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Abstract

Medicine, by its nature, is a multifaceted domain
that requires the synthesis of information across
various modalities. Medical generative vision-
language models (VLMs) make a first step in this
direction and promise many exciting clinical appli-
cations. However, existing models typically have
to be fine-tuned on sizeable down-stream datasets,
which poses a significant limitation as in many
medical applications data is scarce, necessitating
models that are capable of learning from few exam-
ples in real-time. Here we propose Med-Flamingo,
a multimodal few-shot learner adapted to the
medical domain. Based on OpenFlamingo-9B, we
continue pre-training on paired and interleaved
medical image-text data from publications and
textbooks. Med-Flamingo unlocks few-shot gen-
erative medical visual question answering (VQA)
abilities, which we evaluate on several datasets
including a novel challenging open-ended VQA
dataset of visual USMLE-style problems. Further-
more, we conduct the first human evaluation for
generative medical VQA where physicians review
the problems and blinded generations in an interac-
tive app. Med-Flamingo improves performance in
generative medical VQA by up to 20% in clinician’s
rating and firstly enables multimodal medical
few-shot adaptations, such as rationale generation.
We release our model, code, and evaluation app.
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1. Introduction

Large, pre-trained models (or foundation models) have
demonstrated remarkable capabilities in solving an abun-
dance of tasks by being provided only a few labeled exam-
ples as context (Bommasani et al., 2021). This is known
as in-context learning (Brown et al., 2020), through which
amodel learns a task from a few provided examples specif-
ically during prompting and without tuning the model
parameters. In the medical domain, this bears great
potential to vastly expand the capabilities of existing
medical AI models (Moor et al., 2023). Most notably, it
will enable medical AI models to handle the various rare
cases faced by clinicians every day in a unified way, to pro-
vide relevant rationales to justify their statements, and to
easily customize model generations to specific use cases.

Implementing the in-context learning capability in
a medical setting is challenging due to the inherent
complexity and multimodality of medical data and the
diversity of tasks to be solved.

Previous efforts to create multimodal medical
foundation models, such as ChexZero (Tiu et al.,
2022) and BiomedCLIP (Zhang et al., 2023a), have
made significant strides in their respective domains.
ChexZero specializes in chest X-ray interpretation, while
BiomedCLIP has been trained on more diverse images
paired with captions from the biomedical literature.
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32-year-old man presents to 
ER 15 mins after 7-feet fall 
onto a wooden post. 
Symptoms: severe pain, 
rapid breathing, vitals: 
pulse 135/min, respirations 
30/min, BP 80/40 mm Hg. 
(…)

Blunt trauma to the left lung with hemothorax.

Med-Flamingo

Question: What is the most likely diagnosis?

The patient has a left-sided pneumothorax.

Baseline
✅   Correct side, but
❌   Wrong diagnosis / pathology

✅   Correct diagnosis
✅   Correct pathology, left-sided.

Chest X-ray image showing hemothorax following 
blunt chest trauma

*

*

Figure 1: Example of how Med-Flamingo answers complex multimodal medical questions by generating open-ended
responses conditioned on textual and visual information. The baseline response was given by the
OpenFlamingo model, both models were few-shot prompted with 4 shots.

Other models have also been developed for electronic
health record (EHR) data (Steinberg et al., 2021) and
surgical videos (Kiyasseh et al., 2023). However, none of
these models have embraced in-context learning for the
multimodal medical domain. Existing medical VLMs,
such as MedVINT (Zhang et al., 2023b), are typically
trained on paired image-text data with a single image in
the context, as opposed to more general streams of text
that are interleaved with multiple images. Therefore,
these models were not designed and tested to perform
multimodal in-context learning with few-shot examples1

Here, we propose Med-Flamingo, the first medical
foundation model that can perform multimodal
in-context learning specialized for the medical domain.
Med-Flamingo is a vision-language model based on
Flamingo (Alayrac et al., 2022) that can naturally ingest
data with interleaved modalities (images and text), to
generate text conditioned on this multimodal input.
Building on the success of Flamingo, which was among
the first vision-language models to exhibit in-context
learning and few-shot learning abilities, Med-Flamingo
extends these capabilities to the medical domain by
pre-training on multimodal knowledge sources across
medical disciplines.
In preparation for the training of Med-Flamingo, our

initial step involved constructing a unique, interleaved
image-text dataset, which was derived from an extensive
collection of over 4K medical textbooks (Section 3).

