the personalized intervention is itself an adaptive re-
inforcement learning (RL) agent which learns the best
of multiple interventions in a given context. To the
best of our knowledge, incorporating an RL agent as
one intervention in an N-of-1 trial has not been re-
ported before. Second, we describe the process of
designing and evaluating an RL agent tailored to this
study design. For this, we use a trial for illustra-
tion that investigates physical exercise recommenda-
tions to reduce pain in patients with endometriosis.
A priori, it is not clear if a personalized RL agent
is able to learn in a setting such as our presented
pilot study. Our results show that implementing a
personalized intervention by an online reinforcement
learning agent is both feasible and can be effective,
even if only few data points are available and learning
is done on the individual level without pooling across
participants.

Endometriosis is an estrogen-mediated inflam-
matory disease characterized by the growth of
endometrial-like tissue outside the uterus, leading to
painful adhesions and lesions. It is associated with
debilitating pelvic pain and infertility, and a 7-year
delay in diagnosis, in part due to significant between-
patient symptomatic variability (Tamaresis et al.,
2014; Schliep et al., 2015; Fourquet et al., 2019). De-
spite recent efforts, endometriosis remains poorly un-
derstood and is not well-managed, and there is a crit-
ical need to identify novel methods for disease man-
agement with a focus on pain reduction (Rogers et al.,
2009). There is promising evidence on physical exer-
cise for endometriosis pain management, however, it
is unclear which physical activity with which intensity
and duration is best (Bonocher et al., 2014). In this
setting, using adaptive methodology, which allows to
directly incorporate individual responses into further
intervention decisions, offers a great potential to in-
crease the efficiency of the trial. Here, we combine
the N-of-1 trial design with an adaptive intervention
arm, designed to maximize patient’s benefit. In the
adaptive arm, personalized physical exercise recom-
mendations are given by an online RL agent.

The rest of the paper is structured as follows: In
Section 2, we reference previous studies on exercise
and pain in endometriosis and give background for
our RL approach. In Section 3, we present a concep-
tual causal model of our assumed effects of exercise
on endometriosis-related pain that serves as rationale
for our selected interventions and study design and
informs the design of the RL agent. Section 4 de-
scribes our study setup in detail. Section 5 describes

the requirements for the usage of an agent to select
intervention decisions in this scenario, and Section 6
explains our chosen architecture, followed by an eval-
uation of the agent in simulation studies described in
Section 7. We conclude with a discussion in Section 8.

2. Related work

2.1. Exercise interventions in endometriosis

Despite its prevalence of 1 in 10 women being affected
worldwide, endometriosis is poorly managed and
without well-established treatment or cure (Cramer
and Missmer, 2002; Jarrell et al., 2005; Stratton et al.,
2008; National Institutes of Health , NIH). Current
medical intervention efforts in endometriosis focus on
pharmacological symptom management, which is as-
sociated with unpleasant side effects and inadequate
efficacy (Rogers et al., 2009; Sinatra, 2010; Krebs
et al., 2018). Patients report a variety of strategies
for symptom self-management. Of these, physical
exercise remains the most promising and is associ-
ated with consistently favorable effects (Gonçalves
et al., 2017; Armour et al., 2019a,b; Ensari et al.,
2022). However, data are scarce and suggest vari-
ability across patients with respect to exercise pref-
erences and contextual factors that influence effi-
cacy (Bonocher et al., 2014; Ricci et al., 2016; Belavy
et al., 2021). Previous work further indicates that
regular exercisers are more likely to experience de-
creased pain responses after exercise bouts and that
a wide range of modalities are utilized, including
aerobic, calisthenic, and stretching-oriented activities
(Ensari et al., 2022).

For building interventions in our study, we fol-
low the standard exercise prescription method within
clinical exercise physiology which considers 4 compo-
nents: type, duration, intensity, frequency (Franklin,
2021). Physiologists typically update the individual’s
prescription at each follow-up appointment based on
the individual’s responses. We propose to automate
this learning and updating process using RL.

