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Abstract

An electrocardiogram (ECG) provides crucial
information about an individual’s health sta-
tus. Researchers utilize ECG data to develop
learners for a variety of tasks, ranging from di-
agnosing ECG abnormalities to estimating time
to death – here modeled as individual survival
distributions (ISDs). The way the ECG is rep-
resented is important for creating an effective
learner. While many traditional ECG-based
prediction models rely on hand-crafted features,
such as heart rate, this study aims to achieve
a better representation. The effectiveness of
various ECG based feature extraction meth-
ods for prediction of ISDs, either supervised
or unsupervised, have not been explored pre-
viously. The study uses a large ECG dataset
from 244,077 patients with over 1.6 million 12-
lead ECGs, each labeled with the patient’s dis-
ease – one or more International Classification
of Diseases (ICD) codes. We explored extract-
ing high-level features from ECG traces using
various approaches, then trained models that
used these ECG features (along with age and
sex), across a range of training sizes, to esti-
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mate patient-specific ISDs. The results showed
that the supervised feature extractor method
produced ECG features that can estimate ISD
curves better than ECG features obtained from
unsupervised or knowledge-based methods. Su-
pervised ECG features required fewer training
instances (as low as 500) to learn ISD models
that performed better than the baseline model
that only used age and sex. On the other hand,
unsupervised and knowledge-based ECG fea-
tures required over 5,000 training samples to
produce ISD models that performed better than
the baseline. The study’s findings may assist re-
searchers in selecting the most appropriate ap-
proach for extracting high-level features from
ECG signals to estimate patient-specific ISD
curves.

Keywords: Electrocardiogram, Individual
Survival Distributions, Variational AutoEn-
coder

1. Introduction

Heart abnormalities are one of the leading causes of
mortality in the world. In 2020, 19.05 million individ-
uals died globally due to heart disease (Tsao et al.,
2023). Electrocardiograms (ECGs) are easy to col-
lect measurements, possessing valuable information
pertinent to heart health and mortality. Each indi-
vidual’s ECG provide a unique information for the
individual’s health trajectory and potentially his/her
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survival time. Accurate estimation of Individual
Survival Distributions (ISDs) has the potential to
significantly reduce both mortality and healthcare
expenses. Factors like age and health status sig-
nificantly influence these distributions for each pa-
tient (Haider et al., 2020). Additionally, through the
estimation of ISDs, healthcare professionals can of-
fer personalized predictions that can guide medical
decisions, interventions, and resource allocation.

2. Related Work

Traditional risk assessment tools, such as the Cox
Proportional Hazard model (Kalbfleisch and Pren-
tice, 2011), yield time-independent risk scores with-
out distributions across multiple time points. Alter-
natively, models like those proposed by Gail et al.
(1989) give single-time survival probabilities (i.e.
the probability that a woman will develop breast
cancer within 5 years based on its characteristics),
while the Kaplan and Meier (1958) curve, which,
while valuable, gives an average survival probabil-
ity for a broad group of individuals. However, none
of these can offer individualized survival distribu-
tions – a probability curve for all future time points
for a specific patient. Recognizing this gap, re-
searchers developed models such as the random sur-
vival forest (RSF) (Iswaran et al., 2008) Kalbfleisch-
Prentice extensions of the Cox (Cox-KP) (Kalbfleisch
and Prentice, 2011), the elastic net Cox (Coxen-
KP) (Yang and Zou, 2013), Multi-task Logistic Re-
gression (MTLR) (Yu et al., 2011), Neural-MTLR
(N-MTLR) (Fotso, 2018), DeepHit (Lee et al., 2018) ,
SODEN (Tang et al., 2022), and BNN-ISD (Qi et al.,
2023) to estimate ISD
ECGs, when combined with parameters like age

and sex, have been successfully used to predict 1-
year mortality (Sun et al., 2023) suggesting ECGs
contain the information needed for mortality predic-
tion (Raghunath et al., 2020). To learn a model that
can estimate patient’s ISD using that multidimen-
sional bio-signal data such as 12 lead ECGs, we can
use two general approaches: (1) using an end-to-end
neural network based ISD learning system (deep or
shallow) that takes raw ECG signals, each labeled for
survival time, as input, and (2) first learning some
high-level features/embeddings of ECG signal, pro-
duced from intermediate tasks, then using that en-
coding as input for learning an ISD model. In the
latter approach, the goal is to encode the ECGs into
a lower dimension while retaining sufficient informa-