1. For example, a challenge with multimodal in-context learning
for existing medical vision language models is the potential
for image information to leak across examples, potentially
misleading the model.

Given the critical nature of accuracy and precision
within the medical field, it is important to note that
the quality, reliability, and source of the training data
can considerably shape the results. Therefore, to ensure
accuracy in medical facts, we meticulously curated our
dataset from respected and authoritative sources of
medical knowledge, as opposed to relying on potentially
unreliable web-sourced data.

In our experiments, we evaluate Med-Flamingo on
generative medical visual question-answering (VQA)
tasks by directly generating open-ended answers, as
opposed to scoring artificial answer options ex post–as
CLIP-based medical vision-language models do. We
design a new realistic evaluation protocol to measure the
model generations’ clinical usefulness. For this, we con-
duct an in-depth human evaluation study with clinical
experts which results in a human evaluation score that
serves as our main metric. In addition, due to existing
medical VQA datasets being narrowly focused on image
interpretation among the specialties of radiology and
pathology, we create Visual USMLE2, a challenging
generative VQA dataset of complex USMLE-style
problems across specialties, which are augmented with
images, case vignettes, and potentially with lab results.

Averaged across three generative medical VQA
datasets, few-shot prompted Med-Flamingo achieves
the best average rank in clinical evaluation score (rank
of 1.67, best prior model has 2.33), indicating that
the model generates answers that are most preferred

2. USMLE stands for ”United States Medical Licensing
Examination”.
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Figure 2: Overview of the Med-Flamingo model and the three steps of our study. First, we pre-train our Med-
Flamingo model using paired and interleaved image-text data from the general medical domain (sourced
from publications and textbooks). We initialize our model at the OpenFlamingo checkpoint continue
pre-training on medical image-text data. Second, we perform few-shot generative visual question
answering (VQA). For this, we leverage two existing medical VQA datasets, and a new one, Visual
USMLE. Third, we conduct a human rater study with clinicians to rate generations in the context of
a given image, question and correct answer. The human evaluation was conducted with a dedicated
app and results in a clinical evaluation score that serves as our main metric for evaluation.

by clinicians, with up to 20% improvement over prior
models. Furthermore, Med-Flamingo is capable of
performing medical reasoning, such as answering
complex medical questions (such as visually grounded
USMLE-style questions) and providing explanations (i.e.,
rationales), a capability not previously demonstrated by
other multimodal medical foundation models. However,

it is important to note that Med-Flamingo’s performance
may be limited by the availability and diversity of train-
ing data, as well as the complexity of certain medical
tasks. All investigated models and baselines would oc-
casionally hallucinate or generate low-quality responses.
Despite these limitations, our work represents a signif-
icant step forward in the development of multimodal
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medical foundation models and their ability to perform
multimodal in-context learning in the medical domain.
We release the Med-Flamingo-9B checkpoint for further
research, and make our code available under https:

//github.com/snap-stanford/med-flamingo. In
summary, our paper makes the following contributions:

1. We present the first multimodal few-shot learner
adapted to the medical domain, which promises
novel clinical applications such as rationale gen-
eration and conditioning on retrieved multimodal
context.

2. We create a novel dataset that enables the
pre-training of a multimodal few-shot learner for
the general medical domain.

3. We create a novel USMLE-style evaluation dataset
that combines medical VQA with complex,
across-specialty medical reasoning.

