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Abstract
Medical image segmentation is a challenging
task, made more difficult by many datasets’
limited size and annotations. Denoising dif-
fusion probabilistic models (DDPM) have re-
cently shown promise in modelling the distri-
bution of natural images and were successfully
applied to various medical imaging tasks. This
work focuses on semi-supervised image segmen-
tation using diffusion models, particularly ad-
dressing domain generalisation. Firstly, we
demonstrate that smaller diffusion steps gen-
erate latent representations that are more ro-
bust for downstream tasks than larger steps.
Secondly, we use this insight to propose an
improved ensembling scheme that leverages
information-dense small steps and the regular-
ising effect of larger steps to generate predic-
tions. Our model shows significantly better
performance in domain-shifted settings while
retaining competitive performance in-domain.
Overall, this work highlights the potential of
DDPMs for semi-supervised medical image seg-
mentation and provides insights into optimising
their performance under domain shift.

Keywords: Medial Image Segmentation,
Semi-Supervised Learning, Generative Mod-
elling

1. Introduction

Denoising diffusion probabilistic models
(DDPM) (Sohl-Dickstein et al., 2015; Ho et al.,
2020) have recently emerged as a promising ap-
proach for modelling the distribution of natural
images, outperforming alternative methods in terms
of sample realism and diversity. More recently,
DDPM have also been successfully applied to

various medical imaging tasks, such as synthetic
image generation (Kim and Ye, 2022), image re-
construction (Xie and Li, 2022; Peng et al., 2022),
anomaly detection (Wolleb et al., 2022; Pinaya et al.,
2022), diagnostics (Aviles-Rivero et al., 2022) and
segmentation (Wolleb et al., 2022).

Image segmentation is crucial in medical imaging,
where accurate and efficient methods are required to
support diagnosis, treatment planning, and disease
monitoring. However, medical imaging datasets are
often limited in size and may lack sufficient anno-
tations, making it challenging to train accurate seg-
mentation models. Moreover, medical imaging data
is characterised by high variability, resulting from dif-
ferences in acquisition parameters, scanner types, and
patient demographics. This phenomenon, also known
as domain shift, poses a significant challenge to the
generalisation of segmentation models applied to new
datasets, leading to potential underperformance in
clinical settings.

Recent research in diffusion models has shown
promising results for semi-supervised learn-
ing (Baranchuk et al., 2021; Deja et al., 2023)
based on the discovery that the bottleneck network,
tasked to learn the backward process of removing
noise from an image, also learns an expressive feature
representation that can benefit other downstream
analysis tasks. Several techniques have been pro-
posed to leverage intermediate diffusion steps for
improved in-domain downstream performance. How-
ever, more research is needed on the implications of
these design choices regarding model generalisation.
Our work focuses on the latter problem.

Specifically, we investigate how to optimally lever-
age diffusion steps to improve generalisation for semi-
supervised image segmentation under domain shift.
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Figure 1: Models diagram. LEDM, the SOTA in semi-supervised segmentation with diffusion models, selects
a subset of timesteps and concatenates latent representations extracted from a pretrained diffusion
model as features fed to an MLP. Our method (i) selects smaller and more informative timesteps,
(ii) predicts through a voting mechanism over our steps selection and (ii) shares the MLP weights
across timesteps, resulting in improved segmentation performance.

Based on the analysis of datasets with diverse imag-
ing modalities and domain shifts, our findings demon-
strate significant improvements over existing base-
lines using five different datasets. Our key findings
can be summarised as follows:

• Small diffusion steps are crucial for model gen-
eralisation;

• Concatenating latent representations over steps
to predict segmentation maps can hurt generali-
sation;

• Instead, generalisation can be significantly im-
proved by (i) optimising which timesteps to use
at test time, (ii) ensembling predictions from in-
dividual timesteps using a shared predictor and
(iii) using these individual predictions for regu-
larisation during training.

2. Background and related work

2.1. Diffusion models

Diffusion models have garnered significant interest in
the machine learning community due to their remark-
able ability to model complex data distributions effi-
ciently. Diffusion models utilise a series of simple and

learnable transformations to diffuse noise iteratively
and generate samples from the target distribution.
Formally, a DDPM works as follows. Given a data
distribution p(x0) and forward process:

p(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) is the variance schedule and t ∈
[0, T ] is the Markov chain time step, a DDPM aims
to learn µθ(xt, t) and Σθ(xt, t) which define the back-
ward process:

p(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (2)

In order to do so, Ho et al. (2020) fix the variance
Σθ(xt, t), reparametrise µθ(xt, t) as a function of the
noise ϵθ(xt, t)

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)
)
, (3)

αt = 1− βt, αt =

t∏
i=1

αi (4)

and design a UNet-based (Ronneberger et al., 2015)
neural network architecture

Gθ : (xt, t) → ϵθ(xt, t) (5)
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for learning to identify the noise. The UNet is trained
through cross-entropy between the injected and pre-
dicted noise.