tion to produce an effective survival model. This
can be achieved through supervised, semi-supervised,
unsupervised machine learning, or knowledge-based
methods (defined in Section 3.3.6). In the case of
supervised feature extractor models, the algorithms
are learned for a particular task other than esti-
mating ISD, but supervised by clinically relevant la-
bels. such as multi-label classification. These algo-
rithms produce ECG encodings (Features for down-
stream prediction task), typically using deep learn-
ing models like Inception (Szegedy et al., 2017) or
ResNet (He et al., 2016). However, it is not guar-
anteed that these features, optimized for these vari-
ous tasks, will produce accurate ISDs. Unsupervised
machine learning techniques, such as autoencoder
(AE) (Hinton and Zemel, 1993) or variational autoen-
coder (VAE) (Higgins et al., 2016), can also encode
ECGs into lower-dimensional features, as evidenced
by studies like Kuznetsov et al. (2020) and Jang et al.
(2021). However, there is no guarantee that this will
lead to an accurate ISD model, similar to the limi-
tations with features extracted by supervision. An
alternative approach for encoding ECGs is through
clinical knowledge based features, which produced
global features during ECG data collection. They use
clinical morphology of waveforms to convert ECGs
into features, however, the features that are used are
limited(i.e. QRS duration and PR interval). Models
trained on these knowledge-based features are gen-
erally less accurate than supervised or unsupervised
methods, but the models are easier to interpret as
features have clinical physical meaning.

Therefore, this study explores the various feature
extraction methods for ECGs, and compares their
effectiveness in predicting ISD across the range of
training sample sizes. The analysis conducted across
different sample sizes can be a valuable reference
for other researchers, helping them identify optimal
starting points and choose the most suitable methods
for their research goals.

3. Method

The ECG data for this study received approval from
the Health Research Ethics Board at the University
of Alberta.

3.1. Dataset

Our dataset (Sun et al., 2023) consists of 12-lead
ECG signals from 244,077 patients, collected using
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Figure 1: a-e) ECG feature extraction methods used to produce intermediate encoding. f)Using ECG fea-
tures (from (a) to (e) above), as well as Sex and Age, and the label (CensorBit and Time) to train
ISD models. g) In the ISD inference step, we use the trained ISD model to estimate the ISD for
a new patient, based on his/her ECG features along with age and sex.
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Figure 2: Flowchart of study design: a) Objectives and experiment design of this study. For both objectives,
we use the same hold-out dataset for their evaluations. b) Data split of the training dataset (90%
for training and 10% for fine-tuning) and hold-out dataset for both objectives and all ECG feature
extractor methods.
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a Philips IntelliSpace ECG machine at a sampling
frequency of 500 Hz. For training the ISD models,
we normalized the ECG features using the z-score
normalization method. To train the models, both
models to produce ECG features and models to esti-
mate ISDs, we split the dataset into a training set (
60% = 964,741 ECG signals from 146,466 patients)
and a holdout set (40% = 640,527 ECG signals from
97,631 patients) while making sure that ECGs from
the same patient is not included in both training and
holdout datasets. (Figure 2).

3.2. Prediction task

We want to estimate patient-specific ISD for the event
of interest (death) using ECG signals. We will use
the training set along with the patient’s age and sex,
a specific partitioning of time into bins, and target
event (either still alive or dropped out of the study
as 0, or death as 1 for each time bin) to train ISD
models. We used GPUs (Tesla V100-SXM2, 32GB of
RAM) and Pytorch 1.11 to train all our models.

3.3. ECG features for estimating ISD

Figure 1 shows a summary of ECG features that we
use to train ISD models.

3.3.1. End-To-End Deep Learning

The first approach (Figure 1-a) uses raw ECG signals
to directly train ISD models, where each raw ECG
signal consists of 4096 real values. To reduce the di-
mensionality of raw ECG signals, we can choose any
number of layers, fully connected or convolutional,
before entering the ISD models. Here, we will use the
ResNet architecture developed by Sun et al. (2022).
We then feed the output of those layers, along with
age and sex into the ISD modes. We call this ap-
proach End-To-End Deep Learning (E2E DL).

