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Abstract

Automated interpretation of electrocardio-
grams (ECG) has garnered significant atten-
tion with the advancements in machine learning
methodologies. Despite the growing interest,
most current studies focus solely on classifica-
tion or regression tasks which overlook a cru-
cial aspect of clinical cardio-disease diagnosis:
the diagnostic report generated by experienced
human clinicians. In this paper, we introduce
a novel approach to ECG interpretation, lever-
aging recent breakthroughs in Large Language
Models (LLMs) and Vision-Transformer (ViT)
models. Rather than treating ECG diagnosis
as a classification or regression task, we propose
an alternative method of automatically identi-
fying the most similar clinical cases based on
the input ECG data. Also, since interpreting
ECG as images is more affordable and acces-
sible, we process ECG as encoded images and
adopt a vision-language learning paradigm to
jointly learn vision-language alignment between
encoded ECG images and ECG diagnosis re-
ports. Encoding ECG into images can result
in an efficient ECG retrieval system, which will
be highly practical and useful in clinical appli-
cations. More importantly, our findings could
serve as a crucial resource for providing diag-
nostic services in underdevelopment regions.

Keywords: Cardiovascular, Retrieval, Multi-
modal, Electrocardiogram

1. Introduction

Cardiovascular diseases, such as heart attacks and
strokes, account for the majority of global deaths.
ECG is a vital tool in cardiology and electrophys-
iology, providing valuable information about the
heart’s structure, electrical activity, and potential
systemic conditions through waveform changes in
timing and morphology. Accurate interpretation of
clinical ECGs is critical, as it remains a primary
method for identifying cardiac abnormalities and
screening populations at risk of heart-related issues.

The precise interpretation of ECGs is essential for
providing timely, efficient, and cost-effective interven-
tions for acute cardiac conditions. Machine learning
(ML) algorithms have been used to assist ECG in-
terpretation, including disease classification (Nonaka
and Seita, 2021; Khurshid et al., 2021; Raghunath
et al., 2021; Giudicessi et al., 2021; Strodthoff et al.,
2021), adversarial attack (Han et al., 2020a; Hossain
et al., 2021; Chen et al., 2020a), data augmenta-
tion (Raghu et al., 2022; Nonaka and Seita, 2020),
contrastive learning (Gopal et al., 2021), and the ap-
plication of transformer models (Che et al., 2021;
Natarajan et al., 2020; Behinaein et al., 2021).
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Figure 1: Prior studies only provided disease prediction accuracy for machine learning models, leaving doctors to
cross-reference databases for precise diagnoses. In contrast, our method retrieves relevant past studies in
the database, greatly reducing doctors’ manual search efforts and improving patient care efficiency.

Most current machine learning ECG interpretation
frameworks have practical limitations. They mainly
use the ECG signal as input and diagnosis as a la-
bel, adapting to supervised learning as in other fields.
However, ECG diagnosis is multifaceted, involving
a complex hierarchy of disorders. For instance, the
ST/T changes class can be divided into subclasses
like ischemic in anterior leads (ISCA), ischemic in in-
ferior leads (ISCI), non-specific ischemic (ISC), and
non-specific ST changes (NST) (Guglin and Thatai,
2006). In practice, physicians commonly provide de-
tailed ECG reports (Wagner et al., 2020) contain-
ing nuanced signal features and categorical diagnoses.
AI-powered ECG frameworks, however, assume dig-
ital ECG processing via advanced systems. In real-
ity, paper-printed ECGs (Zhang et al., 2023) from
ECG monitor machines (Olson et al., 2013) are pre-
dominantly used by patients and doctors. Notably,
paper-printed ECGs are the sole protocols in under-
developed regions.

To overcome the aforementioned limitations,
our goal is to enhance ECG interpretation au-
tomation by addressing the following challenge:
Can we automatically match it with the most similar
ECG records in the database?? This involves lever-
aging joint inference between the ECG signal and
expert-written reports. This functionality can
greatly aid in diagnosing common diseases like
arrhythmia (Hong et al., 2020; Fu et al., 2021),
reducing physicians’ workload (Hannun et al., 2019).
Additionally, this ECG data retrieval system can
assist in diagnosing complex conditions such as
atrial fibrillation and contractile dysfunction (Attia

et al., 2019b,a), which pose challenges for supervised
learning networks due to limited training data.

To realize this goal, we introduce an ECG-
Text retrieval system that employs a multimodal
information retrieval framework to automatically
fetch expert-written reports along with correspond-
ing ECG records. From a pragmatic standpoint, we
treat ECG data as image input and employ various
featurization methods. Our model is designed to dis-
cern the similarity score between these two modal-
ities, enabling automatic identification of correspon-
dences between ECG images and human language de-
scriptions. Our contributions are outlined as follows:

• Our approach aims to improve ML-driven ECG
automatic diagnosis by tackling the multimodal
retrieval challenge and training to align the two
modalities.

• We present a robust framework that provides
clinicians with a practical and efficient method
to automatically search and identify similar ECG
records for newly acquired ECG data.

• Building upon progress in image-text alignment
research, we highlight the treatment of ECG
signals as images and introduce diverse prepro-
cessing methods. This strategy makes our ap-
proach practical and readily applicable, given the
widespread use of commercial ECG machines.

2. Related Work

Multimodal Learning in Healthcare The com-
putational field of machine learning has faced the
multimodal nature of clinical expert decision-making.
Kline et al. (2022) summarized the current studies in
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multimodal learning in healthcare applications and
identified topics ripe for future research. Amal et al.
(2022) reviewed multimodal data fusion and machine
learning in cardiovascular medicine. For example, the
detection of cardiac amyloidosis can benefit from fus-
ing ECG signals and echocardiograms with convolu-
tion neural networks (Goto et al., 2021). The multi-
modal approach also helps as combining salient phys-
iological signals and EHR data can effectively predict
the onset of hemodynamic decompensation (Hernan-
dez et al., 2021). However, our study is the first to
investigate the multimodal properties between ECG
and natural language data.