4. We highlight shortcomings of existing evaluation
strategies, and conduct an in-depth clinical eval-
uation study of open-ended VQA generations with
medical raters using a dedicated evaluation app.

2. Related works

The success of large language models (LLMs) (Brown
et al.; Liang et al., 2022; Qin et al., 2023) has led
to significant advancements in training specialized
models for the medical domain. This has resulted in
the emergence of various models, including BioBERT
(Lee et al., 2020), ClinicalBERT (Huang et al., 2019),
PubMedBERT (Gu et al., 2021), BioLinkBERT
(Yasunaga et al., b), DRAGON (Yasunaga et al., a),
BioMedLM (Bolton et al., 2022), BioGPT (Luo et al.,
2022), and Med-PaLM (Singhal et al., 2022). Although
these medical language models are typically smaller
than general-purpose LLMs like GPT-3 (Brown et al.),
they can match or even surpass their performance on
medical tasks, such as medical question answering.
Recently, there has been a growing interest in

extending language models to handle vision-language
multimodal data and tasks (Su et al., 2019; Ramesh
et al.; Alayrac et al., 2022; Aghajanyan et al.; Yasunaga
et al., 2023). Furthermore, many medical applications
involve multimodal information, such as radiology tasks
that require the analysis of both X-ray images and
radiology reports (Tiu et al., 2022). Motivated by these
factors, we present a medical vision-language model
(VLM). Existing medical VLMs include BiomedCLIP
(Zhang et al., 2023a), MedVINT (Zhang et al., 2023b).

While BiomedCLIP is an encoder-only model, our focus
lies in developing a generative VLM, demonstrating
superior performance compared to MedVINT. Finally,
Llava-Med is another recent medical generative VLM (Li
et al., 2023), however the model was not yet available
for benchmarking.

3. Med-Flamingo

To train a Flamingo model adapted to the medical
domain, we leverage the pre-trained OpenFlamingo-9B
model checkpoint (Awadalla et al., 2023), which is a
general-domain VLM that was built on top of the frozen
language model LLaMA-7B (Touvron et al., 2023) and
frozen vision encoder CLIP ViT/L-14 (Radford et al.).
We perform continued pre-training in the medical domain
which results in the model we refer to as Med-Flamingo.

3.1. Data

We pre-train Med-Flamingo by jointly training on
interleaved image-text data and paired image-text
data. As for the interleaved dataset, we created a
interleaved dataset from a set of medical textbooks,
which we subsequently refer to as MTB. As for the
paired datasets, we used PMC-OA (Lin et al., 2023).

MTB We construct a new multimodal dataset from
a set of 4721 textbooks from different medical special-
ties (see Figure 3). During preprocessing, each book
is first converted from PDF to HTML with all tags re-
moved, except the image tags are converted to <image>
tokens. We then carry out data cleaning via dedupli-
cation and content filtering. Finally, each book with
cleaned text and images is then chopped into segments
for pretraining so that each segment contains at least one
image and up to 10 images and a maximum length. In
total, MTB consists of approximately 0.8M images and
584M tokens. We use 95% of the data for training and
5% of the data for evaluation during the pre-training.

PMC-OA We adopt the PMC-OA dataset (Lin et al.,
2023) which is a biomedical dataset with 1.6M image-
caption pairs collected from PubMedCentral’s OpenAc-
cess subset. We use 1.3M image-caption pairs for training
and 0.16M pairs for evaluation following the public split3.

3.2. Objectives

We follow the original Flamingo model approach (Alayrac
et al.), which considers the following language modelling
problem:

3. https://huggingface.co/datasets/axiong/pmc_oa_beta
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Figure 3: Overview of the distribution of medical textbook categories of the MTB dataset. We classify each book
title into one of the 49 manually created categories or ”other” using the Claude-1 model.

p(yℓ |x<ℓ,y<ℓ)=

L∏
ℓ=1

p(yℓ |y<ℓ,x<ℓ),

where yℓ refers to the ℓ-th language token, y<ℓ to the
set of preceding language tokens, and x<ℓ to the set
of preceding visual tokens. As we focus on modelling
the medical literature, here we consider only image-text
data (i.e., no videos).

