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Abstract

Information Extraction (IE) from document im-
ages is challenging due to the high variabil-
ity of layout formats. Deep models such as
LayoutLM and BROS have been proposed to
address this problem and have shown promis-
ing results. However, they still require a large
amount of field-level annotations for training
these models. Other approaches using rule-
based methods have also been proposed based
on the understanding of the layout and seman-
tics of a form such as geometric position, or
type of the fields, etc. In this work, we propose
a novel approach, EIGEN (Expert-Informed
Joint Learning aGgrEatioN), which combines
rule-based methods with deep learning mod-
els using data programming approaches to cir-
cumvent the requirement of annotation of large
amounts of training data. Specifically, Eigen
consolidates weak labels induced from multi-
ple heuristics through generative models and
use them along with a small number of anno-
tated labels to jointly train a deep model. In
our framework, we propose the use of labeling
functions that include incorporating contextual
information thus capturing the visual and lan-
guage context of a word for accurate catego-
rization. We empirically show that our Eigen
framework can significantly improve the perfor-
mance of state-of-the-art deep models with the
availability of very few labeled data instances1.

1. Source code is available at
https://github.com/ayushayush591/
EIGEN-High-Fidelity-Extraction-Document-Images

1. Introduction

In today’s information-driven world, the ability to ef-
ficiently extract and process information from docu-
ment images is crucial for various applications, rang-
ing from document management systems to intelli-
gent search engines. In today’s information-driven
world, the ability to efficiently extract and process
information from document images is crucial for var-
ious applications, ranging from document manage-
ment systems to intelligent search engines. Large-
scale pre-trained language models, such as BERT
(Devlin et al., 2018), GPT (Radford et al.), and
RoBERTa (Liu et al., 2019), have demonstrated ex-
ceptional performance in various NLP tasks, includ-
ing named entity recognition (NER) and relation ex-
traction, which are key components of information
extraction (IE). Although advances in large language
models (LLMs) (Wolf et al., 2020) have led to sig-
nificant progress in natural language understanding
and processing (Zhao et al., 2023), the task of high-
fidelity information extraction from document im-
ages remains a challenging endeavor. State-of-the-
art models like LayoutLM (Xu et al., 2020) and
DocVQA (Mathew et al., 2021) combine visual and
textual information to better understand document
layouts and answer questions about document con-
tent, addressing the issue of diverse document for-
matting.

While many such LLM models (Xu et al., 2020;
Hong et al., 2022) that combine language and visual
representation have outperformed all previous ap-
proaches in IE from document images, they still need
to be fine-tuned for specific tasks in order to yield
optimal performance. This introduces certain disad-
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CORDS- Hotel Receipts Hospital Lab Report

Observations by experts on the dataset

LF1. Few keys are on the left side of its
corresponding values

LF2. Y positions of bboxes of header
and footer will be close to its borders

LF3. First row of a table in a medical
report is header

LF4. Tota cash is a number and is a
value of the key called 'Total'

LF1

def is_key (key_bbox, value_bbox):             
       cos_theta = np.dot(key_bbox[:2],             
       value_bbox[:2])/(np.linalg.norm               
       (key_bbox[:2])*np.linalg.norm                 
       (value_bbox[:2]))                                     
        if (cos_theta > 0.9):                                 
            return "key"                                       
        else  "ABSTAIN"

LF2

def is_header_or_footer (word_bbox,                       
   page_height):                                                                   
            if (word_bbox[1] < 0.1 * page_height):  
                     return "header"                                   
          elif (word_bbox[1] > 0.9 * page_height):       
       return "footer"                                           
          else "ABSTAIN"

LF3

def is_table_header (row_bbox,                     
    table_bboxes):                                         
        if (row_bbox ==  table_bboxes[0]):       
              return "header"                             
        else "ABSTAIN"

LF4

def is_total_value(key_bbox, value_bbox,   
  value_text):                                                   
        if (key_bbox[0] < value_bbox[0] and

 value_text.isdigit()):                               
               return  "value"                                 
        else  "ABSTAIN"

Figure 1: Illustration of the Labeling Functions (LFs) creation process. We demonstrate how domain experts
can leverage their knowledge to define LFs based on certain heuristics. Examples include, the
position of specific fields within a document, the recognition of certain patterns or keywords in
the text, or the spatial relationships between visual and textual elements. This encoding of expert
knowledge enables our model to extend its learning from a few labeled data points to a much larger,
unlabeled data set (The colour of boxes in image and LF same signifies that boxes classified by
applying that particular labeling function).