2.2. Contextual bandits in adaptive trials

Adaptive designs allow responding to collected data
quickly and efficiently (Pallmann et al., 2018). Hav-
ing learned adaptive sequences, Just-in-Time Adap-
tive Interventions can be developed which provide
interventions to patients based on contextual fea-
tures (Nahum-Shani et al., 2018). In the adaptive
recommendations’ field, studies have mainly focused
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on investigating which personalized messaging can
help to improve the proximal outcome. For example,
the HeartSteps project used an RL algorithm based
on Thompson Sampling to personalize notifications
for sedentary patients (Liao et al., 2020). In another
study, Boltzmann sampling was used to personalize
messages for sedentary patients with diabetes (Yom-
Tov et al., 2017). In the SleepBandits project, pa-
tients had the possibility to self-experiment with dif-
ferent interventions on their sleep. Recommenda-
tions were provided based on Thompson Sampling,
which led to increased sampling of beneficial condi-
tions (Daskalova et al., 2020).

3. Conceptual model for pain
modulation via exercise

The overall goal of this study is to design an RL agent
that can efficiently identify the optimal dose (w.r.t.
type, intensity, duration) of exercise for pain reduc-
tion for a given individual. To achieve this, the RL
agent needs to learn quickly with limited data and
determine the optimal exercise intervention per indi-
vidual. This requires consideration of the temporality
of the pain modulating effects of exercise based on ex-
pert knowledge. Exercise has both acute (i.e., imme-
diate) and delayed (i.e., distal) effects acting through
various possible pathways, and we depict these time-
lines and our assumed causal graph in Figure 1. We
focus on immediate effects. Nevertheless, we give a
brief overview of all effects in the following.

Physical 
Exercise Pain

immediate effect

delayed effect
Context

Figure 1: Causal graph with immediate and delayed
effects. Context moderates effect on pain
but also influences pain.

3.1. Immediate effects of exercise on pain

There are various psychological and physiological fac-
tors that can explain the immediate (i.e., lasting up
to several hours post-exercise bout) pain modulating
effects of exercise in endometriosis.

Psychological effects Psychological factors such
as a sense of accomplishment and/or self-efficacy, ac-
companied by an overall positive mood state, can fa-
vorably modulate post-exercise pain responses (Mid-
delkamp et al., 2017). Similarly, the distraction hy-
pothesis of exercise has been demonstrated for pain
and related outcomes (Nolen-Hoeksema et al., 1993;
Villemure and Bushnell, 2002; Mikkelsen et al., 2017).

Physiological effects Evidence suggests acute im-
provements in different types (e.g., pressure, thermal,
cold, intensity) of pain sensitivity post-exercise (Nau-
gle et al., 2012), accompanied by changes in imme-
diate hormone profile (West and Phillips, 2012) and
autonomic responses (e.g., reduced pain receptor re-
activity) (Uzawa et al., 2023). Similarly, some types
of pain (e.g., nociceptive, somatic) can respond favor-
ably to muscular relaxation and enhanced movement
in the pain-impacted area (Louw et al., 2016). As en-
dometriosis pain often originates from multiple body
areas, the type of the pain varies (Ensari et al., 2020).

3.2. Delayed effects of exercise on pain

Besides immediate effects, there is evidence for de-
layed effects of exercise on chronic pain.

Improved physical function A wider range of
musculoskeletal and other physiological improve-
ments are expected in the long term with exercise,
which subsequently can improve pain sensitivity and
reactivity and associated quality of life (Ambrose and
Golightly, 2015; Rice et al., 2019)

Improved endocrine function Especially rele-
vant for endometriosis, there is strong evidence for
exercise-mediated endocrine system, particularly es-
trogen and other sex hormones, for pain modulation
in menstrual pain disorders (Jaleel et al., 2022).

Improved inflammatory markers Different ex-
ercise intensities and modalities have been shown to
improve inflammatory marker profiles (Bote et al.,
2013) and inflammatory responses (Athanasiou et al.,
2023). This is of particular relevance to endometrio-
sis given its inflammatory nature.
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Other neuromodulator adaption Existing evi-
dence suggests that physical activity modulates cen-
tral nervous system excitability and inhibition, and
that chronic exercise can downregulate endogenous
pain pathways (Sluka et al., 2018).