Following Alayrac et al., we minimize a joint objective
L over paired and interleaved data:

L=E(x,y)∼Dp
[S(x,y)]+λ·E(x,y)∼Di

[S(x,y)],

where S(x, y) = −
∑L

ℓ=1 log p (yℓ |y<ℓ,x<ℓ), and Dp

and Di stand for the paired and interleaved dataset,
respectively. In our case, we use λ=1.

3.3. Training

We performed multi-gpu training on a single node with
8x 80GB NVIDIA A100 GPUs. We trained the model
using DeepSpeed ZeRO Stage 2: Optimizer states and
gradients are sharded across devices. To further reduce
memory load, we employed the 8-bit AdamW optimizer
as well as the memory-efficient attention implementation
of PyTorch 2.0. Med-Flamingo was initialized at the
checkpoint of the Open-Flamingo model and then
pre-trained for 2700 steps (or 6.75 days in wall time,
including the validation steps), using 50 gradient accumu-
lation steps and a per-device batch size of 1, resulting in
a total batch size of 400. The model has 1.3B trainable
parameters (gated cross attention layers and perceiver

layers) and roughly 7B frozen parameters (decoder layers
and vision encoder), which results in a total of 8.3B pa-
rameters. Note that this is the same number parameters
as in the OpenFlamingo-9B model (version 1).

4. Evaluation

4.1. Automatic Evaluation

Baselines To compare generative VQA abilities
against the literature, we consider different variants of
the following baselines:

1. MedVINT (Zhang et al., 2023b), a visual
instruction-tuned VLM based on Llama. As this
model was not designed to do few-shot learning (e.g.
the image information is prepended to the overall in-
put), we report two modes for MedVINT: zero-shot
and fine-tuned, where the model was fine-tuned on
the training split of the VQA dataset. Since the
rather small Visual-USMLE dataset has no separate
training split, we ommit the fine-tuned baseline for
that dataset. We used the MedVInT-TD model
with PMC-LLaMA and PMC-CLIP backbones.

2. OpenFlamingo (Awadalla et al., 2023), a powerful
VLM which was trained on general-domain data,
and which served as the base model to train
Med-Flamingo. We report both zero-shot and
few-shot performance. We expect Flamingo-type
models to shine in the few-shot setting which they
are designed for (as already the pre-training task
includes multiple interleaved image-text examples).
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Human Evalua*on App Problem 1/50

Image:

Quality score from 0 to 10

Figure 4: Illustration of our Human evaluation app that we created for clinical experts to evaluate generated answers.

Evaluation datasets To evaluate our model and
compare it against the baselines, we leverage two existing
VQA datasets from the medical domain (VQA-RAD and
PathVQA). Upon closer inspection of the VQA-RAD
dataset, we identified severe data leakage in the official
train / test splits, which is problematic given that many
recent VLMs fine-tune on the train split. To address
this, we created a custom train / test split by seperately
splitting images and questions (each 90% / 10%) to
ensure that no image or question of the train split leaks
into the test split. On these datasets, 6 shots were used
for few-shot, whereas as the in-context examples were
randomly drawn from the respective train splits.