3.3.2. Supervised ECG features

We will use a pre-trained model developed in our
group for feature extraction as explained by Sun et al.
(2022). This model was originally developed for mul-
tilabel classification of International Classification of
Diseases, 10th revision (ICD-10) codes. (Note that
here we consider 1414 different ICD-10 codes, bi-
nary labels, and label each patient with 0 or more
of them. (Sun et al., 2023)). We will use the pre-
dicted probabilities generated by this model for raw

ECG signals as supervised ECG features. The size of
these ECG features is 1414 as shown in Figure 1-b.
We call this approach RN-ICD, which will use these
supervised ECG features along with age and sex to
train the ISD models.

3.3.3. Unsupervised ECG features

We will use two β-VAE models to extract embed-
dings/features for ECG signals: β-VAE where the
building block of the encoder-decoder is based on ei-
ther (1) ResNet, or (2) Temporal Convolutional Net-
work (TCN). We will refer to the ECG features ob-
tained from these two models as unsupervised ECG
features. Supplementary Information (SI) section 1
will explain the training process of these two models.
Here, we briefly describe these two models.

3.3.4. ResNet-based β-VAE

Follwoing Jang et al. (2021), we adopt the β-VAE
architecture with residual connections, for our ECG
dataset. This model design is created to learn single-
lead ECG signals, see Figures S1 and S2. We con-
structed a separate model for each lead of the 12-lead
ECGs. After learning,, we then use the trained model
to extract ECG features, using one model for each
lead. For example, lead number one of these ECGs
will be fed into the model that was trained on lead
number one. This approach maps each ECG lead
into 64 features (Figure 1-c). We will refer to these
unsupervised ECG features as RN-β-VAE-lead#.
Then, we concatenate ECG features obtained from
each lead. We call these combined ECG features
as RN-β-VAE.

3.3.5. TCN-based β-VAE

TCN-based β-VAE approach adapt the β-VAE ar-
chitecture and code provided by van de Leur et al.
(2022), to our ECG dataset. Using the encoder of
the trained model, we map each 12-lead ECG into
a 32 embeddings/features (Figure 1-d). We call this
approach TCN-β-VAE.

3.3.6. Knowledge-based ECG features

The Philips IntelliSpace ECG Machine generated 22
global measurements for each of the 12 leads (Fig-
ure 1-e)– features that are well-known to experts,
such as QRS duration, RR-interval, and heart-rate
to name a few (Hammad et al., 2018). We call these
features knowledge-based.
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3.4. ISD Algorithms

3.4.1. Cox-Proportional Hazard (COX-PH)
Model

The Cox-PH Model (Cox, 1972) is one of the well-
known statistical methods used for survival analy-
sis. Here, we will use the Cox-PH Model to estimate
patient-specific ISD using any of the ones, described
earlier.

3.4.2. Neural Multi-Task Logistic
Regression (N-MTLR) Model

N-MTLR (Fotso, 2018) is a modified version of
MTLR (Yu et al., 2011). which passes the data to
multiple neural networks, either deep or shallow, be-
fore entering the MTLR model. We can consider
MTLR as a series of logistic regression (LR) models,
where each LR model estimates the survival proba-
bility at a specific time interval. (Note: for each of
them).To learn a MTLR model, we first divide the en-
tire time horizon into m time bins. Yu et al. (2011)
states that for each time bin, we estimate the survival
probability as follows:

Pθi(T ≥ ti|x) = (1 + exp(θi · x+ bi))
−1

, 1 ≤ i ≤ m
(1)

where T is the time, x is the individual’s features,
and the parameters vector θi and the thresholds bi
are specific to a given time. The binary labels, yi =
[T ≥ ti], can vary based on the value of the threshold
ti. We represent a patient’s survival time, denoted
as d, as a binary sequence y = y(d) = (y1, . . . , ym) ∈
{0, 1}m. Here, yi is set to 0 if death has not occurred
by the time ti – that is, ti < d. On the other hand,
yi is set to 1 when ti ≥ d. There are m + 1 valid
sequences that take the form of (0, 0, . . . , 1, 1, . . . , 1),
which includes both the sequence consisting entirely
of zeros and the sequence consisting entirely of ones.
The probability of observing a specific survival status
sequence of Y = (y1, . . . , ym) can be estimated as
follows:

PΘ(Y |x) =
exp (

∑m
i=1 yi(θix+ bi))∑m

k=0 exp(fΘ(x, k))
(2)

where Θ = (θ1, . . . ,θm) and fΘ(x, k) =∑m
i=k+1(θix+ bi) for 0 ≤ k ≤ m represents the score

of the sequence when an event takes place within the
time range [tk, tk+1) (Yu et al., 2011). Here, we use
N-MTLR as a state-of-the-art algorithm to estimate

ISD curves using ECG features obtained by various
approaches described earlier along with age and sex.