2.2. Diffusion models for label-efficient image
segmentation

Baranchuk et al. (2021) apply diffusion models to
semi-supervised segmentation by using a diffusion
model pretrained on unlabelled images, extracting
latent representation from the UNet’s intermediate
layers and using them to train a pixel-wise classi-
fier. More concretely, their Label Efficient Diffusion
Model (LEDM) extracts the latent representations
generated with a pretrained UNet diffusion model by
selecting a set of steps t ∈ S ⊂ {0, . . . , T}, passing a
noisy input

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I) (6)

through the UNet. The resulting activation maps
zt ∈ Rc×h×w are then upsampled through bilinear in-
terpolation to the input size and concatenated into a
feature map Z ∈ R(|S|×c)×H×W . Finally, each point-
wise prediction is performed independently by an en-
semble of lightweight multilayer perceptions

Cn
ϕ : Zi,j → yi,j ; n ∈ {1, .., 10} (7)

trained with a cross-entropy loss. The authors con-
catenate the diffusion steps S = {50, 150, 250} to
form the input to these predictors.
Similarly, Deja et al. (2023) also use the latent rep-

resentations of a pretrained diffusion model for clas-
sification tasks. In particular, they propose to use
classifier predictions from all intermediate timesteps
to regularise the training of the diffusion model. How-
ever, at test time, they only use the last diffusion step
t = 1 to generate predictions.

3. On the importance of the diffusion
steps for domain generalisation

Previous findings suggest that latent representations
in larger steps contain coarse information, which be-
comes more granular as the diffusion steps approach
the target data distribution (Baranchuk et al., 2021;
Deja et al., 2023). Here, we are interested in under-
standing how the wealth of information in each time
step s ∈ S contributes to model generalisation when
the training dataset size varies.

We train a Ridge logistic regression-based
pixel-wise classifier over latent represen-
tations extracted from specific timesteps
t = {1, 10, 25, 50, 200, 400, 600 and 800} to
isolate the predictive power of each timestep. We
compare these timestep-wise predictions to LEDM
and a fully supervised baseline using the same UNet
backbone as the DDPM backbone.

We evaluate our work on the task of chest X-
ray lung segmentation. Chest X-rays are among the
most frequent radiological examinations in clinical
practice, and automatically extracted features from
anatomical regions such as the lungs can aid clinical
decision-making. Moreover, the availability of sev-
eral public datasets of chest X-ray images allows us
to investigate the methods’ generalisation ability in
the presence of changes in dataset characteristics.

Following previous work in semi-supervised medi-
cal image segmentation (Rosnati et al., 2022), we use
the ChestX-ray8 (Wang et al., 2017) (n=108k) as the
unlabelled dataset to train the DDPM backbone over
T = 1000 steps and a subset of the JSRT (Van Gin-
neken et al., 2006) (n=247) labelled dataset for train-
ing (n=197) and validating (n=25) our method. The
dataset splits, architecture, and code are available in
our code repository1.

We reserve the remaining JSRT samples (n=25)
along with the NIH (Tang et al., 2019) (n=95), and
Montgomery (Jaeger et al., 2014) (n=138) labelled
datasets for final testing. Notably, the NIH dataset
is an annotated subset of the ChestX-ray8 dataset.
This setup allows us to test the models on data that
is (i) in-domain for the classifier (JSRT), (ii) out-of-
domain for the classifier but in-domain for the DDPM
(ChesX-ray8/NIH) and (iii) out-of-domain for both
(Montgomery).

Figure 2 shows the Dice coefficients2 from the
step-wise experiment when training our segmentation
model, the baseline and LEDM on n = {197, 49, 24,
12, 6, 3 and 1} JSRT labelled datapoints, correspond-
ing to {100, 50, 25, 12, 6, 3, 2 and 1}% of the training
dataset. Surprisingly, LEDM does not significantly3

outperform the baseline in the one-shot setting for
domain-shifted datasets (NIH, Montgomery). This
indicates that LEDM may not fully utilise the latent
representation information. Secondly, we find that

1. Demo: https://huggingface.co/spaces/

anonymous2023-21/TEDM-demo

2. Dice = 2
|A∪B|
|A|+|B|

3. Significance is calculated through a Wilcoxon paired test
at level 0.05.
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Figure 2: Performance of a logistic regression segmentation model trained on latent features from individual
diffusion steps.

the predictor trained on a single step t = 1 statisti-
cally outperforms both LEDM and the baseline for
small training sizes (1, 3, 6 in NIH and Montgomery
and for one datapoint in JSRT). In addition, this
predictor remains competitive with both the baseline
and LEDM across all other training dataset sizes.

The experiment highlights that latent representa-
tions obtained from smaller steps are more power-
ful predictors than those obtained from larger steps,
particularly for domain generalisation. In particu-
lar, the LEDM steps 50, 125 and 250 are not the
optimal choice for segmentation as single-step ap-
proaches with smaller steps perform better on out-of-
distribution datasets. In the next section, we investi-
gate whether ensembling different steps can still out-
perform single-step approaches given the right choice

of steps. We investigate several ways of ensembling
these steps and their impact on model generalisation.

4. Timestep ensembling diffusion
models

In this section, we show that the generalisation of
diffusion-based segmentation models in the low data
regime can be significantly improved by judiciously
combining adequate timesteps both at prediction and
training time.

We hypothesise that the lack of generalisation of
LEDM observed in the previous section can be mit-
igated with more model regularisation and reducing
the number of parameters that need to be learned.