vantages that may hinder their widespread adoption
and scalability, despite the humongous effort that
goes into designing and training these models. Fine-
tuning might become a bottleneck due to the follow-
ing reasons: (i) High annotation cost, (ii) the possi-
bility of labeling inconsistency, and quality degrada-
tion, and (iii) privacy where data cannot be shared for
fine-tuning. In this work, we circumvent this bottle-
neck through the use of a semi-supervised approach
of data-programming (Ratner et al., 2017) for such
LLMs fine-tuning tasks. Data programming lever-
ages labeling functions (LFs), which are a set of rules
or heuristics created by domain experts or from prior
knowledge. In our case, LFs can be used to encode
knowledge such as the position of specific fields or re-
gions within a document layout, patterns in textual

content, semantic correlations between language and
visual cues, or even domain-specific rules and conven-
tions. For instance, in a standard invoice document,
we know that the ‘Invoice Number’ is generally lo-
cated at the top right corner; this is a positional
heuristic that can be encoded as a labeling func-
tion. Similarly, we can encode patterns in text like
those for recognizing dates, and monetary amounts,
or for identifying certain keywords indicative of spe-
cific fields. Furthermore, LFs can help to encode the
semantic relationship between visual and textual ele-
ments, such as the spatial proximity of text to specific
symbols or images within the document, or the pres-
ence of certain textual content within specific visual
containers. Domain-specific rules and conventions,
such as the format of a medical prescription, tax in-
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voice, or legal contract, can also be codified into LFs.
In Figure 1, we visually demonstrate how LFs can
be created by experts based on a few example data
points. However, these LFs may be (i) conflicting in
nature i.e., multiple LFs may assign conflicting la-
bels to the same instance, and (ii) some LFs may
not cover the complete dataset. Unsupervised (Rat-
ner et al., 2017; Chatterjee et al., 2020) data pro-
gramming approaches aggregate these conflicting la-
bels only on unlabeled set. Semi-supervised data pro-
gramming approaches (Awasthi et al., 2020; Mahesh-
wari et al., 2021) leverage both unlabeled and labeled
sets to further improve the final performance. They
accept LFs, which learn a label aggregation model,
and a small number of labeled instances, which learn
a supervised feature-based model. Both of these mod-
els are jointly learned for improved performance on
the end task. Summarily in this work, we com-
bine the power of large language models with semi-
supervised data programming to create a robust, scal-
able, and cost-efficient method for high-fidelity infor-
mation extraction from document images, which we
name Eigen(Expert-Informed Joint Learning aGgre-
gation). Our contributions can be summarised as fol-
lows:

1. We introduce Eigen, a novel framework that in-
tegrates human-in-the-loop learning with the ca-
pabilities of language models through the utiliza-
tion of data-programming techniques.

2. Within the Eigen framework, we present a
methodology for defining contextual labeling
functions specifically tailored to three distinct
datasets capturing domain-specific information.

3. We provide empirical evidence showcasing the
efficacy of Eigen and user-defined rules in cir-
cumventing the need for annotating a large num-
ber of domain-specific datasets. We conduct ex-
tensive experiments on three datasets (two pub-
lic and one proprietary) and show improvements
over state-of-the-art language models.

2. Related Work

Transformer models have proven to be very effective
in recognition tasks and data programming. They
have been widely used in document pre-training,
but traditional pre-trained language models (Zhao
et al., 2023) focus on text-level information, leav-
ing out layout information. To address this, Lay-

outLM (Xu et al., 2020) was introduced, which lever-
ages both text and layout information to significantly
improve performance on various document under-
standing tasks. LayoutLM uses language models and
image-text matching to find relationships between
text and document layout, taking text, image, and
location as input features. Its common functionalities
include visual feature extraction, textual feature ex-
traction, spatial relationship modeling, pre-training,
and fine-tuning for document images and associated
text.

The improved LayoutLMv2 (Xu et al., 2021) fur-
ther utilizes self-attention with a spatially-aware
model to better capture the layout and position of
different text blocks in the document. These pre-
trained models work well for document classification
and token labeling, but they are unable to learn geo-
metric relationships since they use only absolute 1-D
positional embeddings. Further improvement were
made with LayoutLMv3 (Huang et al., 2022), which
is similar to V2 but takes images as input in the RGB
format instead of BGR format as used by V1 and V2.
Further, unlike V1 and V2, which used WordPiece
for text tokenization, LayoutLM V3 uses byte-pair
encoding.