3.3. Moderation through context

We expect moderation of both immediate and de-
layed effects by the current context of the patient,
for which we assess past and current (i) intensity and
duration of activities and (ii) endometriosis-related
pain.
Because we expect pain measurements over time

to be autocorrelated, context also influences pain
in our model. The context variables will be used
to personalize the exercise recommendations by the
agent. Pain areas can vary across patients and over
time. Here, we consider pain in the lower abdomi-
nal (including pelvis), groin and hip areas as primary
endometriosis-related pain outcomes. As secondary
outcomes, we consider other body locations tracked
by the patients, which is accomplished through use
of a visual body map similar to the visual body map
in the McGill Pain Scale (Melzack, 1975) that allows
tracking all body areas to indicate pain location, as
well as intensity and type of the pain.

4. Study design of the N-of-1 trial

In this section, we describe the proposed pilot N-of-1
trial, see Figure 2 for a visualization. After an initial
baseline phase of one week, patients are randomized
into an A-B or B-A design, where each A or B phase is
2 weeks long. The baseline phase serves to preconfig-
ure the agent using tracked datapoints. An inital as-
sesment is used to define the set of exercises available
for recommendation. In Phase A, patients receive
generic physical exercise recommendations based on
the published PA Guidelines for adults (U.S. Dept.
of Health and Human Services, 2018). In Phase B,
patients receive RL-generated personalized exercise
recommendations. All exercise recommendations are
delivered through an mHealth app, which allows inte-
grating real-time data from patients into the recom-
mendations. Of note, while typical physical exercise
guidelines assume exercises done 3–5 times per week,
in this pilot study we propose daily exercises so that
more observations can be made under each interven-
tion, providing an easier setting for the RL agent to
learn. As outcomes, patients will self-track current

symptoms (including pain location, type, intensity),
daily functioning, health behavior, and exercise in
the morning, evening, before, and after their exer-
cise through the app. The primary outcome for the
RL agent is pain measured on a visual analog scale
(VAR). In addition, a weekly PROMIS pain interfer-
ence questionnaire1 is administered. The study has
been reviewed and approved by the Mount Sinai IRB
Board (STUDY-23-00721).

5. Requirements for a personalized
agent inside an N-of-1 trial

In the following section, we describe requirements for
the RL agent. For this, we adapt the PCS framework
(Trella et al., 2022) to a personalized RL agent inside
an intervention arm for an N-of-1 trial.

5.1. Personalization (P)

Few data points need to be sufficient for effective per-
sonalization. Phase B of our pilot study will only in-
clude 14 decision points for the agent over two weeks.
These few decision points make efficient personaliza-
tion challenging. To overcome this, we use the in-
terventional data from the baseline phase, as well as
from the A phase in case of an A-B randomization,
for agent pre-configuration.

5.2. Computability (C)

Model updates and recommendations need to be fea-
sible. This requires timely collection of contextual
information from patients and timely intervention de-
cisions. This is guaranteed by integrating the agent in
an mHealth platform when implementing the study.

5.3. Stability (S)

The agent may never harm patients. We use the be-
ginning assessment to define a safe subset of possi-
ble interventions to ensure this. Additionally, the
agent needs to be robust in real-life scenarios. This
includes robustness against model misspecification,
missing-data and non-adherence to exercise recom-
mendations. The pilot format of our study requires
that the data generated by the agent are usable for
post-trial inference and for informing the implemen-
tation of a follow-up study.

1. https://cde.nida.nih.gov/sites/nida_cde/files/
PROMIS%20Adult%20ShortForm%20v1.0%20Pain%

20Interference%206b.pdf
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Figure 2: Five weeks randomized pilot study design with Baseline followed by randomized A-B or B-A.
In the baseline phase, no recommendations are given, but patients can track exercising. In Phase
A, fixed exercise schedules are recommended, which is compared to Phase B, in which personalized
exercise recommendations are provided by a Reinforcement Learning agent. The agent uses data
points from all previous phases to make a personalized recommendation. Throughout the five
weeks, data will be collected using wearables and questionnaires for later analysis.