515



Robust semi-supervised segmentationwith timestep ensembling diffusion models

Table 1: Models performance w.r.t. ground truth segmentations. Reported as mean ± standard deviation
over the dataset. Global CL, Global & Local CL and LEDM are a reproduction of Chen et al. (2020),
Chaitanya et al. (2020) and Baranchuk et al. (2021) respectively. All statistically comparably best
performing models are highlighted in bold. Significance is calculated through a Wilcoxon paired
test at level 0.05.

Training size 1 (1%) 3 (2%) 6 (3%) 12 (6%) 197 (100%)

JSRT (in-domain for classifier)

Sup. Baseline 84.4 ± 5.4 91.7 ± 3.7 93.3 ± 2.9 95.3 ± 2.3 97.3 ± 1.2
Global CL 88.8 ± 5.9 92.7 ± 1.8 93.6 ± 1.6 95.3 ± 1.1 97.1 ± 1.4
Global & Local CL 89.8 ± 5.2 93.1 ± 1.7 92.9 ± 1.9 94.8 ± 1.49 97.2 ± 1.2
LEDM 90.8 ± 3.5 94.1 ± 1.6 95.5 ± 1.4 96.4 ± 1.4 97.0 ± 1.3
LEDMe 93.7 ± 2.6 95.5 ± 1.5 96.7 ± 1.5 97.0 ± 1.1 97.6 ± 1.2
TEDM (ours) 93.1 ± 3.4 94.8 ± 1.4 95.8 ± 1.2 96.6 ± 1.1 97.3 ± 1.2

NIH (in-domain for DDPM, OOD for classifier)

Sup. Baseline 68.5 ± 12.8 71.2 ± 15.1 71.4 ± 15.9 77.8 ± 14.0 81.5 ± 12.7
Global CL 70.7 ± 14.6 80.3 ± 12.2 77.1 ± 16.4 84.6 ± 10.8 86.9 ± 10.8
Global & Local CL 71.1 ± 16.2 79.6 ± 12.7 81.1 ± 14.0 82.2 ± 13.6 87.4 ± 10.8
LEDM 63.3 ± 12.2 78.0 ± 10.1 81.2 ± 9.3 85.9 ± 7.4 88.9 ± 5.9
LEDMe 70.3 ± 11.4 78.3 ± 9.8 83.0 ± 8.6 84.4 ± 8.1 90.1 ± 5.3
TEDM (ours) 80.3 ± 9.0 86.4 ± 6.2 89.2 ± 5.5 91.3 ± 4.1 92.9 ± 3.2

Montgomery (OOD for DDPM and classifier)

Sup. Baseline 77.1 ± 12.0 83.0 ± 12.2 80.9 ± 14.7 83.8 ± 14.9 94.1 ± 6.6
Global CL 76.1 ± 15.0 87.6 ± 9.7 88.8 ± 11.4 90.4 ± 10.4 92.9 ± 10.8
Global & Local CL 77.4 ± 17.4 88.7 ± 9.14 89.9 ± 8.2 90.1 ± 10.9 92.5 ± 11.2
LEDM 79.3 ± 8.1 85.9 ± 7.4 89.4 ± 6.7 92.3 ± 7.2 94.4 ± 7.2
LEDMe 80.7 ± 6.6 86.3 ± 6.5 89.5 ± 5.9 91.2 ± 5.6 95.3 ± 4.0
TEDM (ours) 90.5 ± 5.3 91.4 ± 6.1 93.3 ± 6.0 94.6 ± 6.0 95.1 ± 6.9

Indeed, the current approach of concatenating fea-
tures from numerous timesteps to feed into the pixel-
wise MLP predictor results in an excessively high-
dimensional input, which leads to a complex predic-
tor. To address this concern, we propose using a
shared MLP trained to generate a prediction map
from each latent representation of the steps consid-
ered.
We define our loss function as follows:

ϕ = argmin EDEi,jEs∈S CE (Cϕ(z̃
i,j
s ), yi,j), (8)

where i, j is the pixel indexing, yi,j is the ground
truth class of pixel i, j, z̃s is the upsampled latent
representation zs of the diffusion model at step s, S
is the set of diffusion steps used, Cϕ is the pixel-wise
MLP predictor, CE stands for cross entropy and D
is the training set. At test time, we use a voting

mechanism to ensemble the various prediction maps
to obtain a final segmentation map. We call this tech-
nique “timestep ensembling” and show that it yields
superior performance.