Encode Time Series Signals into Images Deep
learning has been successfully applied to automate
ECG diagnosis (Han et al., 2020b). These methods
are usually based on raw ECG signal data and corre-
sponding features (Kiranyaz et al., 2015; Zhu et al.,
2022). However, traditionally, ECG data is trans-
formed into printed images with waveforms and in-
terpreted by trained clinicians (Sangha et al., 2022a).
To harness recent advancements in deep learning and
computer vision, making ECG interpretation more
practical and accessible, machine learning approaches
that treat ECG data as image features have been in-
vestigated. An early approach combined either ECG
images or signals (Sangha et al., 2022a) as inputs for
cardiac disease diagnosis by a convolutional neural
network based on the EfficientNet architecture. The
idea of interpreting printed ECG papers has also been
shown to be effective for diagnosing left ventricular
(LV) systolic dysfunction (Sangha et al., 2022b). Ad-
ditionally, digitizing printed ECG papers by scanning
and processing raw printed images (Wu et al., 2022)
is a critical task. Similarly, an automated ECG diag-
nostic pipeline employing paper-ECG images can fa-
cilitate accessible diagnostic services in regions with
limited healthcare information systems.

3. Methods

Our approach comprises two key components: (1) the
conversion of ECG time series signals into images,
and (2) the utilization of these encoded ECG images
and their corresponding clinical reports to construct
an ECG record retrieval system. We delve into the
specifics in Section 3.1 and Section 3.2 respectively.

Figure 2: Examples of encoded ECG images by (1)
MTF; (2) GAF; (3) RP; and (4) combine all
three methods in three channels.

3.1. Encode ECG Signals into Images

In our study, we employed three different encod-
ing methods to convert ECG time series signals into
visual formats: Markov Transition Field (MTF),
Gramian Angular Field (GAF), and Recurrence Plot
(RP). Each technique’s detailed explanation is pro-
vided in the subsequent sections, with further partic-
ulars available in Appendix B due to space limit.

3.1.1. Markov Transition Field (MTF)

Markov Transition Field (MTF) is a method of trans-
forming time series data, such as ECG signals, into
visual representations. MTF works by calculating
transition probabilities between adjacent data points
in a time series, and then using these probabilities
to generate a matrix of color-coded pixels. Given a
ECG time series X, the Q quantile bins are identi-
fied, and each data point xi is assigned to its corre-
sponding bin qj(j ∈ [1, Q]). The resulting weighted
adjacency matrix W , constructed using a first-order
Markov chain model along the time axis, reflects the
transition probabilities among the quantile bins. The
frequency with which a data point in quantile bin qj
is followed by a point in bin qi determines the value
of the corresponding entry wi,j in W . Although W
represents the Markov transition matrix after nor-
malization by

∑
j wij = 1, it is insensitive to the

distribution of X and the temporal dependencies be-
tween time steps ti, resulting in a loss of information.
To address this issue, the Markov Transition Field
(MTF) M is defined as follows:


wij|x1∈qi,x1∈qj

wij|x1∈qi,x2∈qj
· · · wij|x1∈qi,xn∈qj

wij|x2∈qi,x1∈qj
wij|x2∈qi,x2∈qj

· · · wij|x2∈qi,xn∈qj

.

.

.
.
.
.

. . .
.
.
.

wij|xn∈qi,x1∈qj
wij|xn∈qi,x2∈qj

· · · wij|xn∈qi,xn∈qj


(1)

It involves building a Q × Q Markov transition ma-
trix W by dividing the time series data into Q quan-
tile bins, where qi and qj(q ∈ [1, Q]) represent the
quantile bins that contain the data at time stamps
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i and j along the temporal axis. The MTF matrix
M encodes the transition probabilities of the time se-
ries by spreading out the transition probability values
from matrix W along the magnitude axis to M while
taking into consideration the temporal positions. At
each pixel Mij , the probability of transitioning from
the quantile at time step i to the quantile at time
step j is assigned. In this way, the MTF matrix M
captures the multi-span transition probabilities of the
time series. The entry Mi,j||i−j|=k in M represents
the transition probability between points with a time
interval of k, where Mi,j||j−i = 1 represents the tran-
sition process along the time axis with a skip step.
The main diagonal Mii in M is a special case when
k = 0 and captures the probability of transitioning
from each quantile to itself, i.e., the self-transition
probability, at time step i.

3.1.2. Gramian Angular Field (GAF)

Gramian Angular Field (GAF) (Wang and Oates,
2014) is another method for transforming ECG time
series signals into visual representations. GAF gen-
erates a matrix of cosine and sine values based on the
pairwise differences between the original data points
in the time series. This matrix is then transformed
into an image, where each pixel corresponds to a par-
ticular combination of cosine and sine values. Similar
to MTF, the resulting image captures important fea-
tures of the original ECG signal, such as patterns
and trends, which can aid in the interpretation and
analysis of the data.

The Gramian Angular Field (GAF) (Wang and
Oates, 2014) method represents time series data in
a polar coordinate system instead of using the tradi-
tional Cartesian coordinates. In the Gramian matrix
of GAF, each element corresponds to the cosine of
the summation of angles. The rescaled time series X̃
of n real-valued observations are transformed to fall
within the range of [−1, 1] or [0, 1] using the formula:

x̃
i
−1 =

(xi − max(X) + (xi − min(X))

max(X) − min(X)
(2)

or x̃
i
0 =

xi − min(X)

max(X) − min(X)
(3)

Then, by encoding the value as the angular cosine
and the time stamp as the radius, we represent the
rescaled time series X̃ in polar coordinates as follows:

ϕ = arccos(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃, r =
ti

N
, ti ∈ N

(4)

Here, ti is the time stamp, and N is a constant fac-
tor that regulates the span of the polar coordinate
system. This encoding technique is a novel way to
visualize time series data, where the values trans-
form among different angular positions on the span-
ning circles as time passes, resembling water rippling.
The encoding map is bijective, and it preserves ab-
solute temporal relations, unlike Cartesian coordi-
nates. The angular cosine function is monotonic for
ϕ ∈ [0, π], producing a unique result in the polar co-
ordinate system with a one-to-one inverse map.