3.5. Evaluation

This paper attempts to achieve two goals. Firstly,
we compare the performance of ISD models ( COX-
PH versus N-MTLR) by utilizing ECG features ob-
tained through various methods as discussed earlier.
Secondly, we compare the performance of ISD mod-
els trained on representative ECG features (super-
vised, unsupervised, and knowledge-based) using the
better-performing ISD model (hint: N-MTLR) as a
function of training sample size. The diagram in Fig-
ure 2-a shows the sample sizes utilized for each of
these objectives. To accomplish the second objective,
we select 7 different training sample sizes, 100, 500,
1000, 5000, 10000, 100000, and 50000. For each train-
ing sample size and ECG features, we use 10 different
random splitting training sets to train 10 models and
plot the mean of the performance, with error bars re-
flecting the 95% confidence interval. To evaluate the
performance of ISD models, we use three metrics: the
Concordance index (C-index), Marginal L1-loss, and
Integrated Brier Score (IBS). The higher value of the
C-index and lower value of Marginal L1 loss and IBS
show a better model performance. In Section S2, we
provide the definition of these metrics.

4. Results

We evaluated the effectiveness of different ECG fea-
tures in estimating ISD using two models. Tables 1
and 2 show the results of the ISD estimated by COX-
PH and N-MTLR models using all training dataset
(as per the first objective), respectively. The ECG
features that performed the best for each performance
metric are highlighted in bold. To set a baseline,
we calculated the median survival time (MST) for
both uncensored and all patients using the Kaplan-
Meier (KM) method Kaplan and Meier (1958), and
the Marginal L1 loss when the model predicted the
median survival time for all patients. If the ECG fea-
tures have the required information for the ISD task,
the ISD model trained on these Features should have
a smaller Marginal L1 loss than the baseline models.
For the COX-PH model (Table 1), the performance
of all unsupervised features (RN-β-VAE and TCN-
β-VAE) and knowledge-based features are close to
the performance of the baseline. RN-ICD showed a
significantly better performance in all metrics than
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the baseline. For the N-MTLR model (Table 2),
the results show that all ECG features have signifi-
cantly better performance than the baseline. Among
ECG features, supervised deep learning features (RN-
ICD and E2E DL) outperformed unsupervised fea-
tures (RN-β-VAE and TCN-β-VAE) and knowledge-
based features in terms of C-index and IBS. E2E DL
showed a slightly better Marginal L1 loss among all
models. Among all features, the RN-ICD features
stood out, being the best in two metrics, C-index
(0.8058) and IBS (0.1360), and comparable perfor-
mance in terms of Marginal L1 loss. The difference
in performance between unsupervised features of RN-
β-VAE and TCN-β-VAE was negligible. Note that
the performance metrics for each lead individually
(RN-β-VAE-lead#) are lower than the 12 lead sig-
nals (TCN-β-VAE) – see Table S1. For all metrics,
the ECG measurement features had slightly better
performance than RN-β-VAE but had similar perfor-
mance compared with unsupervised features of TCN-
β-VAE.

Table 1: Survival Prediction performance using var-
ious generated embedding approaches from
ECG signals to predict time until death us-
ing the COX-PH model.