ŷi,j =
1

|S|
∑
t∈S

Cϕ(z̃
i,j
s ) (9)

Moreover, we leverage the insights from the previous
section and combine predictions from the diffusion
steps S = {1, 10, 25, 50, 200, 400, 600 and 800}. This
approach allows us to benefit from the small steps
information content and larger step regularisation ef-
fect, unlike LEDM, which only used timesteps {50,
125 and 250. To better understand the distinctions
between our model and LEDM, please refer to Fig-
ure 1. A discussion on computational complexity can
be found in Appendix Section B.
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Figure 3: Segmentation examples. Col. 1 and 2 are the image and ground truth segmentation. Subsequent
columns correspond to models trained with n training datapoints (see title). Row 1 corresponds to
the baseline outcomes, and row 2, 3 and 4 to LEDM, LEDMe and TEDM (our method) respectively.
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5. Experiments

We conduct experiments on various percentages of
the JSRT training dataset, 12%, 6%, 3%, 2%, and
1%, to fully explore the potential of our semi-
supervised method. In addition, we train on 100%
of the training set for completeness. To evaluate
the performance of our timestep ensembling diffusion
model (TEDM), we compare it with the fully super-
vised baseline (described in Section 3) and LEDM.
LEDM and TEDM have the same MLP classifier ar-
chitecture. In addition, we compare TEDM to two
other semi-supervised methods that use contrastive
learning (CL): the ‘Global CL’ (Chen et al., 2020) and
the ‘Local and Global CL’ (Chaitanya et al., 2020).
Both these methods are trained with the same back-
bone architecture as the baseline and the DDPM.

In order to investigate the effect of each component
in our TEDM model, we carry out several ablations.
Firstly, we compare the original LEDM model with
another instance of LEDM, trained with our diffu-
sion steps, which we refer to as LEDMe. This allows
us to ablate the effect of our diffusion steps choice.
Secondly, we test the voting mechanism by report-
ing model performance when only steps 1, 10 or 25
are used at test time. We use the same evaluation
procedure as in Section 3.

Finally, to test the TEDM method’s generalizabil-
ity, we apply it to two additional datasets: the UK
Biobank dataset and the BraTS dataset (Menze et al.,
2014; Bakas et al., 2017, 2018). In the UK Biobank
dataset, we segment brain structures in 2D slices of
brain MRI T1 images. This dataset is particularly
challenging due to the low intensity variation between
structures and background. The BraTS dataset com-
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Table 2: Ablation study on test-time ensembling over timesteps. Each ‘Step i ’ experiment only uses pre-
dictions from timestep i at test time. All statistically comparably best performing models are
highlighted in bold. Significance is calculated through a Wilcoxon paired test at level 0.05.

Training size 1 (1%) 3 (2%) 6 (3%) 12 (6%) 197 (100%)

JSRT (in-domain for classifier)

Step 1 91.1 ± 5.0 94.5 ± 2.1 96.0 ± 1.4 96.8 ± 1.1 97.4 ± 1.3
Step 10 91.6 ± 4.6 94.6 ± 1.8 96.0 ± 1.3 96.9 ± 1.0 97.4 ± 1.2
Step 25 91.7 ± 4.2 94.5 ± 1.6 95.8 ± 1.2 96.8 ± 1.0 97.3 ± 1.2
TEDM 93.1 ± 3.4 94.8 ± 1.4 95.8 ± 1.2 96.6 ± 1.1 97.3 ± 1.2

NIH (in-domain for DDPM, OOD for classifier)

Step 1 70.4 ± 10.9 78.9 ± 9.4 84.2 ± 8.3 87.5 ± 6.5 91.9 ± 3.3
Step 10 73.2 ± 10.3 81.1 ± 8.3 85.8 ± 7.3 88.8 ± 5.6 91.8 ± 3.3
Step 25 75.1 ± 9.8 82.6 ± 7.7 86.5 ± 6.7 89.4 ± 5.2 91.9 ± 3.3
TEDM 80.3 ± 9.0 86.4 ± 6.2 89.2 ± 5.5 91.3 ± 4.1 92.9 ± 3.2

Montgomery (OOD for DDPM and classifier)

Step 1 85.9 ± 4.0 89.3 ± 4.2 92.2 ± 4.2 93.9 ± 3.9 94.9 ± 5.3
Step 10 87.1 ± 4.5 89.3 ± 4.8 92.1 ± 5.2 94.1 ± 5.0 94.8 ± 6.5
Step 25 87.4 ± 5.3 89.1 ± 5.5 91.7 ± 6.2 93.7 ± 6.3 94.6 ± 7.0
TEDM 90.5 ± 5.3 91.4 ± 6.1 93.3 ± 6.0 94.6 ± 6.0 95.1 ± 6.9

prises brain MRI (T1, T1Gd, T2 and T2-FLAIR) of
patients with brain tumours, which we decompose
into 2D slices and segment. This dataset is even
more difficult as it entails segmenting items of varied
shapes and locations. Further details on the experi-
mental process for these two datasets are available in
Appendix A.

6. Results

The performance results on chest X-rays and brain
MRI are shown quantitatively in Tables 1 and 3,
and qualitatively in Figure 3. The ablation results are
shown in Table 2. Further results can be found in Ap-
pendix C. For all tables, the best-performing model
and all statistically equivalent models are highlighted
by reporting their results in bold.

Using small step sizes improves performance
both in- and out-of-domain.

In Table 1, we observe that in all cases, selecting small
diffusion steps generates the best-performing models:
LEDMe outperforms LEDM statistically significantly
for all experiments but two (Montgomery n = 12

and NIH n = 12). In addition, LEDMe outperforms
LEDM for the UK Biobank and BraTS datasets for
training sizes larger than 3 and 1, respectively (see
Table 3).

Concatenating latent representations hurts
generalisability in the low data regime.