Weak supervision (Maheshwari et al., 2021; Siva-
subramanian et al., 2023), a machine learning ap-
proach that deals with limited or noisy labeled train-
ing data, has also seen significant applications in doc-
ument understanding. This approach requires heuris-
tics to be applied to unlabeled data and the aggre-
gation of noisy label outputs to assign labels to un-
labeled data points(Maheshwari et al., 2022). Un-
supervised approach such as Snorkel (Ratner et al.,
2017) uses domain experts to develop heuristics, re-
ferred to as labeling functions, which output noisy
labels that are aggregated using a generative model
instead of a simple majority vote. Snuba Varma and
Ré (2018) was later introduced to automate the cre-
ation of heuristics, making it simpler and more con-
venient for users.

However, the use of discrete labeling functions can
leave gaps in the labeling process. To address this,
CAGE (Chatterjee et al., 2020), or ‘Data Program-
ming using Continuous and Quality-Guided Labeling
Functions’ was introduced, which uses continuous la-
beling functions to extract more accurate information
for labeling and introduces a Quality Guide that ex-
tends the functionality of the generative model for
aggregation. This user-controlled variable can effec-
tively guide the training process of CAGE.
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3. Methodology

Like for any visual NER task, for Eigen framework,
we start with a small set of document images where
each image contains words, associated bounding box
(bbox) coordinates, and the respective class to which
each word belongs. Additionally, we have a large set
of images where only the words and their bbox co-
ordinates are annotated. The classes for the words
in these images remain unlabelled, thereby forming a
semi-supervised data set. To complement these data
sets, a set of Labeling Functions (LFs) are also pro-
vided. These LFs are designed to capture the heuris-
tic rules based on domain knowledge and document
layouts. They play a pivotal role in providing sur-
rogate labels for the words in the larger unlabeled
data set, thereby extending the reach of our super-
vised training mechanism. In our framework, we
also leverage two models: the large language model
(LLM) for information extraction from document im-
ages and a probabilistic model for label aggregation.
The LLM can be any state-of-the-art model that has
demonstrated robust performance in document un-
derstanding tasks, such as LayoutLM or DocVQA.
This model’s role is to predict the class labels of words
in the document images, given the words and their
bbox coordinates. The probabilistic model is used for
aggregating the labels produced by the LFs. When
multiple LFs give conflicting labels for a particular
word, this model, based on the parameters reflecting
the reliability scores of each LF, determines which
label to assign to the word. This model helps rec-
oncile conflicts and uncertainties among the LFs, en-
suring a reliable and consistent labeling system that
guides the learning process of the LLM. To fine-tune
the LLM and train the probabilistic model, Eigen
uses both the small labeled data set and the large
unlabeled data set. The LFs are applied to all words
in both data sets, producing surrogate labels for the
words. In the case of the small labeled data set,
each word now has two labels: the original human-
annotated label and the LF-generated surrogate la-
bel. In the case of the large unlabeled data set, each
word only has the surrogate label.

The entire process is presented in Figure 2. The
methodology is divided into three main stages:
1. Pre-processing: Eigen utilizes Optical Char-
acter Recognition (OCR) techniques to extract text
from the images, and layout analysis tools to identify
the spatial structure and relationships between dif-
ferent elements within the documents. This step pro-

vides a unified representation of the document that
can be effectively utilized by LLMs.
2. Labeling Function Design: In this stage, for
Eigen, we develop a set of labeling functions (LFs)
that can generate approximate labels for the training
data. These LFs are heuristics or weak supervision
sources, designed based on domain knowledge and
available resources, such as dictionaries, rule-based
systems, or pre-trained models. The LFs are designed
to capture specific patterns and structures in docu-
ment images relevant to the target information ex-
traction tasks, such as named entity recognition and
relation extraction. Several previous approaches to
NER apply ruled-based or some heuristic methods.
In our methodology, we utilize these rule-based meth-
ods as wrappers to our LFs.
3. Joint Fine-tuning: The joint fine-tuning pro-
cess incorporates the designed LFs into the training
loop of LLMs. The model is initially pre-trained on
a large corpus of text using unsupervised learning,
followed by supervised fine-tuning with the weak su-
pervision provided by the LFs. During fine-tuning,
the model learns to focus on the patterns and struc-
tures captured by the LFs, which enhances its ability
to perform information extraction tasks on document
images. This joint fine-tuning approach allows the
model to leverage both the power of LLMs and the
flexibility of LFs, leading to improved extraction ac-
curacy and robustness.