We utilize the angular perspective of the polar
coordinate system to examine temporal correlations
between different time intervals by calculating the
trigonometric sum/difference between each point.
Specifically, we define the Gramian Summation An-
gular Field (GASF) and Gramian Difference Angular
Field (GADF) as follows:

GASF = [cos(ϕi + ϕj)] = X̃
′ · X̃ −

√
I − X̃2

′
·
√

I − X̃2 (5)

GADF = [sin(ϕi − ϕj)] =

√
I − X̃2

′
· X̃ − X̃

′ ·
√

I − X̃2 (6)

Here, I is the unit row vector [1, 1, ..., 1]. After trans-
forming the time series into the polar coordinate sys-
tem, we treat each time step as a 1-D metric space.
Defining the inner product as follows:

< x, y >1= x · y −
√

1 − x2 ·
√

1 − y2 (7)

< x, y >2=
√

1 − x2 · y − x ·
√

1 − y2 (8)

The two types of Gramian Angular Fields (GAFs)
are actually quasi-Gramian matrices [< x̃1, x̃1 >].

The Gramian Angular Fields (GAFs) offer multi-
ple benefits. First, they enable the retention of tem-
poral relationships, as the position’s movement from
the top-left to the bottom-right corresponds to the
increase in time. The GAFs incorporate temporal
correlations since Gi,j||i−j|=k symbolizes the relative
correlation due to the superimposition/difference of
directions concerning time interval k. The main di-
agonal Gi,i is a special case for k = 0, containing the
original angular/value information.

3.1.3. Recurrence Plot (RP)

Recurrence Plot (RP) (Eckmann et al., 1987) is a
non-linear time series analysis technique that can also
be applied to transform ECG time series signals into
visual representations. RP generates a square matrix
that reflects the similarity between all pairs of data
points in the time series. The matrix is constructed
by measuring the distance between each pair of data

483



Automated Cardiovascular Record Retrieval by Multimodal Learning

points and comparing them to a predefined threshold
value. RP has been shown to be effective in captur-
ing complex patterns in ECG signals, such as P-waves
and QRS complexes, which are important for the ac-
curate diagnosis of cardiovascular diseases.
Given a time series (x1, . . . , xn), we can extract

trajectories from it as follows:

xi = (xi, xi + τ, . . . , xi+(m−1)τ ), ∀i ∈ 1, . . . , n − (m − 1)τ
(9)

Here, m denotes the dimension of the trajectories,
and τ is the time delay. Once we have extracted the
trajectories, we can create a recurrence plot, denoted
by R, which is essentially the pairwise distance be-
tween the trajectories. Formally, we define Ri,j as:

Ri,j = Θ(ε − |xi − xj |), ∀i, j ∈ 1, . . . , n − (m − 1)τ (10)

Here, Θ is the Heaviside step function, and ε is the
threshold. The recurrence plot helps us visualize the
structure and patterns of the time series by preserv-
ing the temporal dependencies and revealing the rel-
ative correlations between the extracted trajectories.

3.2. Retrieval System

This section commences with an overview of the
model architecture, followed by a detailed account of
the training objectives. An elaborate illustration of
the model architecture is presented in Figure 3. Our
model follows Li et al. (2021, 2022), which includes a
vision encoder responsible for processing visual infor-
mation, a language encoder dedicated to understand-
ing textual data, and a multimodal encoder that inte-
grates information from both the vision and language
encoders to form a robust representation.

Vision Encoder Our current vision encoder archi-
tecture is based on a visual transformer (Dosovitskiy
et al., 2021), which implements a patch-based pro-
cessing approach that encodes an input image into
a sequence of embeddings. This is achieved by di-
viding the image into patches and then performing a
sequence of encoding operations on each patch. In ad-
dition, an extra [CLS] token is included to represent
the global image feature. This approach has been
shown to be more computation-friendly than using
pre-trained object detectors for visual feature extrac-
tion (Chen et al., 2020b) and has been adopted by
more recent methods such as ALBEF and ViLT (Li
et al., 2021; Kim et al., 2021). Specifically, given an
input image I, the ViT-based vision encoder gener-
ates a sequence of embeddings: vcls,v1, ...,vN . Here,

vcls represents the embedding of the [CLS] token,
and the remaining vi represents the patch embed-
dings. It is worth noting that this patch-based pro-
cessing approach allows the vision encoder to capture
fine-grained details of the input image, which can be
important for downstream tasks that require a high
level of visual understanding.

Language Encoder Our text encoder is based on
the highly effective BERT architecture (Devlin et al.,
2019b), which employs a [CLS] token appended to
the beginning of the input text to provide a sum-
mary of the sentence. The encoder also utilizes a
bi-directional self-attention mechanism to generate
representations for each of the input tokens. This
approach is highly effective for capturing the con-
text and meaning of each token in the input text,
enabling the model to better understand the over-
all meaning of the text. When processing an input
text T , the text encoder generates a sequence of em-
beddings wcls,w1, ...,wN , where wcls represents the
embedding of the [CLS] token, and the remaining wi

represent the embeddings of the individual input to-
kens. This sequence of embeddings is then passed
to the multimodal encoder to be combined with the
visual embeddings generated by the vision encoder.

Multimodal Encoder The multimodal encoder is
a complex module that plays a critical role in en-
abling the model to learn the relationships between
the visual and textual inputs. To achieve this, it in-
corporates an additional cross-attention (CA) layer
that sits between the self-attention (SA) layer and
the feed-forward network (FFN) for each transformer
block of the text encoder. By doing so, the model can
attend to both the textual and visual inputs and build
better representations of the image-text pair. To cre-
ate a multimodal representation of the image-text
pair, the text input is modified by appending a task-
specific [Encode] token at the end of the sequence,
which is then fed into the multimodal encoder. The
output embedding of this token is used as the final
representation of the image-text pair. The embed-
ding layers, CA layers, and FFN share similar func-
tionality between encoding and decoding tasks, which
means that they can be shared to improve training
efficiency and benefit from multi-task learning. Addi-
tionally, the cross-attention layer introduces another
set of attention weights to the model, which requires
additional computation and increases the number of
parameters to be learned. However, this additional
complexity is necessary to enable the model to learn
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Figure 3: The overall architecture of our model, which comprises a vision encoder responsible for processing visual
data, a language encoder that focuses on comprehending textual information, and a multimodal encoder
that combines the input from both the vision and language encoders to fuse comprehensive representations.

the relationships between the visual and textual in-
puts and to achieve state-of-the-art performance on
various image-text tasks.

3.3. Loss Objectives

There are three objectives during learning, includ-
ing Image-Text Contrastive (ITC) Loss, Image-Text
Matching (ITM) Loss, and Mask Language Modeling
(MLM) Loss. An overview of each loss is provided in
the subsequent sections. More details can be found
in the Appendix due to the page limit.