Feature Ap-
proach

Feature
Size

Marg.
L1
loss

C-
index

IBS

E2E DL 12×4096 2622.83 0.501 0.22

RN-ICD 1414 1984.14 0.77 0.15

RN-β-VAE 768 2653.46 0.50 0.24

TCN-β-VAE 32 2607.17 0.51 0.23

Knowledge-
based

22 2672.32 0.50 0.22

MST all =
3420

- 2749.90 - -

MST uncen-
sord = 496

- 2615.52 - -

To achieve the second objective of our study, which
is to analyze the impact of the training dataset sam-
ple size on the performance of the ISD model, we
used the N-MTLR model as it performed better than
the COX-PH model. We considered sample sizes of
100, 500, 1000, 10,000, 50,000, 100,000, and 500,000.
We chose better-performing features from different
categories, including supervised (RN-ICD and E2E
DL), unsupervised (TCN-β-VAE), and knowledge-
based ECG features. Furthermore, we used age and

Table 2: Survival Prediction performance using var-
ious generated embedding approaches from
ECG signals to predict time until death us-
ing the N-MTLR model.

Feature Ap-
proach

Feature
Size

Marg.
L1
loss

C-
index

IBS

E2E DL 12×4096 2021.94 0.75 0.16

RN-ICD 1414 2152.02 0.81 0.14

RN-β-VAE 768 2145.15 0.71 0.17

TCN-β-VAE 32 2106.28 0.72 0.17

Knowledge-
based

22 2121.62 0.73 0.17

MST all =
3420

- 2749.90 - -

MST uncen-
sored = 496

- 2615.52 - -

sex features as a baseline to compare the model’s per-
formance when no ECG features are used. This base-
line served as a reference point to assess the contribu-
tion of ECG features to the learning process and en-
hancement of the ISD model’s performance. Figure 3
show the result of these experiments. For all met-
rics, as we added more training samples, the model’s
performance improved, as expected. The supervised
ECG features of RN-ICD outperformed other ECG
features for all metrics and sample sizes. The C-index
of RN-ICD showed a clear advantage of using ECG
features, even with as few as 500 training instances
compared to baseline age and sex features. For the
E2EDL, up to 10,000 training sample size, C-index
was inferior to just using age and sex, and started
getting better up to the maximum training sample
size of 500,000. However, for all other metrics, the
performance of E2EDL was inferior than other mod-
els. For knowledge-based and TCN-β-VAE, however,
a training size of 5,000 and 10,000 respectively was
required to achieve higher performance than the base-
line. Improvement in performance was minimal after
50,000 training samples for all metrics and all ECG
features. Additionally, knowledge-based ECG fea-
tures showed slightly better performance than TCN-
β-VAE features for all training sample sizes.

5. Discussion

Using COX-PH and N-MTLR models and a large
ECG dataset of 244,077 patients, we investigated the
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Figure 3: Performance of the N-MTLR model as a function of training sample size using various supervised,
unsupervised, and knowledge-based ECG features. The points represent the mean value over the
10 experiments, and the bars represent 95% confidence intervals. (a) C-index, (b) Marginal L1
loss, (c) IBS.
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performance of ISD models using raw ECG signals,
and ECG features obtained from supervised and un-
supervised learning as well as knowledge-based fea-
tures. The results for both models showed that ECG
features obtained from the supervised ECG extrac-
tor method have higher performance than using raw
ECG signals as well as unsupervised and knowledge-
based ECG features. However, except for Marginal
L1 loss and using RN-ICD, which had a better perfor-
mance using the COX-PH model, the performance of
COX-PH was inferior to N-MTLR for all metrics(C-
index, Integrated Brier Score, and Marginal L1 loss)
possibly because the former assumes a constant haz-
ard ratio and a linear relationship between the fea-
tures and the log hazard, which is unrealistic. The
N-MTLR model is more appropriate as it is not
make such assumptions. The supervised ECG fea-
tures (RN-ICD) achieved superior performance when
compared to other ECG features. Considering the
direct relationship between morbidity and mortal-
ity, it is clinically sensible to incorporate diagnostic
predictions as features for training accurate survival
models. This suggests that ECG features obtained
from an intermediate supervised task are a better
candidate as ECG features for training ISD models.
This finding is aligned with the study of Popescu
et al. (2022), which developed a deep learning al-
gorithm that leveraged patient Covariates, including
some ECG global features, and 3D cardiac magnetic
resonance images, to predict ISDs for the task of sud-
den cardiac death in patients with ischemic heart
disease. The model achieved C-index and IBS of
0.83 and 0.12, respectively, for their internal valida-
tion set. Other studies in the literature have primar-
ily focused on predicting single-time mortality (such
as 1-year mortality prediction using ECG signals)
(Sun et al., 2023). The results indicate that the per-
formance of unsupervised ECG features (RN-β-VAE
and TCN-β-VAE) and knowledge-based features are
similar, suggesting there is no clear advantage in us-
ing knowledge-based features over unsupervised, be-
cause knowledge based is expected to be more infor-
mative. However, the trained unsupervised architec-
ture can be used to generate synthetic ECGs that
might be beneficial for other tasks. Also, there is no
significant difference between the performance met-
rics of features obtained from different single leads
(RN-β-VAE-lead# features), suggesting that any of
the leads can be used to train the ISD model with no
significant compromise on the performance metrics.