TEDM outperforms LEDMe (and LEDM) for the
NIH and Montgomery datasets, except for n=197.
We deduce that the concatenation method exploited
in LEDM leads to poor generalisation on domains
outside the labelled training set. In addition,
TEDM performs statistically comparably to LEDM
for JSRT, indicating that its generalisation properties
come with little to no in-domain performance cost.

Test-time ensembling over timesteps
improves generalisation over single-step
predictions.

Table 2 shows that using a voting mechanism for pre-
diction (used in TEDM) is more effective than using
the smallest step (TEDM outperforms the competing
models in OOD cases), implying that different steps
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Table 3: Dice scores on the UK Biobank and BraTS datasets. For both datasets, the model was trained
on 2D slices, the results are reported on the 3D images. The training size refers to the number of
patients in the labelled training set. The number of 2D slices is roughly 100x larger. All statistically
comparably best performing models are highlighted in bold. Significance is calculated through a
Wilcoxon paired test at level 0.05 with Bonferroni correction to account for multiple classes per
patient.

UK Biobank (nunlabelled
train = 34 000, ntest = 500)

Training size 1 3 6 12 34 000

Sup. Baseline 54.6 ± 18.6 76.8 ± 12.3 83.1 ± 8.5 85.1 ± 7.6 89.6 ± 5.2
Global CL 42.7 ± 20.4 77.3 ± 11.0 82.0 ± 8.7 85.2 ± 7.4 88.7 ± 5.6
Global & Local CL 44.3 ± 20.3 74.0 ± 11.8 80.6 ± 9.4 82.0 ± 8.9 87.4 ± 6.8
LEDM 60.8 ± 17.1 81.3 ± 7.9 82.3 ± 8.9 83.0 ± 9.2 87.7 ± 5.8
LEDMe 54.7 ± 17.8 79.4 ± 10.8 82.5 ± 9.1 83.8 ± 8.6 86.6 ± 7.0
TEDM (ours) 71.0 ± 14.8 81.0 ± 9.0 82.8 ± 8.8 83.2 ± 9.3 85.1 ± 7.4

BraTS (nunlabelled
train = 268, ntest = 33)

Training size 1 3 6 12 33

Sup. Baseline 12.5 ± 18.9 30.9 ± 31.2 40.7 ± 33.1 47.1 ± 33.8 69.5 ± 25.7
Global CL 4.7 ± 13.6 25.5 ± 29.4 32.3 ± 32.1 40.5 ± 32.0 56.9 ± 28.6
Global & Local CL 11.7 ± 19.1 27.3 ± 30.5 34.1 ± 31.5 38.3 ± 32.2 55.4 ± 30.0
LEDM 24.0 ± 22.9 31.0 ± 31.4 40.8 ± 31.9 48.0 ± 31.2 62.6 ± 26.7
LEDMe 21.2 ± 22.7 33.1 ± 31.4 42.8 ± 32.7 49.5 ± 31.7 63.2 ± 27.6
TEDM (ours) 27.3 ± 26.1 35.6 ± 31.7 41.9 ± 32.3 47.5 ± 31.7 59.8 ± 29.0

produce latent representations focusing on slightly
different aspects of the image.

TEDM performs robustly for increasingly
challenging segmentation tasks.

Table 3 shows that TEDM is statistically superior or
equal to its competitors for all cases with less than 12
datapoints, showing that our method remains com-
petitive in more challenging in-domain low labelled
data scenarios.

Fully supervised baselines are competitive for
in-domain harder segmentation tasks.

Our method TEDM showcases excellent performance
on very small dataset sizes (1, 2, 3 and 6 in Table 3).
However, for larger datasets (6 patients or more), a
well-designed baseline model proves to be more effec-
tive than any of the semi-supervised models. This
result suggests that although semi-supervised meth-
ods with self-supervised pretraining may have their

limitations in providing task-specific performance for
larger datasets, they present great potential for im-
proving results on small datasets.

7. Conclusions

This study investigated the impact of different diffu-
sion steps on the performance and generalisation of
semi-supervised segmentation models. Our compre-
hensive experiments across multiple datasets revealed
that small diffusion steps are crucial for domain gen-
eralisation, requiring only a few training samples to
become powerful pixel-wise predictors. Furthermore,
we found that ensembling segmentation maps over
timesteps significantly improves model generalisation
in the low data regime while offering competitive per-
formance in-domain. Conversely, concatenating la-
tent representations can hurt the generalisation of
the pixel-wise classifier. These findings were demon-
strated by the superior performance of our proposed
Timestep Ensembling Diffusion Model on chest X-ray
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lung segmentation and more challenging tasks such
as brain structure and tumour segmentation. Our re-
sults indicate that latent representations across dif-
ferent steps share semantics and act as a model reg-
ulariser, leading to better generalisation than com-
peting methods. This analysis underscores the im-
portance of thoroughly investigating the design deci-
sions for auxiliary tasks in diffusion models, such as
timestep selection and ensembling. These decisions
can have a significant impact on the model’s perfor-
mance.
Our findings provide important new insights and

may inform the development of new approaches lever-
aging powerful diffusion models for medical imaging
tasks. In future work, the performance of TEDM
and similar approaches should be compared to the
emerging foundation model techniques, where the
pre-training is executed at a larger scale than semi-
supervised methods. Here, the ability of diffusion
models to efficiently capture the data distribution
from extensive, unlabelled data holds a promise to
overcome the persistent data scarcity problem in
medical image segmentation.
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Table 4: Methods computational cost