Image-Text Contrastive Loss (ITC) To com-
pute the ITC loss, we follow the approach proposed
by Li et al. (2021), which introduces a momentum
encoder to generate features and creates soft labels
from the momentum encoder to serve as training
targets. The soft labels help account for the po-
tential positive samples in the negative pairs and
improve the quality of the learned representations.
The model learns a similarity function represented
by s = gv(vcls)

⊤gw(wcls), which aims to increase the
similarity scores for matching image-text pairs. Here,
gv and gw refer to linear transformations that convert
the [CLS] embeddings into lower-dimensional, nor-
malized (256-d) representations. Following the MoCo
approach (He et al., 2020), we use two queues to store
the most recent M image-text representations ob-
tained from the momentum unimodal encoders. The
features obtained from the momentum encoders are
normalized and denoted by g′v(v′

cls) and g′w(w′
cls).

To calculate the similarity score between an image-
text pair and a text-image pair, we define s(I, T ) =
gv(vcls)

⊤g′w(w′
cls) and s(T, I) = gw(wcls)

⊤g′v(v′
cls),

respectively. We use the softmax-normalized image-
to-text and text-to-image similarity to calculate each
image and text. This is represented by the equations
below, where τ is a temperature parameter that can
be learned:

p
i2t
m (I) =

exp(s(I, Tm)/τ)∑M
m=1 exp(s(I, Tm)/τ)

, (11)

p
t2i
m (T ) =

exp(s(T, Im)/τ)∑M
m=1 exp(s(T, Im)/τ)

(12)

We represent the ground-truth one-hot similarity as
yi2t(I) and yt2i(T ), where negative pairs have a prob-
ability of 0, and the positive pair has a probability of
1. The image-text contrastive loss is defined as the
cross-entropy H between p and y, which is shown in
the following equation:

Litc =
1

2
E(I, T ) ∼ D

[
H(y

i2t
(I),p

i2t
(I)) + H(y

t2i
(T ),p

t2i
(T ))

]
(13)

Image-Text Matching Loss (ITM) ITM is a
binary classification task where the model predicts
whether an image-text pair is positive (matched) or
negative (unmatched) based on its multimodal fea-
ture. The ITM head, which is a linear layer, is used
to make this prediction. To obtain the joint rep-
resentation of the image-text pair, we use the out-
put embedding of the [CLS] token from the multi-
modal encoder, and then append a fully-connected
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(FC) layer followed by softmax to predict a two-
class probability pitm. The ITM loss is defined as:
Litm = E(I, T ) ∼ DH(yitm,pitm(I, T )), where yitm

is a 2-dimensional one-hot vector representing the
ground-truth label. To improve the selection of nega-
tive pairs, we employ a strategy called hard negative
mining, as proposed by Li et al. (2021). This strategy
involves selecting negative pairs that have a higher
contrastive similarity within a batch.

Mask Language Modeling Loss (MLM) The
Mask Language Modeling Loss (MLM) is used to pre-
dict masked words using both the image and contex-
tual text. In this loss, we randomly mask out input
tokens with a probability of 15% and replace them
with the special token [MASK], with 10% random to-
kens, 10% unchanged, and 80% [MASK] replacements
following the BERT approach. The predicted proba-
bility of a masked token is denoted by pmsk(I, T̂ ),
where T̂ represents the masked text. The cross-
entropy loss is used to minimize the difference be-
tween the predicted and ground-truth distributions,
which is expressed as follows:

Lmlm = E(I, T̂ ) ∼ DH(y
msk

,p
msk

(I, T̂ )) (14)

ymsk represents a one-hot vocabulary distribution
and the ground-truth token has a probability of 1.

4. Experiments

4.1. Dataset and Preprocessing

Our experiments were conducted using the PTB-
XL dataset (Wagner et al., 2020), which comprises
clinical 12-lead ECG signals that are 10 seconds in
length. The dataset includes five different condi-
tions: Normal ECG (NORM), Myocardial Infarction
(MI), ST/T Change (STTC), Conduction Distur-
bance (CD), and Hypertrophy (HYP). The waveform
files are stored in the WaveForm DataBase (WFDB)
format and have a precision of 16 bits at a resolution
of 1µV/LSB, with a sampling frequency of 100Hz.
The raw waveform data was annotated by up to two
cardiologists who assigned one or more ECG state-
ments to each record, resulting in a total of 71 differ-
ent ECG statements that conform to the SCP-ECG
standard. These statements cover diagnostic, form,
and rhythm-related information. Additionally, the
dataset contains extensive metadata on demograph-
ics, infarction characteristics, likelihoods for diagnos-
tic ECG statements, as well as annotated signal prop-
erties. To convert the time series data into a spec-

trum, we leveraged the WFDB library (Xie et al.) to
read the raw data and performed Fast Fourier Trans-
form (FFT). In order to eliminate noise, we imple-
mented n-points window filtering, and to eliminate
power frequency interference, which occurs at 50Hz,
we employed notch processing with a quality factor
of 30 (Qiu et al., 2023b).

4.2. Experimental Setting

The initialization of our visual encoder, text encoder,
and multimodal encoder was carried out using the im-
age encoder, text encoder, and image-grounded text
encoder from Li et al. (2022), respectively. Specifi-
cally, the visual encoder was based on ViT (Dosovit-
skiy et al., 2020) pre-trained on ImageNet (He et al.,
2015), while the other two encoders were initialized
from BERT (Devlin et al., 2019a). All three encoders
were trained on a dataset consisting of 14M images
from COCO (Lin et al., 2014), Visual Genome (Kr-
ishna et al., 2016), Conceptual Captions (Sharma
et al., 2018), Conceptual 12M (Changpinyo et al.,
2021), and SBU captions (Ordonez et al., 2011), as
described in Li et al. (2022).

Next, we fine-tuned the three encoders on our ECG
image data using the AdamW optimizer (Loshchilov
and Hutter, 2017) with a weight decay of 0.05. The
learning rate was warmed-up to 3e-4 (for ViT-B) / 2e-
4 (for ViT-L) and decayed linearly with a rate of 0.85.
During fine-tuning, we randomly cropped images to
a resolution of 384 × 384. Our experiments were
conducted on 4 NVIDIA A6000. We evaluate our
models using the recall at K (R@K) metric, where K
= 1, 5, 10, and report the RSUM, which is the sum of
the recall metrics at K = 1, 5, 10 for both image and
text retrieval tasks.