6. Agent design

In this section, we describe our design decisions for
the agent. To design our agent, we make two sim-
plifying assumptions: First, based on the description
in Section 3, we assume that the state is fully cap-
tured by the context variables and that there is no
hidden state. Hence, the context moderates the ef-
fect of physical exercise on pain. Second, we assume
that it is sufficient to pick the recommendation which
is most effective at the current time point, and disre-
gard long-term planning of recommendations. Simi-
lar assumptions have been made in many mHealth in-
tervention settings (e.g., Liao et al. (2020); Figueroa
et al. (2021)), and allow fast learning in few data
point environments. Making these assumptions al-
lows us to model the selection of a recommendation
out of the predetermined set as an instance of a con-
textual multi-armed bandit problem. We design the
RL agent as a contextual bandit using a Thompson
sampling policy based on a Bayesian model. Next, we
describe the action space, policy, and reward function
of the agent.

6.1. Action space

The action space defines which interventions can be
selected. Based on the beginning assessment of pa-
tients, we create a personalized set of physical ex-
ercise recommendations. Each action is defined by
type, duration, and intensity.

6.2. Policy

We choose Thompson Sampling as underlying pol-
icy of the agent due to its widespread use in adap-
tive trials (e.g., Daskalova et al. (2020); Liao et al.
(2020)) and empirically good performance in diverse
settings (Chapelle and Li, 2011). Thompson Sam-
pling uses the probability of being the optimal inter-
vention in a given context as selection probability of
an intervention. We define the optimal intervention
as the intervention with the largest pain reduction,
and estimate the probability by fitting a Bayesian
model for prediction of the measured pain reduction
∆pain. We assume that using the difference in pain
measurements pre- and post-exercise allows us to only
measure the immediate effect of the exercise and re-
duce autocorrelation in the time series, which we oth-
erwise would have to incorporate in the model.
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6.2.1. Bayesian model

We model the pain reduction as a sum of four in-
dividual terms, which capture the different assumed
effects of exercise type, intensity, duration, and pain.
Let i = 1...n denote patients, j = 1...k denote the
exercise recommendation in the personalized set of
physical exercises, and let t = 1...T denote the de-
cision points. Each exercise is characterized by its
type, intensity, and duration and we define

Burdenij = Intensityij ·Durationij ,

where exercise intensity is manually assigned a
value between 0 and 1 and duration is assessed in
minutes and divided by the maximum duration of any
exercise. As each exercise type is assigned an inten-
sity, it affects burden through its intensity. This al-
lows the agent to understand that some interventions
are similar in intensity and duration. See Table 1 for
an example.
As inputs for the calculation of the expected pain

reduction, we define

paini,t = Current pain of patient i at t.

mii,t = Mean intensity of last 3 exercises for i at t

mdi,t = Mean duration of last 3 exercises for i at t

Our Bayesian linear regression model includes four
summands: τType,i,j models an intercept for each
type of physical exercise per patient. yIntensity,i,j,t
models the effect of the intensity of the physical ex-
ercise on pain. We model this as a linear interaction
between the intensity of the proposed physical exer-
cise and the mean intensity of the last three exercises.
Similarly, yDuration,i,j,t models this effect for duration
of exercise. yBurden,i,j,t models an interaction effect
between current pain and burden. We use burden
instead of individual coefficients for duration and in-
tensity to decrease the number of parameters. This
gives the following model formula:

∆paini,j,t ∼ Normal(µi, σi) (1)

µi = τType,i,j + yIntensity,i,j,t

+ yDuration,i,j,t + yBurden,i,j,t

yIntensity,i,j,t = (αi + βi ·mii,t) · Intensityi,j
yDuration,i,j,t = (γi + δi ·mdi,t) ·Durationi,j

yBurden,i,jt = (ηi + κi · paini,t) · Burdeni,j

This model has 7 parameters plus the number of
different types of activities for each patient. We

use σ ∼ Exponential(1), and α, β, γ, δ, η, κ, τ ∼
Normal(0, 1) as non-informative priors.

6.3. Reward

We use ∆paini,j,t as reward, which is the decrease in
pain measured two hours after performing the exer-
cise relative to the pain measured before the exercise
on the VAR scale.

6.4. Implementation

The model was implemented and fitted using the
NUTS Sampler provided by PYMC (Salvatier et al.,
2016). To generate the probability of best interven-
tion, we sampled the posterior predictive distribution
with the parameters set to the patient’s context to
obtain an estimated pain reduction. The relative fre-
quencies of the greatest pain reduction were then used
as the selection distribution for Thompson Sampling.