3.1. Framework

Eigen framework consists of a pre-trained deep neu-
ral network model that tags each word with a cor-
responding entity class. In Eigen, we consider the
recent LayoutLM (Xu et al., 2020) as our choice of
the pre-trained deep neural network model, though
this model can be replaced with any other deep neural
model for visual NER tasks such as BROSHong et al.
(2022), etc. We call this a featurized pre-trained deep
model. Featurized model can be trained in a super-
vised setting with the availability of labeled data. We
also utilize a graphical model as proposed in Mahesh-
wari et al. (2021) which, along with a set of labeling
functions(LFs) can be used to pseudo-label unlabelled
words with the entity class by aggregating the output
from the LFs.

Formally, let X and Y ∈ {1...K} be the feature and
label spaces, respectively. A feature, xi ∈ X , consists
of a word wi and its corresponding bounding box bi.
For each feature xi, the context set C where C ⊆ X
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Figure 2: Illustration of the joint learning process in the Eigen framework. The process is divided into
three main stages: (1) pre-processing, where the document images are annotated with bounding
box coordinates and labels (if available), (2) Labeling Function (LF) design, where domain-specific
heuristic rules are applied to generate surrogate labels, and (3) joint fine-tuning, where LLM and a
probabilistic model are simultaneously trained using both the human-annotated labels and the LF-
generated surrogate labels. This methodology enables robust Named Entity Recognition (NER)
from document images leveraging semi-supervised learning.

and C = {∀ci ∈ X \ {xi}} C represents the surround-
ing words wj and their respective bounding boxes bj
for the instance xi. This context acts as the prior
information for wi and provides valuable information
in the form of labeling functions. Furthermore, we
have m LFs, λ1 . . .λm, designed by either some prior
knowledge or by inspecting very few examples of a
specified document type, such as the few labeled data
instances used for the initial training. Each LF λj is
attached to one of the class ki ∈ K, that takes an xi,
some context set C, as input, and returns either ki or
0 (which means ABSTAIN). Intuitively, LFs can be
written to jointly understand the visual and language
context of a word with respect to other words (speci-
fied by C in our framework) in a document image and
can classify the word to a particular class it belongs

to. The entire available dataset can be grouped into
two categories:

• L = {(x1, y1, l1), .., (xN , yN , lN )} which denotes
the labelled set and,

• U = {(xN+1, lN+1, .., (xM , lM )} which denotes
the unlabelled set.

Here xi ∈ X , yi ∈ Y and li = (li1, li2, ..., lim) de-
notes the firings of all the LFs on instance xi.

Our joint learning model, borrowed from Mahesh-
wari et al. (2021), is a blend of the feature-based
model P f

ϕ (x) and the LF-based graphical model
Pϕ(li, y). Our feature-based model, P f

ϕ (x), is a
Transformer-based neural network model Xu et al.
(2020). For a given input xi, the model outputs the
probability of classes as P f

ϕ (y|x). The LayoutLM is
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based on the Devlin et al. (2018) multi-layer bidi-
rectional language model. The model computes the
input embeddings by processing the corresponding
word, position, and segment embeddings.

For each input xi and LF outputs li, our goal is to
learn the correct label yi using a generative model on
the LF outputs.

Pθ(li, y) =
1

Zθ

m∏
j=1

ψ(lij , y) (1)

ψθ(lij , y) =

{
exp(θjy) if lij ̸= 0

1 otherwise.
(2)

For each LF lj , we learn K parameters θj1, θj2...θjK
corresponding to each LF and class. Here, Zθ is a
normalization factor. The generative model assumes
that each LF lj is independent of other LFs and in-
teracts with yi to learn parameters θ. The model
imposes a joint distribution between the true label y
and the values li returned by each LF λi on the sam-
ple xi. In this paper, we use a joint learning algorithm
with semi-supervision to leverage both features and
domain knowledge in an end-to-end manner.

3.2. Joint Learning (JL)

Our JL algorithm consists of two individual model
loss and a KL divergence component to strengthen
agreement among model predictions. We first spec-
ify the objective function of our JL framework and
thereafter explain each component below:

min
θ,ϕ

∑
i∈L

LCE

(
P f
ϕ (y|i), yi

)
+ LLu(θ|U)+

∑
i∈∪

KL
(
P f
ϕ (y|xi), Pθ(y|li)

)
+R(θ|{qj})

Feature Model Loss : The first component
of the loss is the LayoutLM (Xu et al., 2020)
loss over labeled data. The loss is defined as:
LCE

(
P f
ϕ (y|i), yi

)
= − log

(
P f
ϕ (y = yi|xi)

)
which is

the standard cross-entropy loss on the labeled dataset
L, toward learning ϕ parameters.
Graphical Model Loss: We borrow the graphi-
cal model loss from Chatterjee et al. (2020) which
formulates LLu(θ|U) as the negative log-likelihood
loss for the unlabelled dataset. LLu(θ|U) =

−
M∑

i=N+1

log
∑
y∈Y

Pθ(li, y), where Pθ is defined in Equa-

tion 1.