4.3. Experimental Results and Discussions

Table 1 presents the results of our experiments com-
paring different image encoding methods. We con-
ducted experiments in various settings to obtain a
comprehensive understanding of the methods:
(1) The “Simple-plot” method serves as a straightfor-
ward baseline, where we plotted the ECG time series
signals of 12 leads, selecting one ECG pause from
each lead and putting them in a 4 × 3 layout.
(2) Using each encoding method individually, we
formulated three baseline approaches referred to as
“MTF-only”, “GAF-only”, and “RP-only”.
(3) Two encoding methods were randomly selected
from the three and concatenated in different image
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channels.
(4) Instead of encoding each lead independently, we
concatenated the 12 leads of one ECG pause into a
single vector, which we then visualized using all three
encoding methods. This approach is referred to as
“All-Concat”.
(5) Finally, we gridded all three encoding methods in
three image channels under both zero-shot and fine-
tune settings, referred to as “All-Grid (zero-shot)”
and “All-Grid (fine-tune)”, respectively.

Table 1 presents the experimental findings, which
indicate that for single encoding comparison, RP en-
coding significantly outperforms both MTF and GAF
encoding techniques. Moreover, the combination of
GAF and RP encoding demonstrates superior perfor-
mance compared to the other two combinations. Re-
markably, the “All-Grid (fine-tune)” method exhibits
the best overall performance among all the baseline
methods. A detailed analysis of the zero-shot and
fine-tuning results shows that fine-tuning has a con-
siderable impact on improving performance.

The “All-Grid (fine-tune)” method utilizes a fine-
tuning approach to improve the performance of the
models by iteratively adjusting the parameters of the
network. This method achieves the best overall per-
formance by effectively leveraging the available data.
The analysis of the zero-shot and fine-tuning results
indicates that fine-tuning significantly enhances the
performance of the models, highlighting the impor-
tance of optimizing the network parameters to im-
prove the accuracy of the predictions.

4.4. Ablation Study

In any modeling exercise, a vast array of parame-
ters and settings can be adjusted to optimize perfor-
mance. However, it is not always clear which of these
factors has the most significant impact on the final
output. In order to gain a better understanding of
the inner workings of our model and the effect that
each individual parameter has on its performance, we
conducted a series of ablation studies.

To gain insight into the impact of batch size on the
training and testing of our model, we conducted an
ablation study. In this study, we systematically var-
ied the training and testing batch sizes, and the re-
sults are presented in Table 2. Surprisingly, we found
that a smaller training batch size led to better perfor-
mance. This observation may seem counterintuitive,
as larger batch sizes are typically favored in deep
learning to accelerate training. However, our results

suggest that a smaller training batch size may help
the model converge more quickly and reduce overfit-
ting. In addition, we observed that a smaller testing
batch size also contributed to improved performance,
when the training batch size was kept the same. This
finding highlights the importance of matching the
testing batch size to the training batch size, to en-
sure that the model is evaluated on a representative
sample of data. By carefully selecting the appropri-
ate training and testing batch sizes, we can optimize
our model and achieve better results.

In addition, we conducted an ablation study on the
selection of the visual encoder. There are two choices
of visual encoder selection: ViT-base and ViT-large.
ViT-base has 12 transformer layers, about 85 mil-
lion parameters, and is trained on images resized to
224x224 pixels. It is a relatively smaller model and
is suitable for smaller datasets or where memory or
computational resources are limited. ViT-large has
24 transformer layers, about 307 million parameters,
and is trained on images resized to 384x384 pixels. It
is a more complex and larger model, which typically
results in better performance on large-scale datasets.

The results of the ablation study are summarized
in Table 3. Notably, we observed that for both the
All-Grid and All-Concat settings, ViT-base outper-
formed ViT-large in terms of classification accuracy.
These results are surprising, as ViT-large has more
parameters and has been shown to perform better
than ViT-base on pretraining tasks. However, we
posit that the reason for this discrepancy lies in the
size of the ECG image dataset. Specifically, since
the dataset is relatively small, the fine-tuned embed-
dings of the ViT-base can more quickly adapt to the
unique features of ECG images. In contrast, ViT-
large contains more parameters and may require a
larger dataset for effective fine-tuning. These find-
ings have important implications for the use of ViT in
medical image analysis. While ViT has shown great
promise in a variety of visual recognition tasks, it is
important to carefully consider its performance when
applied to medical imaging datasets. Our results sug-
gest that ViT-base may be a better choice for small
medical imaging datasets, while ViT-large may be
more effective for larger datasets. Additionally, our
study highlights the importance of conducting careful
evaluations of visual encoders in the medical imaging
domain to ensure that they perform well on the spe-
cific imaging modality in question.
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Table 1: Experimental results.

Method
Report Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 RSUM

Simple-plot 5.51 17.16 25.64 4.98 17.08 26.05 96.42

MTF-only 1.42 5.67 10.72 1.97 6.07 10.80 36.65
GAF-only 2.69 10.53 17.04 3.22 11.01 17.60 62.09
RP-only 5.27 16.84 25.68 5.63 17.20 26.44 97.06

MTF+GAF 4.02 14.03 21.91 4.10 14.42 21.91 80.39
GAF+RP 6.30 21.04 30.36 6.93 20.69 30.65 115.97
PR+MTF 5.12 17.26 25.84 4.96 17.10 26.56 96.84

All-Concat 1.58 7.25 12.77 1.73 7.33 13.71 4.37
All-Grid (zero-shot) 0.21 1.06 1.91 0.43 1.06 1.91 6.58
All-Grid (fine-tune) 7.88 24.51 34.04 8.27 23.96 34.91 133.57

Table 2: Ablation study on learning batch.

Batch
Report Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 RSUM

Training 8 + Testing 32 7.88 24.51 34.04 8.27 23.96 34.91 133.57
Training 16 + Testing 32 7.88 22.54 32.23 7.32 21.91 33.41 125.29
Training 32 + Testing 32 7.01 20.88 32.23 6.78 21.04 32.47 120.41

Table 3: Ablation study on vision encoder.