7. Evaluation

In this section, we describe the evaluation of the per-
formance of our proposed agent. Our goal is to as-
sess whether we can confidently deploy the agent in
the pilot study. As data from previous studies is not
available for evaluating our proposed agent, we test
robustness and personalization across different sce-
narios in a simulation study.

7.1. Simulation setup

The evaluation consists of three main steps. First,
we define different scenarios, which each correspond
to different assumptions on the environment. Sec-
ond, to quantify performance, we translate the PCS
requirements (see Section 5) into metrics. Third, we
simulate the behavior of the agent for 100 patients
for each of the seven scenarios and each of the two
randomization schemes (A-B, B-A), for a total of 14
simulations, and report the performance of the agent
with respect to the defined metrics.

For our simulation, we use a set of eight possible ex-
ercise recommendations shown in Table 1. The simu-
lation mirrors the study configuration. The baseline
phase and the A phase in case of A-B randomization
were simulated using a fixed sequence of these exer-
cise recommendations and used as input data for the
agent. Our simulation did not include missing values.
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Type Intensity Duration Comment

0 0.3 0.5 (30min) Slow jogging
0 0.5 0.5 (30min) Jogging
0 0.7 0.5 (30min) Fast jogging
1 1 0.1 (6min) HIIT
1 1 0.2 (12min) HIIT
1 1 0.3 (18min) HIIT
2 0.5 0.75 (45min) Swimming
3 0.1 1 (60min) Yoga

Table 1: Example set of physical exercise recommen-
dations used for simulation

The Python code and results are available from the
GitHub repository2.

7.2. Evaluation scenarios

In Section 3, we presented the assumed effects of ex-
ercise on pain. As we have little information about
the true effects in the graph in Figure 1, we generate
six different possible scenarios (I-VI) in order to test
stability (see Subsection 5.3) across different environ-
ments. An additional Scenario VII is included to test
the effects of informative non-adherence:

Scenario I Pain reduction is drawn independently
of other variables from a Normal(0,1) distribution.
This scenario is included as a null scenario.

Scenario II Pain reduction is calculated from the
linear model specified in Equation 1. All parameters
are drawn individually for each patient from a Nor-
mal(0,1) distribution, and are then fixed for this pa-
tient across the study. This environment is included
to test the behavior of the agent when the underlying
model is correctly specified.

Scenarios III, IV, V, VI Pain reduction in Sce-
narios III, IV, V, VI is defined as in Scenario II, but
sets the parameters regarding type (Scenario III), or
intensity (Scenario IV), or duration (Scenario V), or
intensity and duration (Scenario VI) to 0. These
environments are included to test robustness of the
agent against partially violated assumptions of the
Bayesian model.

Scenario VII To investigate the behavior of the
agent when data is missing not at random, we in-

2. https://github.com/HIAlab/
Reinforcement-learning-agents-in-N-of-1-trials

clude Scenario VII. Pain reduction is calculated like
in Scenario II, but informative non-adherence using
the following rationale is simulated: If the recommen-
dation that is given by the agent would increase the
pain (based on the linear model), this data point is
dropped in 50% of the cases, and will not be used as
feedback to the agent.

7.3. Metrics

We evaluate three key metrics that have similarly
been proposed by Trella et al. (2022) to assess the
personalization of an agent:

• Average of users’ average regret

• The 25th percentile of users’ average regret

• Average regret for multiple time points

We define the regret as the improvement over the
non-adaptive arm, calculated as the difference be-
tween pain reduction under the fixed arm and the
adaptive arm simulated with the same context vari-
ables:

Regreti,t =

t∑
l=1

∆paini,fixed,l −
t∑

l=1

∆paini,adaptive,l

Since our pilot study is meant to inform further
research, it is important to generate a dataset useful
for post-trial inference. The greatest threat to mean-
ingful post-trial inference is if some participants only
receive the same intervention, due to fast convergence
of the Bayesian model. We measure the diversity of
interventions by five different metrics: For assessing
the different types of exercise recommendations (dis-
crete case), we calculate the Shannon entropy (Shan-
non, 1948) as a measure of randomness. For the con-
tinuous variables intensity and duration, we calculate
the standard deviation. Additionally, we calculate
the mean of the minimum and maximum probability
for intervention selection.