Theoretical test-time operations GMAC

Sup. Baseline N 29.2
Global CL N 29.2
Global & Local CL N 29.2
LEDM |SLEDM| ×N + npixels ×NMLP(|SLEDM| × nlatent, 1) 88.0
LEDMe |STEDM| ×N + npixels ×NMLP(|STEDM| × nlatent, 1) 234.6
TEDM (ours) |STEDM| ×N + |STEDM| × npixels ×NMLP(nlatent, 1) 234.6

Appendix A. Methods details

A.1. UK Biobank data preprocessing

The UK Biobank brains dataset contains 42 791 pa-
tients’ scans. We initially separate the data in three
sets, a training set with ntrain = 34 230, a validation
set with nval = 4280 and a test set of ntest = 4280 pa-
tients. After evaluating some methods with ntest =
4280 and careful consideration of results variance, we
reduced the test set to ntest = 500 without suffering
any drops in metrics accuracy.

All scans have voxel size 1mm3 and image size
189 × 233 × 197, and are paired with the segmen-
tation of 15 subcortical structures’ volumes from
FIRST (FMRIB’s Integrated Registration and Seg-
mentation Tool Patenaude et al. (2011)) segmenta-
tion, and brain masks. For more details on the scan
preprocessing, please refer to Alfaro-Almagro et al.
(2018).

We preprocess the images by clipping the intensi-
ties to [0, 1500] to remove large outliers, then nor-
malise the brain pixels using the brain masks so that
the 1st and 99th quantiles correspond to -1 and 1 re-
spectively:

xnorm[mask ̸= 0] = a · x[mask ̸= 0] + b

(10)

such that a =
2

x99% − x1%
and b = 1− a · x99%

(11)

where x1% and x99% are the 1st and 99th quantiles of
x[mask ̸= 0].

We then split the image and segmentation in 189
2D slices, and discard all slices where no brain struc-
tures are present in the segmentation, resulting in
roughly 100 2D slices per brain image.

A.2. BraTS data preprocessing

The BraTS dataset consists of 338 patients’ scans.
For each patient, four scanner modalities are avail-
able, “native T1, post-contrast T1-weighted (T1Gd),
T2-weighted (T2), and T2 Fluid Attenuated Inver-
sion Recovery (T2-FLAIR) volumes”4. Segmentation
maps for GD-enhancing tumour, the peritumoural
oedema, and the necrotic and non-enhancing tumour
core are provided. In addition, the scans are co-
registered, resampled to 1mm3 resolution as skull
stripped. For more information about the BraTS
dataset preprocessing, please refer to Bakas et al.
(2018); Menze et al. (2014). We separate the data
in three sets, a training set with ntrain = 269, a vali-
dation set with nval = 36 and a test set of ntest = 33.
For each scan modality, we calculate the mean and
variance of the brain pixels across the training set, ex-
cluding the background. We use the calculated mean
and variance to normalise the data distribution to
mean 0 and standard deviation 1.

We then split the images and segmentation in 155
2D slices. For each slice, concatenate the four modal-
ities, and take a centre crop of 176× 176.

A.3. Training hyperparameters

We train the DDPM for 100 000 steps with batch size
4 and learning rate η = 0.0001 on a single NVIDIA
TITAN X GPU with 12GB capacity. Similarly, we
train the Global CL and Global & Local CL models
for 100 000 steps. All downstream models - the su-
pervised baseline, Global CL and Global & Local CL
fine-tuning, LEDM, LEDMe and TEDM - are trained
for 20 000 steps, with the same learning rate.

4. https://www.med.upenn.edu/cbica/brats2020/data.
html
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Appendix B. Computational cost

The backbone UNet used across experiments is of
36m parameters. We use the package ptflops to es-
timate the number of operations to N = 29.2M .
Therefore, Supervised Baseline, Global CL and
Global & Local CL all have a computational cost of
N .

LEDM requires |SLEDM| = |{50, 150, 250}| = 3
forward passes through the UNet composing the
DDPM backbone of the model, one for each used
timestep. The latent representations extracted from
the UNet has nlatent = 960 dimensions. In the
case of LEDM, these dimensions are concatenated
and passed through a lightweight multilayer percep-
tron, composed of three linear layers: input channels
×128, 128 × 32 and 32× out channels. Here, in-
put channels=|SLEDM| ×nlatent and out channels=1.
We denote its size by NMLP(in c, out c), and note
that it is executed npixels times. LEDMe has a simi-
lar complexity structure.
Finally, TEDM, like LEDMe, requires |StEDM| =

|{1, 10, 25, 50, 200, 400, 600, 800}| = 8 forward passes
through the UNet, and requires an MLP of size
NMLP(nlatent, 1) for each latent representation. The
final numbers for all models can be found in Table 4.
Note that for LEDM, LEDMe and TEDM, the mul-

tiple UNet forward passes are the greatest contribu-
tors to computational complexity and can be paral-
lelised provided enough computational power, leading
to comparable prediction time to the baseline.