Kullback-Leibler (KL) divergence :
KL(P f

ϕ (y|xi), Pθ(y|li)) aims to establish consensus
among the models by aligning their predictions
across both the labeled and unlabeled datasets. We
use KL divergence to make both the models agree
in their prediction over the union of labeled and
unlabeled datasets.
Quality Guides: Following Chatterjee et al. (2020),
we employ quality guides denoted as R(θ|qj) to en-
hance the stability of unsupervised likelihood training
while utilizing LFs. Let qj be the fraction of cases
where lj is correctly triggered, and let qtj represent
the user’s belief regarding the proportion of exam-
ples i for which the labels yi and lij agree. In cases
where the user’s beliefs are not accessible, we utilize
the precision of the LFs on the validation set as a
proxy for the user’s beliefs. If Pθ(yi = kj |lij = 1) is
the model precision associated with the labeling func-
tions (LFs), the loss function guided by the quality
measures can be expressed as:
R(θ|{qtj}) =

∑
j q

t
j logPθ(yi = kj |lij = 1) + (1 −

qtj) log(1− Pθ(yi = kj |lij = 1))
Each term is weighted by the user’s beliefs qtj con-
cerning the agreement between the LFs and the true
labels, and their complement (1 − qtj). This loss for-
mulation serves as a guiding principle to optimize the
model’s performance based on the model predictions
and the user’s beliefs.

The two individual model-specific loss components
are invoked on the labeled and unlabeled data respec-
tively. Feature model loss learns ϕ against ground
truth in the labeled set whereas graphical model loss
learns θ parameters by minimizing negative loss likeli-
hood over the unlabeled set using labeling functions.
Using KL divergence, we compare the probabilistic
output of the supervised model fθ against the graph-
ical model Pθ(l, y) over the combination of unlabeled
and labeled datasets. We use the ADAM optimizer
to train our non-convex loss objective

4. Experiment

We present here the experiments conducted to evalu-
ate the performance of our proposed joint fine-tuning
approach.

4.1. Dataset

We conducted our experiments on a diverse set of
benchmark datasets that encompass various informa-
tion extraction tasks, such as named entity recogni-
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tion (NER), relation extraction, and question answer-
ing on document images. These datasets represent
different document structures, domains, and com-
plexities, thereby providing a comprehensive evalu-
ation of our approach:
SROIE (Huang et al. (2019)): This dataset consists
of English receipts, containing a total of 973 scanned
receipts. Each receipt is accompanied by a .jpg file
of the scanned image, a .txt file holding OCR infor-
mation, and a .txt file containing the key information
values.
CORD (Park et al. (2019): The Consolidated Re-
ceipt Dataset for post-OCR parsing (CORD) is a
collection of receipt images obtained from shops and
restaurants. The dataset consists of more than 11,000
image and JSON pairs, providing a rich source of data
for information extraction tasks.
Hospital Dataset: In addition to the publicly avail-
able datasets, we are using a medical dataset provided
by a Hospital. This anonymized dataset primarily
consists of lab reports such as Biochemistry, Clinical
Pathology, Discharge Summaries, Haematology, and
Molecular Laboratory reports. The dataset includes
1000, images, of which 800 images are annotated with
text boxes, and 100 images are annotated and labeled
with respective tags.

4.2. Baseline

We establish the baseline by training the Lay-
outLM-v1(version1)(Xu et al., 2020) and Lay-
outLM-v3(version3)(Huang et al., 2022) model on
a limited amount of labeled data. From the com-
plete labeled training set, we randomly select a small
percentage of images for training purposes - typically
1%, 5%, or 10% of the total training set. It should be
noted that the validation and test sets remain con-
stant across all these scenarios. After training the
LayoutLM with these differing quantities individu-
ally, we calculate the scores to establish the baseline.

When baseline systems are trained on 100% labeled
data, it forms a skyline for our experiments. For
CORD dataset, LayoutLM was trained on all 800
labeled training instances. Similarly, for the Hospi-
tal and SROIE dataset, we trained LayoutLM on
364 and 626 labeled images respectively.