Furthermore, we create Visual USMLE, a challenging
multimodal problem set of 618 USMLE-style questions
which are not only augmented with images but also
with a case vignette and potentially tables of laboratory
measurements. The Visual USMLE dataset was created
by adapting problems from the Amboss platform (us-
ing licenced user access). To make the Visual USMLE
problems more actionable and useful, we rephrased the
problems to be open-ended instead of multiple-choice.
This makes the benchmark harder and more realistic, as
the models have to come up with differential diagnoses
and potential procedures completely on their own—as
opposed to selecting the most reasonable answer choice
from few choices. Figure 7 gives an overview of the
broad range of specialties that are covered in the dataset,
greatly extending existing medical VQA datasets which
are narrowly focused on radiology and pathology. For this

comparatively small dataset, instead of creating a train-
ing split for finetuning, we created a small train split of 10
problems which can be used for few-shot prompting. For
this dataset (with considerably longer problems and an-
swers), we used only 4 shots to fit in the context window.

Evaluation metrics Previous works in medical
vision-language modelling typically focused scoring
all available answers of a VQA dataset to arrive at a
classification accuracy. However, since we are interested
in generative VQA (as opposed to post-hoc scoring
different potential answers), for sake of clinical utility,
we employ the following evaluation metrics that directly
assess the quality of the generated answer:

1. Clinical evaluation score, as rated by three medical
doctors (including one board-certified radiologist)
using a human evaluation app that we developed for
this study. More details are provided in Section 4.2.

2. BERT similarity score (BERT-sim), the F1 BERT
score between the generated answer and the correct
answer (Zhang et al., 2020).

3. Exact-match, the fraction of generated answers
that exactly match (modulo punctuation) the
correct answer. This metric is rather noisy and
conservative as useful answers may not lexically
match the correct answer.
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Dataset Model Clinical eval. score BERT-sim Exact-match

VQA-RAD

MedVINT zero-shot 4.63 0.628 0.167
MedVINT fine-tuned (∼2K samples) 2.87 0.611 0.133
OpenFlamingo zero-shot 4.39 0.490 0.000
OpenFlamingo few-shot 4.69 0.645 0.200
Med-Flamingo zero-shot 3.82 0.480 0.000
Med-Flamingo few-shot 5.61 0.650 0.200

Path-VQA

MedVINT zero-shot 0.13 0.608 0.272
MedVINT fine-tuned (∼20K samples) 1.23 0.723 0.385
OpenFlamingo zero-shot 2.16 0.474 0.009
OpenFlamingo few-shot 2.08 0.669 0.288
Med-Flamingo zero-shot 1.72 0.521 0.120
Med-Flamingo few-shot 1.81 0.678 0.303

Visual USMLE

MedVINT zero-shot 0.41 0.421 -
OpenFlamingo zero-shot 4.31 0.512 -
OpenFlamingo few-shot 3.39 0.470 -
Med-Flamingo zero-shot 4.18 0.473 -
Med-Flamingo few-shot 4.33 0.431 -

Table 1: Performance metrics across VQA-Rad, PathVQA, and Visual USMLE datasets. Best scores are highlighted
in bold. Emphasis is placed on the clinical evaluation score. BERT-sim likely does not capture all
fine-grained medical details. Exact-match is brittle, though provides a conservative measure. Exact-match
was uninformative (constant 0) for Visual USMLE due to long correct answers. The fine-tuned baseline
did not surpass zero-shot performance in VQA-Rad, possibly due to its small size and custom splits to
prevent leakage. Notably, the PathVQA dataset revealed a pronounced performance deficit in pathology,
underscoring that prior classification metrics might have overestimated VLMs’ efficacy in this domain.

4.2. Human evaluation

We implemented a human evaluation app using Streamlit
to visually display the generative VQA problems for
clinical experts to rate the quality of the generated
answers with scores from 0 to 10. Figure 4 shows an
examplary view of the app. For each VQA problem,
human raters are provided with the image, the question,
the correct answer, and a set of blinded generations (e.g.,
appearing as ”prediction 1” in Figure 4), that appear
in randomized order. As for human raters, we employed
three medical doctors that were affiliated with the same
academic center, however received their medical training
in different countries. The team of raters included one
board-certified radiologist.