Vision Encoder
Report Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10 RSUM

All-concat (ViT-base) 2.52 8.91 13.79 2.52 7.25 12.77 47.76
All-concat (ViT-large) 1.58 7.25 12.77 1.73 7.33 13.71 44.37

All-Grid (ViT-base) 7.88 24.51 34.04 8.27 23.96 34.91 133.57
All-Grid (ViT-large) 3.47 12.32 21.43 4.73 14.26 22.14 78.35

5. Discussion and Conclusion

Based on the experiments above, we have observed
the strong potential of transforming ECG time se-
ries signals into images. Furthermore, by incorporat-
ing state-of-the-art advancements in vision-language
learning, additional advantages can be gained from
these encoded images. Our proposed model suggests
that jointly learning the encoded ECG images and
doctor’s reports can yield improved representations.
These representations hold promise for various clin-
ical applications, including retrieving relevant previ-
ous diagnosis reports from a database. This sup-
port and reference can greatly assist doctors, lead-
ing to enhanced patient treatment outcomes. Given
the critical nature of healthcare, enhancing patient
care remains of utmost importance. Introducing the
proposed model into clinical applications has the po-
tential to reshape the healthcare landscape and sig-
nificantly influence patient outcomes. Therefore, we

believe that our proposed model holds substantial
practical value in the realm of clinical applications,
offering significant advantages for patients, doctors,
and the broader healthcare ecosystem.

Limitations While our study has illuminated the
potential of MTF, GAF, and RP methods for ECG
data analysis, it’s important to acknowledge that
other encoding techniques might also yield favorable
outcomes. Furthermore, the dataset size used in our
study might not comprehensively cover the variabil-
ity and intricacy of ECG signals. Additionally, the
accuracy of the doctor’s report, a component of mul-
timodal learning, could pose limitations due to inter-
observer variability, potentially impacting the quality
of learned representations. Moreover, variables like
patient demographics, medical history, and comor-
bidities were not considered, suggesting an avenue for
future exploration to enhance the generalizability of
our findings. Hence, more extensive research, utiliz-
ing larger and more diverse datasets, encompassing
various analysis techniques, and accounting for con-
founding factors, is crucial to fully delve into the po-
tential of our approach.
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Haimovich, Antônio H Ribeiro, Cynthia A Brandt,

Daniel L Jacoby, Wade L Schulz, Harlan M
Krumholz, Antonio Luiz P Ribeiro, and Rohan
Khera. Automated multilabel diagnosis on elec-
trocardiographic images and signals. Nature com-
munications, 13(1):1583, 2022a.

Veer Sangha, Arash A Nargesi, Lovedeep S Dhingra,
Akshay Khunte, Bobak J Mortazavi, Antônio H
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Appendix A. Model Parameters

Table 4: Model parameters in the experiments.

Parameters Value

alpha 0.4
k test 128

weight decay 0.05
queue size 57600

ViT-base Value

train batch size 16
test batch size 16

ViT layer 4
init lr 1e-5

ViT-large Value

train batch size 16
test batch size 16

ViT layer 10
init lr 5e-6

Appendix B. Encoding Methods

B.0.1. Markov Transition Field (MTF)

Markov Transition Field (MTF) is a method of trans-
forming time series data, such as ECG signals, into
visual representations. MTF works by calculating
transition probabilities between adjacent data points
in a time series, and then using these probabilities to
generate a matrix of color-coded pixels. Each pixel
in the matrix represents a unique transition probabil-
ity, with darker colors indicating higher probabilities
and lighter colors indicating lower probabilities. This
matrix can be thought of as an image that encap-
sulates the key features of the original time series,
making it easier for researchers and clinicians to ana-
lyze and interpret ECG signals. The development of
the Markov Transition Field (MTF) draws inspira-
tion from prior research on the interrelationship be-
tween time series and complex networks (Campan-
haro et al., 2011; Zheng et al., 2014; Wang and Oates,
2014). In essence, the MTF methodology involves
constructing a Markov matrix based on quantile bins,
which are derived through the discretization of the
time series data. The dynamic transition probabil-
ity of the time series is then encoded into a quasi-
Gramian matrix, facilitating further analysis and in-
terpretation of the underlying complex system.

In order to preserve time-domain information, the
proposed method leverages Markov transfer proba-
bility to represent the dynamics of a given time se-
ries X. Specifically, the Q quantile bins are identi-
fied, and each data point xi is assigned to its corre-
sponding bin qj(j ∈ [1, Q]). The resulting weighted
adjacency matrix W , constructed using a first-order
Markov chain model along the time axis, reflects the
transition probabilities among the quantile bins. The
frequency with which a data point in quantile bin qj
is followed by a point in bin qi determines the value
of the corresponding entry wi,j in W . Although W
represents the Markov transition matrix after nor-
malization by

∑
j wij = 1, it is insensitive to the

distribution of X and the temporal dependencies be-
tween time steps ti, resulting in a loss of information.
To address this issue, the Markov Transition Field
(MTF) M is defined as follows:


wij|x1∈qi,x1∈qj

wij|x1∈qi,x2∈qj
· · · wij|x1∈qi,xn∈qj

wij|x2∈qi,x1∈qj
wij|x2∈qi,x2∈qj

· · · wij|x2∈qi,xn∈qj

.

.

.
.
.
.

. . .
.
.
.

wij|xn∈qi,x1∈qj
wij|xn∈qi,x2∈qj

· · · wij|xn∈qi,xn∈qj


(15)

It involves building a Q×Q Markov transition ma-
trix W by dividing the time series data into Q quan-
tile bins, where qi and qj(q ∈ [1, Q]) represent the
quantile bins that contain the data at time stamps
i and j along the temporal axis. The MTF matrix
M encodes the transition probabilities of the time se-
ries by spreading out the transition probability values
from matrix W along the magnitude axis to M while
taking into consideration the temporal positions. At
each pixel Mij , the probability of transitioning from
the quantile at time step i to the quantile at time
step j is assigned. In this way, the MTF matrix M
captures the multi-span transition probabilities of the
time series. The entry Mi,j||i−j|=k in M represents
the transition probability between points with a time
interval of k, where Mi,j||j−i = 1 represents the tran-
sition process along the time axis with a skip step.
The main diagonal Mii in M is a special case when
k = 0 and captures the probability of transitioning
from each quantile to itself, i.e., the self-transition
probability, at time step i.