Supervised ECG features outperformed other
ECG-obtained features at a smaller sample size when
considering training sample size. Only a training
sample size of 500 was required for supervised ECG
features to achieve better performance than using age
and sex alone. The performance of E2EDL was lower
than all other models and started getting better with
a larger training sample size. For unsupervised and
knowledge-based features, a training sample size of
5000 was needed to achieve higher performance than
using only age and sex features. Additionally, we
did not observe any significant improvement in the
ISD model’s performance using training sizes beyond
50,000 samples for all ECG features.

Here, unsupervised ECG features and knowledge-
based features had a comparable performance for
training ISD models. However, more recently
developed unsupervised algorithms and/or semi-
supervised training of such models (including multi-
task learning during the VAE training) could lead to
unsupervised ECG features that might outperform
knowledge-based features to estimate patient-specific
ISD. Note that our ISD models, trained on supervised
ECG features, demonstrated superior performance.
We therefore expect that this hybrid approach will
enrich the embeddings, making them more effective
in estimating ISDs.

Our results should be considered in light of cer-
tain limitations. First, our study has explored only
a specific set of feature extraction and embedding
methods, as well as ISD methods. Additionally, we
have utilized a selected set of labels for supervising
the supervised feature extractor, in our case, medi-
cal diagnoses, given their direct implications on mor-
tality. This was made possible due to our unique
dataset, which includes a population-scale linkage be-
tween over 1 million digitized ECGs and more than
1000 wide-ranging ICD clinical diagnoses. However,
it is important to note that these ECGs were gener-
ated by machines from the same manufacturer, which
might limit the generalizability of our findings to
ECGs from other systems. Furthermore, our prog-
nostic models may be influenced by the inclusion of
deaths unrelated to clinical factors, such as those re-
sulting from traffic accidents or homicides. When our
paper was submitted, we could bot find any publicly
available ECG datasets containing mortality informa-
tion (or other temporal events) for use as labels in
ISD tasks. Prominent ECG datasets, such as Phy-
sioNet (Goldberger et al., 2000), MIT-BIH (Moody
and Mark, 2001), and PTB (Bousseljot et al., 1995),
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do not include death-related data linked to ECGs.
However, it’s possible that more comprehensive clin-
ical datasets that include ECGs, like MIMIC (Gow
et al., 2023), may become available in the future.
These datasets could serve as benchmark data for
ECG-based ISD tasks and external validation.

6. Conclusion

In this study, we examined different methods of ex-
tracting ECG-based features, which are then used for
training ISD models, using a large dataset of 244,077
patients. We used several advanced algorithms to ex-
tract these ECG features and found that supervised
ECG features performed better than raw ECG sig-
nals as well as unsupervised and knowledge-based fea-
tures. We found that an ISD model trained on ECG
features obtained from supervised learning 1414 ICD-
10 codes performed the best based on C-index and
Integrated Brier score. We also found that a smaller
training sample size is sufficient to have a better ISD
model when using ECG features obtained from a su-
pervised feature extractor compared with unsuper-
vised feature extractor or knowledge-based ECG fea-
tures. However, additional research is necessary to
evaluate the ECG features obtained from either su-
pervised or semi-unsupervised learning trained on a
different task. In summary, this paper can inspire
discussions about improving Individual Survival Dis-
tributions (ISDs) through various extraction methods
and algorithms.
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Appendix A. Training process of
unsupervised ECG
feature extractor models

As we discussed in the main manuscript, We use two
Beta Variational AutoEncoder (β-VAE) model to en-
code ECG signals. The β-VAE is a variation of the
VAE that includes a hyperparameter β in the loss
function to disentangle the learned representation.
Here, we will describe these models in more details.