4.3. Deduplication and leakage

During the evaluation of the Med-Flamingo model, we
were concerned that there may be leakage between the
pre-training datasets (PMC-OA and MTB) and the
down-stream VQA datasets used for evaluation; this
could inflate judgements of model quality, as the model
could memorize image-question-answer triples.

To alleviate this concern, we performed data deduplica-
tion based upon pairwise similarity between images from
our pre-training datasets and the images from our eval-
uation benchmarks. To detect similar images, in spite of
perturbations due to cropping, color shifts, size, etc, we
embedded the images using Google’s Vision Transformer,
preserving the last hidden state as the resultant embed-
ding (Dosovitskiy et al., 2021). We then found the k-
nearest neighbors to each evaluation image from amongst
the pre-training images (using the FAISS library) (John-
son et al., 2019). We then sorted and visualized image-
image pairs by least euclidean distance; we found that
images might be duplicates until a pairwise distance
value of 80; beyond this point, there were no duplicates.

This process revealed that the pretraining datasets
leaked into the PVQA evaluation benchmark. Out of
6700 total images in PVQA test set, we judged 194 to be
highly similar to images in the pretraining datasets, and
thus, we removed them from our down-stream evaluation.
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Question: 
What do the small white
lesions in the aorta mean? 

Rationale: The aorta is visible as a circular shape 
ventral of the spine. There are multiple small 
white lesions in the aorta. These lesions are 
indicative of calcification of the aortic wall.

Answer: Calcification of the aortic wall.

Question, 
Rationale, 
Answer

< Instruction > 

Question

Question, 
Rationale, 
Answer

Med-Flamingo

Multimodal  input

Multimodal  few-shot  prompt

Figure 5: Multimodal medical few-shot prompting illus-
trated with an example. Few-shot prompting
here allows users to customize the response
format, e.g., to provide rationales for the
provided answers. In addition, multimodal
few-shot prompts potentially offer the ability
to include relevant context retrieved from the
medical literature.

5. Results

In our experiments, we focus on generative medical visual
question answering (VQA). While recent medical VLMs
predominantly performed VQA in a non-generative but
rather discriminative manner (i.e., by scoring different
answer choices), we believe that this ex-post classification
to carry less clinical usefulness, than directly generating
responses. On the other hand, generative VQA is more
challenging to evaluate, as automated metrics suffer
from significant limitations as they do not fully capture
the domain-specific context. Thus, we perform a human
evaluation study where clinical experts review model
generations (blinded) and score them (between 0 and
10) in terms of clinical usefulness.

Conventional VQA datasets Table 1 shows the
results for VQA-RAD, the radiological VQA dataset for
which we created custom splits to address leakage (see
Section4). Med-Flamingo few-shot shows strong results,
improving the clinical eval score by ∼ 20% over the
best baseline. In this dataset, the auxiliary metrics
are rather aligned with clinical preference. Finetuning

the MedVINT baseline did not lead to improved
performance on this dataset which may be due to its
small size. MedVINT zero-shot outperforms the other
zero-shot ablations which may be partially attributed
to its instruction tuning step on PMC-VQA.

Table 1 shows for the results for Path-VQA, the pathol-
ogy VQA dataset. Compared to the other datasets, all
models overall perform poorer on the Path-VQA dataset
in terms of clinical evaluation score. We hypothesize that
this has to do with the fact the models are not pre-trained
on actual large-scale and fine-grained pathology image
datasets, but only on a rather small amount of pathology
literature (which may not be enough to achieve strong
performance). For instance, Figure 3 shows that only
a small fraction of our training data covers pathology.
In the automated metrics (BERT-sim and exact-match),
Med-Flamingo improves upon the OpenFlamingo base-
line, however the overall quality does not improve (as
seen in the clinical evaluation score). MedVINT was
fine-tuned on a sizeable training split which results in
strong automated metrics, but did not result in a clinical
evaluation score that matches any Flamingo variant.