B.0.2. Gramian Angular Field (GAF)

Gramian Angular Field (GAF) (Wang and Oates,
2014) is another method for transforming ECG time
series signals into visual representations. GAF gen-
erates a matrix of cosine and sine values based on the
pairwise differences between the original data points
in the time series. This matrix is then transformed
into an image, where each pixel corresponds to a par-
ticular combination of cosine and sine values. Similar
to MTF, the resulting image captures important fea-
tures of the original ECG signal, such as patterns and
trends, which can aid in the interpretation and anal-
ysis of the data. The advantage of GAF over MTF is
that it preserves the phase information of the original
time series, which can be important in some applica-
tions, such as detecting arrhythmias.

The Gramian Angular Field (GAF) (Wang and
Oates, 2014) method represents time series data in
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a polar coordinate system instead of using the tradi-
tional Cartesian coordinates. In the Gramian matrix
of GAF, each element corresponds to the cosine of
the summation of angles. The rescaled time series X̃
of n real-valued observations are transformed to fall
within the range of [−1, 1] or [0, 1] using the formula:

x̃
i
−1 =

(xi − max(X) + (xi − min(X))

max(X) − min(X)
(16)

or x̃
i
0 =

xi − min(X)

max(X) − min(X)
(17)

Then, by encoding the value as the angular cosine
and the time stamp as the radius, we represent the
rescaled time series X̃ in polar coordinates as follows:

ϕ = arccos(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃, r =
ti

N
, ti ∈ N

(18)

Here, ti is the time stamp, and N is a constant fac-
tor that regulates the span of the polar coordinate
system. This encoding technique is a novel way to
visualize time series data, where the values trans-
form among different angular positions on the span-
ning circles as time passes, resembling water rippling.
The encoding map is bijective, and it preserves ab-
solute temporal relations, unlike Cartesian coordi-
nates. The angular cosine function is monotonic for
ϕ ∈ [0, π], producing a unique result in the polar co-
ordinate system with a one-to-one inverse map.
Rescaled data in different intervals have differ-

ent angular bounds. [0,1] corresponds to the cosine
function in [0, π/2], while cosine values in the inter-
val [−1,1] fall into the angular bounds [0, π]. They
can provide different information granularity in the
Gramian Angular Field for classification tasks, and
the Gramian Angular Difference Field (GADF) of
[0,1] rescaled data has an accurate inverse map.
We utilize the angular perspective of the polar

coordinate system to examine temporal correlations
between different time intervals by calculating the
trigonometric sum/difference between each point.
Specifically, we define the Gramian Summation An-
gular Field (GASF) and Gramian Difference Angular
Field (GADF) as follows:

GASF = [cos(ϕi + ϕj)] = X̃
′ · X̃ −

√
I − X̃2

′
·
√

I − X̃2 (19)

GADF = [sin(ϕi − ϕj)] =

√
I − X̃2

′
· X̃ − X̃

′ ·
√

I − X̃2 (20)

Here, I is the unit row vector [1, 1, ..., 1]. After trans-
forming the time series into the polar coordinate sys-
tem, we treat each time step as a 1-D metric space.
Defining the inner product as follows:

< x, y >1= x · y −
√

1 − x2 ·
√

1 − y2 (21)

< x, y >2=
√

1 − x2 · y − x ·
√

1 − y2 (22)

The two types of Gramian Angular Fields (GAFs)
are actually quasi-Gramian matrices [< x̃1, x̃1 >].

The Gramian Angular Fields (GAFs) offer multi-
ple benefits. First, they enable the retention of tem-
poral relationships, as the position’s movement from
the top-left to the bottom-right corresponds to the
increase in time. The GAFs incorporate temporal
correlations since Gi,j||i−j|=k symbolizes the relative
correlation due to the superimposition/difference of
directions concerning time interval k. The main di-
agonal Gi,i is a special case for k = 0, containing the
original angular/value information.

B.0.3. Recurrence Plot (RP)

Recurrence Plot (RP) (Eckmann et al., 1987) is a
non-linear time series analysis technique that can also
be applied to transform ECG time series signals into
visual representations. RP generates a square matrix
that reflects the similarity between all pairs of data
points in the time series. The matrix is constructed
by measuring the distance between each pair of data
points and comparing them to a predefined threshold
value. If the distance between two points is below
the threshold, the corresponding matrix element is
set to 1, otherwise, it is set to 0. This results in a
binary matrix that can be visualized as an image,
where dark pixels represent recurrent patterns in the
time series. RP has been shown to be effective in
capturing complex patterns in ECG signals, such as
P-waves and QRS complexes, which are important
for the accurate diagnosis of cardiovascular diseases.

Given a time series (x1, . . . , xn), we can extract
trajectories from it as follows:

xi = (xi, xi + τ, . . . , xi+(m−1)τ ), ∀i ∈ 1, . . . , n − (m − 1)τ
(23)

Here, m denotes the dimension of the trajectories,
and τ is the time delay. Once we have extracted the
trajectories, we can create a recurrence plot, denoted
by R, which is essentially the pairwise distance be-
tween the trajectories. Formally, we define Ri,j as:

Ri,j = Θ(ε − |xi − xj |), ∀i, j ∈ 1, . . . , n − (m − 1)τ (24)

Here, Θ is the Heaviside step function, and ε is the
threshold. The recurrence plot helps us visualize the
structure and patterns of the time series by preserv-
ing the temporal dependencies and revealing the rel-
ative correlations between the extracted trajectories.
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Appendix C. Loss Objectives

There are three objectives during learning, includ-
ing Image-Text Contrastive (ITC) Loss, Image-Text
Matching (ITM) Loss, and Mask Language Modeling
(MLM) Loss. An overview of each loss is provided in
the subsequent sections. More details can be found
in the Appendix due to the page limit.

Image-Text Contrastive Loss (ITC) The
Image-Text Contrastive Loss (ITC) loss has been
shown to be highly effective in improving vision and
language understanding in a range of applications,
including image captioning, visual question answer-
ing, and multimodal retrieval (Radford et al., 2021;
Li et al., 2021). To compute the ITC loss, we follow
the approach proposed by Li et al. (2021), which in-
troduces a momentum encoder to generate features
and creates soft labels from the momentum encoder
to serve as training targets. The soft labels help ac-
count for the potential positive samples in the neg-
ative pairs and improve the quality of the learned
representations. Our model learns a similarity func-
tion represented by s = gv(vcls)

⊤gw(wcls), which
aims to increase the similarity scores for matching
image-text pairs. Here, gv and gw refer to linear
transformations that convert the [CLS] embeddings
into lower-dimensional, normalized (256-d) represen-
tations. Following the MoCo approach (He et al.,
2020), we use two queues to store the most recent
M image-text representations obtained from the mo-
mentum unimodal encoders. The features obtained
from the momentum encoders are normalized and de-
noted by g′v(v

′
cls) and g′w(w

′
cls). To calculate the sim-

ilarity score between an image-text pair and a text-
image pair, we define s(I, T ) = gv(vcls)

⊤g′w(w
′
cls) and

s(T, I) = gw(wcls)
⊤g′v(v

′
cls), respectively.