Appendix C. Further results and
visualisations
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Figure 4: Additional visualisations of segmentations on JSRT, NIH and Montgomery test images as per
Figure 3. Please zoom in for better visibility of details.
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Figure 5: Additional results on the performance of a logistic regression segmentation model trained on latent
features from individual diffusion steps.
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Table 5: Models precision and recall w.r.t. ground truth segmentations, as per Table 1.

Training size 1 3 6 12 197

Precision - JSRT (in-domain for classifier)

Sup. Baseline 89.2 ± 12.1 93.2 ± 7.2 93.8 ± 5.9 95.3 ± 3.7 97.9 ± 1.1
Global CL 86.8 ± 10.5 95.5 ± 3.0 97.3 ± 2.6 97.0 ± 2.0 97.7 ± 1.5
Global & Local CL 90.2 ± 9.2 97.1 ± 2.2 96.8 ± 2.0 96.2 ± 2.0 97.1 ± 1.6
LEDM 85.2 ± 5.8 91.7 ± 2.9 94.1 ± 1.9 96.3 ± 1.5 97.5 ± 1.3
LEDMe 90.1 ± 4.6 93.6 ± 2.3 96.2 ± 2.0 96.6 ± 1.6 97.9 ± 0.9
TEDM (ours) 91.3 ± 7.2 95.4 ± 2.9 95.6 ± 2.0 96.4 ± 1.7 97.5 ± 1.2

Recall - JSRT (in-domain for classifier)

Sup. Baseline 81.5 ± 6.6 90.6 ± 3.4 93.2 ± 2.6 95.4 ± 2.5 96.8 ± 2.2
Global CL 91.8 ± 3.2 90.2 ± 3.0 90.3 ± 3.8 93.8 ± 1.9 96.6 ± 2.3
Global & Local CL 90.0 ± 3.2 89.5 ± 3.3 89.5 ± 3.7 93.4 ± 2.4 97.2 ± 1.8
LEDM 97.4 ± 1.1 96.7 ± 1.2 97.0 ± 1.6 96.6 ± 2.1 96.6 ± 2.1
LEDMe 97.7 ± 1.0 97.5 ± 1.4 97.1 ± 1.5 97.4 ± 1.3 97.3 ± 1.9
TEDM (ours) 95.4 ± 2.1 94.3 ± 1.6 96.2 ± 1.5 96.9 ± 1.4 97.2 ± 1.9

Precision - NIH (in-domain for DDPM, OOD for classifier)

Sup. Baseline 63.0 ± 17.0 65.6 ± 18.3 63.6 ± 20.3 72.0 ± 18.3 80.5 ± 17.4
Global CL 60.8 ± 17.9 78.7 ± 15.9 76.0 ± 20.4 83.2 ± 14.4 89.4 ± 13.6
Global & Local CL 65.1 ± 19.1 81.7 ± 15.2 84.5 ± 15.4 81.7 ± 16.8 88.0 ± 13.9
LEDM 48.4 ± 13.6 69.4 ± 14.8 74.7 ± 14.0 83.0 ± 11.4 88.4 ± 9.2
LEDMe 56.8 ± 14.1 69.3 ± 13.7 77.0 ± 12.9 79.8 ± 12.0 90.8 ± 7.8
TEDM (ours) 70.5 ± 13.3 82.0 ± 10.6 86.3 ± 9.3 90.4 ± 6.9 95.3 ± 3.6

Recall - NIH (in-domain for DDPM, OOD for classifier)

Sup. Baseline 77.7 ± 10.3 80.5 ± 12.0 85.4 ± 10.1 87.4 ± 8.0 84.2 ± 9.9
Global CL 88.6 ± 9.7 83.6 ± 8.1 80.1 ± 13.6 87.4 ± 7.7 85.3 ± 8.9
Global & Local CL 80.9 ± 14.5 78.6 ± 11.7 78.9 ± 14.0 84.0 ± 11.5 87.6 ± 8.5
LEDM 96.4 ± 4.2 91.8 ± 5.5 91.1 ± 6.2 90.2 ± 6.5 89.9 ± 5.5
LEDMe 96.3 ± 3.2 92.5 ± 6.2 91.8 ± 6.7 90.9 ± 7.2 89.9 ± 5.7
TEDM (ours) 95.7 ± 4.0 92.4 ± 4.2 92.9 ± 4.1 92.7 ± 4.4 90.8 ± 5.0

Precision - Montgomery (OOD for DDPM and classifier)

Sup. Baseline 75.1 ± 16.4 77.6 ± 16.1 73.5 ± 18.6 78.1 ± 19.0 94.9 ± 8.9
Global CL 68.3 ± 18.3 86.7 ± 13.7 88.8 ± 15.8 89.2 ± 13.8 93.7 ± 14.1
Global & Local CL 72.2 ± 20.9 90.1 ± 12.7 92.2 ± 11.0 89.2 ± 14.4 92.9 ± 14.7
LEDM 68.7 ± 10.5 79.4 ± 9.7 85.9 ± 8.8 92.0 ± 6.8 97.5 ± 2.7
LEDMe 69.7 ± 9.2 78.8 ± 9.1 84.8 ± 8.5 88.5 ± 7.3 96.4 ± 3.7
TEDM (ours) 88.7 ± 5.3 90.9 ± 5.9 93.5 ± 4.9 96.9 ± 2.4 98.5 ± 1.0