Visual USMLE Table 1 shows the results for the Vi-
sual USMLE dataset. Med-Flamingo (few-shot) results
in the clinically most preferrable generations, whereas
OpenFlamingo (zero-shot) is a close runner-up. As the
ground truth answers were rather lengthy paragraphs,
exact match was not an informative metric (constant
0 for all methods). The few-shot prompted models
lead to lower automated scores than their zero-shot
counterparts, which we hypothesize has to do with the
fact that the USMLE problems are long (long vignettes
as well as long answers) which forced us to summarize
the questions and answers when designing few-shot
prompts (for which we used GPT-4). Hence, it’s possible
that those prompts lead to short answers that in terms
of BERT-sim score may differ more from the correct
answer than a more wordy zero-shot generation.

Across datasets Overall, we find that Med-
Flamingo’s multimodal in-domain few-shot learning
abilities lead to favorable generative VQA performance,
leading to the lowest average rank of 1.67 in terms of
clinical evaluation score as averaged across all evaluation
datasets. As runner-up, OpenFlamingo zero-shot
achieves a rank of 2.33.

Qualitative analysis Finally, we showcase few ex-
amples of Med-Flamingo generations in more detail in
Figures 1,5, and 8. Figure 5 exemplifies that a medical
few-shot learner like Med-Flamingo can be prompted to
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generate rationale for its VQA answer. The shown exam-
ple is impressive in that the rationale is visually guiding
the reader towards the object of interest (calcification
of the aortic wall). We note, however, that at this stage,
few-shot multimodal prompted rationales may not be ro-
bust, especially when a model arrives at a wrong answer.

Figures 1 and 8 showcase two example problems from
the Visual USMLE dataset. The problem descriptions
were slightly rephrased and summarized using GPT-4
for display. In Figure 8, Med-Flamingo generates the
correct answer while not mentioning the underlying
diagnosis (urothelial cancer) as it was not asked for. By
contrast, we observed baselines to directly diagnose the
patient (instead of answering the actual question in a
targeted way). The problem in Figure 1 illustrates that
Med-Flamingo has the ability to integrate complex med-
ical history information together with visual information
to synthesize a comprehensive diagnosis that draws from
the information of both modalities. As for failure modes,
we occasionally observed that information from the
in-context examples can leak into the final generation.

6. Discussion

In this paper, we presented Med-Flamingo, the
first medically adapted multimodal few-shot learner.
While this is an early proof-of-concept for a medical
multimodal few-shot learner, we expect to see significant
improvements with increased model and data scale,
more thoroughly cleaned data, as well as with alignment
to human preference via instruction tuning or explicit
optimization for preferences.

We expect that the rise of multimodal medical
few-shot learners will lead to exciting opportunities with
regard to model explainability (via rationale generation)
as well as grounding the model in verified sources (via
multimodal retrieval to augment the few-shot prompt).
Thereby, our work serves as a first step towards more
generalist medical AI models (Moor et al., 2023).

Limitations This work demonstrates a proof-of-
concept. As such, Med-Flamingo is not intended nor
safe for clinical use. In all VLMs we analyzed, halluci-
nations were observed. Furthermore, as Med-Flamingo
is a pre-trained model without further instruction
or preference tuning, it is possible that the model
occasionally outputs low-quality generations.

Future work It will be an exciting route for future
work to further train Med-Flamingo on clinical data,
high-resolution medical image datasets as well as 3D

volumes and medical videos. While current general-
purpose medical VLMs are pre-trained on the broad
medical literature (i.e., they are only “book-smart”),
also learning from diverse patient data directly will
become crucial for down-stream applications.
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Appendix A. Appendix

A.1. Details for MTB dataset

Clustering the images In a post-hoc analysis, we
clustered the image embeddings of the MTB dataset into
a large number of clusters (100) and manually reviewed
examples of each cluster to assign an annotation.
We discard noisy or unclear clusters and display the
remaining clusters and their frequency in Figure 6.