A.1. ResNet-Based Model

We use β-VAE architecture with residual connec-
tions, following the proposal by Jang et al. (2021),
and adapt it for our ECG dataset. This model de-
sign is created to learn single-lead ECG signals, and
Figures S1 and S2 show modified diagrams of its ar-
chitecture.
We constructed a separate model for each lead of

the 12 lead signals. Training of each model requires
configuring two adjustable parameters of the β-VAE:
the embedding size and β. We chose the values 64
and 8, respectively. A schematic of the β-VAE train-
ing process is shown in Figure S1. During the learn-
ing process, the encoder takes in batches of single-
lead ECGs and encodes it into 64 pairs [means, vari-
ances]. From these parameters, a sample is drawn
from the Gaussian distribution, producing a 64-tuple
that serves as input for the β-VAE decoder. The de-
coder’s goal is to reconstruct the input ECG signal
with low loss error. The total loss is a combination
of individual losses, and the individual loss function

used for training the β-VAE model is negative log-
likelihood with a regularizer term, as follows:

li(θ, ϕ) = −E[log pϕ(xi|z)] + βKL(qθ(z|xi)||p(z))
(3)

where the first term is the reconstruction loss for the
i-th data point. The expectation is considered with
respect to the distribution of the encoder over the fea-
tures. Here, we used the mean squared error as the
reconstruction loss. The second term is the Kullback-
Leibler (KL) divergence between the prior distribu-
tion p(z) and the encoder’s distribution q(z | xi),
with a regularization term β. In our study, we uti-
lized the mean squared error as the reconstruction
loss. After training the β-VAE model, the ECG sig-
nal is fed into the encoder of the trained model (with
weights frozen), producing 64 pairs of [means, vari-
ances]. Here, we use the means as ECG features.
As the algorithm can only learn one lead ECG sig-
nal, each lead was trained separately, and the learned
features were combined (with a feature size of 768)
(RN-β-VAE). We use these ECG features, along with
age and sex, to train the ISD models. We will also
compare the performance of ECG features obtained
from each individual ECG lead for estimation of ISDs.
to (RN-β-VAE-lead#). (Note that we use the # sign
to reflect the lead number that is used to train this
model.)

A.2. TCN-Based Model

We used β-VAE architecture and code provided
by van de Leur et al. (2022), but modified it to recon-
struct 12-lead ECG traces of the Alberta Dataset (see
Figure S3). The adjustable parameters of β-VAE are
the number of features and β, which we set to 32 and
8, respectively, which we chose to be the same as the
values used by van de Leur et al. (2022). The train-
ing process and loss function were the same as the
RN-β-VAE model described earlier. The encoder us-
ing a convolutional deep neural network encodes the
input ECG signal into 32 pairs [ means, variances].
After the training, 12-lead ECG signals were fed into
the encoder, and we use the encoded 32 means, along
with the patient’s age and sex, to estimate that pa-
tient’s specific ISD curves. We call this approach
TCN-β-VAE.
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Figure S1: Building blocks of Residual Encoder and Residual Decoder used in Resnet based β-VAE.

Table S1: Survival Prediction performance using various generated embedding approaches from ECG signals
to predict time until death using the N-MTLR model.

Embedding Approach Feature Size Marg. L1
loss

C-index IBS

RN-β-VAE-lead#1 64 2176.0923 0.7040 0.1755

RN-β-VAE-lead#2 64 2179.3920 0.7015 0.1764

RN-β-VAE-lead#3 64 2179.4895 0.7036 0.1756

RN-β-VAE-lead# aVR 64 2173.2837 0.7053 0.1754

RN-β-VAE-lead# aVL 64 2174.6006 0.7089 0.1753

RN-β-VAE-lead# aVF 64 2173.1548 0.7061 0.1756

RN-β-VAE-lead# V1 64 2170.1717 0.7036 0.1754

RN-β-VAE-lead# V2 64 2165.4921 0.7017 0.1753

RN-β-VAE-lead# V3 64 2167.9394 0.7075 0.1754

RN-β-VAE-lead# V4 64 2194.9370 0.7001 0.1766

RN-β-VAE-lead# V5 64 2160.4920 0.7063 0.1753

RN-β-VAE-lead# V6 64 2181.7161 0.6880 0.1768
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Figure S2: Model’s Architecture of Resnet based β-VAE.
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Figure S3: Model’s Architecture of Resnet based β-VAE.
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Appendix B. Metrics