We use the softmax-normalized image-to-text and
text-to-image similarity to calculate each image and
text. This is represented by the equations below,
where τ is a temperature parameter that can be
learned:

p
i2t
m (I) =

exp(s(I, Tm)/τ)∑M
m=1 exp(s(I, Tm)/τ)

, (25)

p
t2i
m (T ) =

exp(s(T, Im)/τ)∑M
m=1 exp(s(T, Im)/τ)

(26)

We represent the ground-truth one-hot similarity as
yi2t(I) and yt2i(T ), where negative pairs have a prob-
ability of 0, and the positive pair has a probability of
1. The image-text contrastive loss is defined as the
cross-entropy H between p and y, which is shown in

the following equation:

Litc =
1

2
E(I, T ) ∼ D

[
H(y

i2t
(I),p

i2t
(I)) + H(y

t2i
(T ),p

t2i
(T ))

]
(27)

Image-Text Matching Loss (ITM) The Image-
Text Matching Loss (ITM) is responsible for activat-
ing the image-grounded text encoder, with the goal
of learning a multimodal representation that captures
the detailed alignment between visual and linguistic
information. ITM is a binary classification task where
the model predicts whether an image-text pair is pos-
itive (matched) or negative (unmatched) based on its
multimodal feature. The ITM head, which is a linear
layer, is used to make this prediction.

To obtain the joint representation of the image-
text pair, we use the output embedding of the [CLS]
token from the multimodal encoder, and then append
a fully-connected (FC) layer followed by softmax to
predict a two-class probability pitm. The ITM loss is
defined as:

Litm = E(I, T ) ∼ DH(y
itm

,p
itm

(I, T )) (28)

where yitm is a 2-dimensional one-hot vector repre-
senting the ground-truth label. To improve the se-
lection of negative pairs, we employ a strategy called
hard negative mining, as proposed by Li et al. (2021).
This strategy involves selecting negative pairs that
have a higher contrastive similarity within a batch,
as they are more informative and can improve the
learning process.

Mask Language Modeling Loss (MLM) The
Mask Language Modeling Loss (MLM) is used to pre-
dict masked words using both the image and contex-
tual text. In this loss, we randomly mask out input
tokens with a probability of 15% and replace them
with the special token [MASK], with 10% random to-
kens, 10% unchanged, and 80% [MASK] replacements
following the BERT approach. The predicted proba-
bility of a masked token is denoted by pmsk(I, T̂ ),
where T̂ represents the masked text. The cross-
entropy loss is used to minimize the difference be-
tween the predicted and ground-truth distributions,
which is expressed as follows:

Lmlm = E(I, T̂ ) ∼ DH(y
msk

,p
msk

(I, T̂ )) (29)

ymsk represents a one-hot vocabulary distribution
and the ground-truth token has a probability of 1.
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Appendix D. More Related Works

Machine Learning in ECG With the develop-
ment of machine learning and deep learning, many
works have studied the application of using advanced
models in ECG. Alfaras et al. (2019) proposed a
fully automatic and fast ECG arrhythmia classifier
based on a simple brain-inspired machine learning
approach known as Echo State Networks. Mishra
et al. (2020) converted ECG paper records into a 1-D
signal and generated an accurate diagnosis of heart-
related problems using deep learning. Peimankar
and Puthusserypady (2020) combined CNN and long
LSTM model to detect the onset, peak, and off-
set of different heartbeat waveforms such as the P-
wave, QRS complex, T-wave, and No wave (NW).
Aziz et al. (2021) exploited two-event related moving-
averages (TERMA) and fractional-Fourier-transform
(FrFT) algorithms. Somani et al. (2021) proposed
a review focusing on orienting the clinician towards
fundamental tenets of deep learning, state-of-the-art
prior to its use for ECG analysis, and current appli-
cations of deep learning on ECGs. Kim et al. (2022)
proposed a ML model for real-time classification of
atrial fibrillation (AF) between Paroxysmal atrial fib-
rillation (PAF) and Non-paroxysmal atrial fibrillation
(Non-PAF). Adedinsewo et al. (2022) evaluated how
well the AI-ECG model output obtained using digi-
tized paper ECGs agreed with the predictions from
the native digital ECGs for the detection of low ejec-
tion fraction. Ayano et al. (2022) summarized the
achievements in ECG signal interpretation using in-
terpretable machine learning techniques. Qiu et al.
(2023a) proposed an approach for cardiovascular dis-
ease diagnosis and automatic ECG diagnosis report
generation. Zhu et al. (2022); Qiu et al. (2023b, 2022)
proposed a physiologically-inspired data augmenta-
tion method to improve performance and increase the
robustness of heart disease detection based on ECG
signals.

Transform Time Series Signals into Images
Encoding time series data as different types of im-
ages have been explored by many studies in different
areas (Wang and Oates, 2014). Hatami et al. (2017)
used Recurrence Plots (RP) to transform time series
into 2D texture images. Kavasidis et al. (2017) con-
verted brain signals into images. Mart́ınez-Arellano
et al. (2019) proposed an approach for tool wear clas-
sification based on signal imaging. Barra et al. (2020)
encoded financial time series into images to predict
the future trend of the U.S. market. Qin et al. (2020)

encoded time series of sensor data as images to re-
tain necessary features for human activity recogni-
tion. Bi et al. (2021) transformed time series into
images to improve the accuracy of tourism demand
forecasting. Yuan et al. (2021) developed a new im-
age encoding technique based on time-series segmen-
tation (TS) to transform acceleration (A), velocity
(V), and displacement (D) ground motion records
into a three-channel AVD image of the ground motion
event. Sayed et al. (2023) transformed multivariate
time-series data into images for better encoding and
extracting relevant features for non-intrusive occu-
pancy detection.
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