Classification of book titles Here, we provide
further details about the creation of Figure 3. Table 2
lists the categories used to prompt the Claude-1 model
to classify each book title. We initially prompted with
3 more very rare categories (Geriatrics, Occupational
medicine, Space medicine), but merge them into the
”Other” group for visualization purposes.

A.2. Details for Visual USMLE dataset

Figure 7 shows the distribution of specialty topics
among the problems of the Visual USMLE dataset.
Again, we used Claude-1 to classify each problem into
categories provided in Table 2.
In Figure 8, we display an example problem of the

Visual USMLE dataset.
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Figure 6: Distribution of manually annotated image clusters in the MTB dataset.
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Neuroscience/Neurology Obstetrics and Gynecology Infectious Diseases
Radiology Dermatology Family medicine
Oncology Immunology Biomedical engineering
Surgery Dentistry / Orthodontics Anesthesiology
Cardiology Ophthalmology Physiology
Psychiatry Pediatrics Medical history
Pharmacology Pathology Nursing
Herbal medicine Anatomy Otolaryngology
Orthopedics Gastroenterology Hematology
Nutrition Endocrinology Urology
Internal Medicine Genetics Pulmonology
Sports Medicine Medical Research and Statistics Emergency Medicine
Cell Biology and Histology Pain medicine Public Health and Epidemiology
Forensics Biochemistry Nephrology
Critical care medicine Medical Ethics Veterinary medicine
Physical Medicine and Rehabilita-
tion

Health informatics Mindfulness

Other

Table 2: List of 49 Categories (and ”Other”) used for visualing the MTB dataset in Figure 3

 

Dermatology (87)

Cardiology (77)

Pulmonology (48)

Neuroscience /
Neurology (43)

Pediatrics (38)

Gastro-
enterology (38)

Pathology (33) Internal Medicine (25)

Orthopedics (24)

Infectious
Diseases (24)

Hematology (23)

Obstetrics and
Gynecology (23)

Nephrology (19) Ophthalmology (19)

Pharmacology (15)

Micro-
biology (12)

Radiology (10) Otolaryn-
gology (7)

Genetics (7)

Emergency
Medicine (7)

Endocrino-
logy (6)

Medical
Research
and
Statistics (5)

Bioche-
mistry (5)

Surgery (4) Urology (4)

Immunology (4)

Cell Biology
and
Histology (3)

Public Health /
Epidemiology (2)

Dentistry /
Orthodontics (1)

Physiology (1) Anesthesio-
logy (1)

Hematology  (1) Ophthalmology  (1) Psychiatry (1)

0

0.5

1

1.5

2

2.5

3

3.5

4

log_values

Figure 7: Distribution of specialty topics in the Visual USMLE dataset, as classified by Claude-1 using the
categories provided in Table 2.
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A 60-year-old man presents to the physician with a 1-week history of lower back pain. 
Notably, he has experienced painless hematuria on several occasions over the past 2 
months. During the physical examination, localized tenderness is identified over the lumbar 
spine. Further investigations, including a CT scan, reveal multiple osteolytic lesions in the 
lumbar vertebrae, while cystoscopy detects a 4-cm mass in the right lateral wall of the 
bladder. Additionally, a photomicrograph of a biopsy specimen is provided.

Answer: The strongest risk factor for 
this patient's condition is smoking. Med-Flamingo

Question: What represents the most significant 
risk factor for this patient's condition?

Answer: The patient has a diagnosis of metastatic 
prostate cancer. Baseline ❌   Wrong diagnosis

❌   No risk factor provided

✅   Correct diagnosis
✅   Risk factor provided

Microscopic image of urothelial cancer (models cannot see this cap5on)

Figure 8: Example of a Visual USMLE problem. The displayed baseline answer is from the OpenFlamingo model.
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