Recall - Montgomery (OOD for DDPM and classifier)

Sup. Baseline 80.9 ± 7.2 90.9 ± 5.9 93.0 ± 5.6 93.0 ± 5.8 93.6 ± 4.8
Global CL 88.7 ± 7.2 89.9 ± 4.8 90.1 ± 5.5 92.8 ± 5.7 93.0 ± 6.5
Global & Local CL 86.1 ± 10.9 88.3 ± 5.5 88.4 ± 6.4 92.2 ± 5.9 93.2 ± 6.0
LEDM 94.9 ± 4.7 94.5 ± 4.2 93.9 ± 4.8 92.9 ± 8.3 92.0 ± 9.4
LEDMe 97.0 ± 3.5 96.3 ± 3.7 95.3 ± 4.3 94.3 ± 5.1 94.4 ± 5.1
TEDM (ours) 92.9 ± 6.7 92.4 ± 6.9 93.3 ± 7.1 92.8 ± 7.9 92.6 ± 9.1
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Table 6: Precision and recall scores on the UK Biobank and BraTS datasets, as per Table 3
.

UK Biobank (nunlabelled
train = 34 000, ntest = 500)

Training size 1 3 6 12 34 000

Precision

Sup. Baseline 67.3 ± 18.9 84.5 ± 11.4 84.0 ± 10.7 85.8 ± 9.5 88.7 ± 9.0
Global CL 59.3 ± 23.3 83.1 ± 11.5 82.9 ± 11.1 85.2 ± 9.7 89.4 ± 8.6
Global & Local CL 52.3 ± 22.5 75.1 ± 15.0 80.3 ± 11.5 81.7 ± 10.7 88.6 ± 9.2
LEDM 64.9 ± 21.3 83.2 ± 9.6 84.0 ± 9.6 85.5 ± 9.1 86.9 ± 8.8
LEDMe 51.3 ± 19.5 86.0 ± 8.9 86.4 ± 9.2 85.9 ± 9.0 88.5 ± 8.9
TEDM 85.9 ± 11.7 88.8 ± 8.3 86.8 ± 9.1 87.8 ± 9.0 87.7 ± 9.2

Recall

Sup. Baseline 41.3 ± 20.5 67.8 ± 16.4 79.7 ± 11.4 82.5 ± 11.2 88.6 ± 6.4
Global CL 30.6 ± 19.6 70.2 ± 14.9 78.8 ± 11.3 82.8 ± 10.4 85.8 ± 9.5
Global & Local CL 39.6 ± 19.4 73.6 ± 11.0 81.1 ± 9.9 82.7 ± 10.1 86.6 ± 7.6
LEDM 64.4 ± 17.7 76.2 ± 13.2 81.4 ± 10.2 81.5 ± 11.2 86.2 ± 8.0
LEDMe 66.0 ± 18.1 75.2 ± 12.7 79.4 ± 11.1 82.5 ± 10.7 85.0 ± 8.0
TEDM 58.6 ± 20.3 73.2 ± 13.3 79.7 ± 11.1 80.0 ± 11.9 83.0 ± 8.6

BraTS (nunlabelled
train = 268, ntest = 33)

Training size 1 3 6 12 33

Precision

Sup. Baseline 25.7 ± 30.0 45.1 ± 37.4 54.6 ± 37.6 62.2 ± 35.1 74.1 ± 26.8
Global CL 12.0 ± 25.3 38.6 ± 34.9 48.3 ± 37.1 57.1 ± 34.9 66.6 ± 29.9
Global & Local CL 31.6 ± 35.7 40.5 ± 37.2 49.5 ± 36.3 60.7 ± 35.1 66.3 ± 29.2
LEDM 26.4 ± 28.5 44.5 ± 37.9 56.7 ± 35.8 61.6 ± 35.0 70.6 ± 27.4
LEDMe 27.9 ± 29.4 51.2 ± 37.6 60.8 ± 35.2 61.4 ± 34.8 70.4 ± 27.5
TEDM 46.2 ± 34.2 61.4 ± 35.8 67.2 ± 33.6 67.4 ± 33.4 72.4 ± 27.0

Recall

Sup. Baseline 18.9 ± 28.4 43.7 ± 36.4 48.1 ± 35.8 49.5 ± 35.5 71.1 ± 26.2
Global CL 13.6 ± 29.1 38.9 ± 36.2 33.1 ± 33.6 45.2 ± 33.5 56.9 ± 30.9
Global & Local CL 21.0 ± 31.3 38.3 ± 35.8 40.6 ± 34.9 39.4 ± 33.3 56.8 ± 31.8
LEDM 35.8 ± 26.7 37.0 ± 34.3 45.8 ± 33.6 51.0 ± 32.0 63.8 ± 26.9
LEDMe 26.8 ± 26.8 36.0 ± 32.9 46.7 ± 34.6 53.1 ± 32.5 64.7 ± 27.7
TEDM 27.6 ± 28.2 37.3 ± 33.3 42.4 ± 33.3 47.9 ± 32.9 59.3 ± 30.2
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