B.1. C-index

C-index (aka Concordance) is a well-known metric
used to evaluate the performance of a risk model. The
C-index measures how well the model can discrim-
inate between individuals with different risk levels.
Calculation of C-index starts by identifying the set
of all comparable pairs. The metric then calculates
the percentage of pairs that are correctly predicted.
A pair is considered to be concordant when the per-
son with a shorter observed survival time also has a
shorter predicted survival time according to the ISD
model. For example, if there are two uncensored in-
dividuals, A and B, and it is observed that patient
B will survive longer than patient A, the model will
calculate the median survival time for each patient,
tmA and tmB. If tmA is less than tmB, the model’s
prediction that patient B will live longer is consid-
ered correct. Conversely, if tmA is greater than tmB,
the prediction for this pair is deemed incorrect. The
formula to calculate C-index is defined as following:

C-index =

∑
i,j

(
1Tj<Ti

· 1ηj<ηi
· δj

)∑
i,j

(
1Tj<Ti · δj

) (4)

where ηi is the risk score of individual i, δi ∈ {0, 1}
indicates if the i-th patient is dead (1) at that time
Ti, or is censored (0). The range of the C-index varies
from 0 to 1. The C-index value of 0.5 indicates the
baseline, which implies that randomly assigning prob-
abilities to instances would result in a 50% probabil-
ity of correct ordering. A higher C-index value shows
a better model performance.

B.2. Marginal L1 Loss

To compute this metric, it is necessary to have the
actual event time in order to compare the difference
between the predicted and actual survival times. For
uncensored patients, the actual event time (death) is
known, but for censored patients, the survival time is
estimated based on the expected survival time calcu-
lated using the Kaplan-Meier (KM) method. The dif-
ference between the predicted survival time and the
actual survival time is then expressed as a marginal
L1 loss. To this end, for each censored individual,
we will define a “Best-Guess” value, representing the
individual’s expected survival time given that s/he
already survived until time c.

BG(c) = c+

∫∞
c

S(t) dt

S(c)
(5)

where S(.) is the survival function, which we esti-
mate using Kaplan-Meier (KM) generated from the
training set. Using this BG(c), we can calculate the
L1-marginal loss as follows:

L1margin(D, t̂0.5) =
1

γ
[ ∑
j∈Duncensor

∣∣dj − t̂0.5i

∣∣
+

∑
k∈Dcensor

αk

∣∣BG(ck)− t̂0.5k

∣∣]
(6)

where γ = |Duncensor| +
∑

k∈Dcensor
αk, and αk

shows the level of weight in each estimate based on
the Best-Guess for each individual, and d is the true
event time. We set αk = 1 − ŜKM(ck) to place more
weight on the late censor time instances. The reason
for such a weight definition as explained by Haider
et al. (2020) is that individuals with early censor time
give less information compared to those individuals
with late censor time.

B.3. Integrated Brier Score

Brier Score (Byers et al., 1951) measures the mean
squared error between the prediction made by the
model and the actual event status (0 or 1) for a given
time. If all data is uncensored, the Brier score at time
t for a such dataset (D) is as follows:

BSt(D, Ŝ(t|x)) = 1

D

∑
(xi,di)∈D

(
I|di ≤ t| − Ŝ(t|xi)

)2

(7)
we can extend the Brier score to a series of time

points using Integrated Brier Score (IBS), which es-
timates the mean Brier score over the time interval.

IBS(τ,D, Ŝ(.|.)) = 1

τ

∫ τ

0

BSt(D, Ŝ(t|.)) dt (8)

If the model accurately predicts all time points, the
score will be 1, and if the model always predicts 0.5,
the score will be 0.25. So, a lower number indicates
a better ISD model. The formula presented here as-
sumes that we do not have any censored individual.
To handle the censored individual, Graf et al. (1999)
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suggest employing the Inverse Probability of Censor-
ing Weights (IPCW) approach, where the instances
subject to censoring are weighted equally to the un-
censored instances. For more detailed description,
please see Graf et al. (1999)
If the model accurately predicts all time points, the

score will be 1, and if the model always predicts 0.5,
the score will be 0.25. So, a lower number indicates
a better ISD model.
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