7.4. Results

As seen in Table 2, and Figure 3, the agent reaches
a negative regret for all scenarios expect Scenario I.
Clear downward trends are visible for the median and
quartiles. The regret in Scenario I is zero, since under
the null scenario, the pain reduction is independent
of the chosen intervention.
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In the B-A randomization, the agent only has seven
data points from the baseline to learn the partici-
pant’s coefficients. We therefore observe higher regret
(i.e., worse performance) compared to A-B random-
ization. We observe that regret is slightly negative in
the 25% worst case. This shows that personalization
not only works for the average patient but for most
patients. The mean maximum selection probability
across all environments is 44%, while the minimum is
at 1%. This suggests that low values for regret do not
come from selection of good interventions, but rather
through discarding bad interventions.
In the non-adaptive arm with the generic interven-

tion, the entropy is 1.23 for exercise type and the
standard deviations are 0.26 for duration and 0.32 for
type. In the adaptive arm applying the RL agent, we
mostly observe smaller values for entropy and stan-
dard deviation. Especially the entropy of exercise
type in Scenario II is low with 0.82 in the A-B design.
This suggests that a correctly specified model leads
to a fast model convergence. At the same time, this
will create high beneficence for patients in pain reduc-
tion. The non-informative adherence in Scenario VII
did worsen the 25% worst case performance slightly,
as well as the mean performance in the B-A design.
In the A-B design, the agent still performed similar
to Scenario II.

8. Discussion

Here, we have presented an innovative N-of-1 trial
study design comparing a personalized intervention
by an online RL agent to a generic intervention. We
focused on the study design and the design of the RL
agent, while leaving the design of post-trial inference
to follow-up studies. Regarding the RL agent design,
the results of simulation studies show that employing
such an RL agent can be feasible also when only few
data points are available and learning is done on the
individual level without pooling across patients.
Our proposed agent showed the ability to learn in

different scenarios, therefore allowing to create study
designs which are flexible across different plausible
scenarios. In this low-sample setting and even when
the set of possible interventions is large, we expect
benefit from personalization.
Finding the right balance between specialized and

general agents remains a challenge. Specializa-
tion can lead to higher optimization potential, e.g.,
through including prior knowledge, but at the same
time might decrease robustness against model mis-

specification. Due to the limited data available for
our pilot trial, we prioritized robustness and selected
a more general agent.

Under the assumption that data is missing com-
pletely at random, missing data will slow down the
learning of the agent due to less available data points,
but would not interfere with the learning of the
Bayesian model. Once our pilot study will be com-
pleted, we will investigate the behavior of the agent
when data is missing not at random in this real data.

Our work has some limitations. For real-world ap-
plications, additional challenges such as missing data
need to be considered. While we made simplifying
assumptions in our simulation study, such challenges
might make it necessary to include additional safety
measures inside the agent. Also, due to time con-
straints for the total length of the study and our main
goal of proofing the feasibility of integrating an RL
agent inside an N-of-1 trial, we opted for daily ex-
ercise recommendations to collect more data points.
This is more frequent than usual exercise frequencies
in typical studies. However, we expect that our re-
sults generalize to longer studies with less frequent
exercising, and are planning to reduce the frequency
in follow-up studies. Finally, it will be interesting to
investigate model misspecification not only when the
model is misspecified (see Scenario I) but also when
the priors in the Bayesian model are not well selected.

A natural extension and possible requirement in
some situations to improve the learning rate in a low-
sample setting is to include pooling, which has been
effectively deployed in previous studies. However, it
might also worsen personalization in highly hetero-
geneous environments (Tomkins et al., 2020; Trella
et al., 2022). Judging how and to which extent pool-
ing might improve the agent for our scenario is hard
to estimate without additional data. Since we already
observed benefit for participants without pooling, we
decided to disregard it for this pilot study.

We are curious to see the benefit of personalizing
agents for pain reduction in endometriosis and be-
yond, and to observe the increasing use of N-of-1 tri-
als for their evaluation.
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