4.3. Implementation Details

We used the LayoutLM (Xu et al., 2020) model as
the base LLM for our experiments, as it has shown
strong performance in information extraction tasks

on document images. We implemented our approach
Eigen, using the Hugging Face Transformers library
(Wolf et al., 2020). We fine-tuned Eigenmodel using
a batch size of 16 and a learning rate of 5e-5. We used
the AdamW optimizer (Kingma and Ba, 2014) and a
linear learning rate schedule with a warm-up period
of 0.1 times the total training steps. The maximum
training epochs were set to 5, and early stopping was
employed based on the performance of the validation
set.

We used Abhishek et al. (2022) for LF design and
JL training. SPEAR framework provides a useful
visualization tool to help us better understand and
optimize the performance of LFs and JL. The tool
assists in the rapid prototyping of LFs, providing an
iterative and user-friendly interface for designing and
refining these functions. Not only does it allow the
visualization of LF performance statistics, but it also
aids in identifying potential areas of conflict, over-
lap, and coverage amongst the LFs, which can sig-
nificantly enhance the accuracy of weak supervision.
In Appendix (Figure 3), we present a detailed vi-
sualization of the performance of our LFs model on
the CORD dataset. Overall, these results underline
the strength of our proposed Eigen method in terms
of leveraging smaller proportions of labeled data to
achieve superior performance across diverse datasets.

4.4. Setting

The Eigen model consists of CAGE jointly fine-
tuned with the (pretrained) LayoutLM. We achieve
this by replacing the simple neural network model in
SPEAR by LayoutLM. We evaluate the performance
of models using F1-score.

• For CORD, only 1000 samples are publicly
available. We divide the dataset into 3 parts,
viz., train, test, and validation, having sizes of
800, 100, and 100 images respectively. Though
the dataset contains 30 labeled classes, for our
work, we consider only three labels namely
Menu, Dish, and Price.

• For Hospital Dataset, we have 413 images
which are further divided into 3 parts train, test,
and validation. 364, 25, and 24 respectively. The
labels associated with this are ‘Field’, ‘Value’,
and ‘Text’.

• For SROIE, we got 973 images in that 626 are
training and the rest are divided into two sets
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% of L Dataset Model

Base-v1 Base-v3 Eigen

1%
CORD 0.684 0.685 0.772
SROIE 0.236 0.058 0.487
Hospital 0.301 0.212 0.689

5%
CORD 0.894 0.830 0.896
SROIE 0.585 0.605 0.647
Hospital 0.854 0.829 0.865

10%
CORD 0.905 0.844 0.905
SROIE 0.698 0.656 0.715
Hospital 0.862 0.883 0.928

Skyline

100%
CORD 0.963 0.965
SROIE 0.842 0.839
Hospital 0.961 0.961

Table 1: F1 score of Eigen on various dataset and
comparison with different versions Lay-
outLM baseline having varying amounts of
labeled data (L). We also present skyline
numbers for the baselines when the entire
training data is used as labeled set.

one is validation which contains 173 images and
test contains 174 images.

4.5. Results

Table 1 shows the performance of Eigenresults on
different datasets with varying percentage of labeled
set. We observe thatEigen consistently outperforms
the LayoutLM baselines, particularly when limited
quantities of labeled data is present. When the mod-
els are trained with 1% labeled data, Eigen achieves
superior performance on all datasets. For instance,
in the case of the SROIE dataset, baseline systems
achieve less than 0.1 F1-score whereas Eigen achieves
an F1-score of 0.48. We observe similar trend when
labeled data is increased to 5% and 10%.

When the entire training dataset is treated as la-
beled, it can be viewed as a skyline. We obtain a
skyline model for our baseline models, namely Lay-
outLM-v1 and LayoutLM-v3. We achieve 0.979,
0.842 and 0.961 F1-score on CORD, SROIE, and Hos-
pital dataset for the LayoutLM-v1 model. Under-
standably, Eigen scores are lower than the skyline
numbers mentioned in Table 1. However, with small

% of L % of U Dataset F1

1%
90%

CORD
0.735

95% 0.725
97% 0.757

1%
90%

Hospital
0.590

95% 0.602
97% 0.689

Table 2: F1 score of Eigen on various Datasets,
when % of L(labeled) is kept fixed and %
of U(unlabeled) set is varying.

amounts of labeled data, Eigen scores are closer to
these numbers.

5. Ablation Study

5.1. When labelled data is fixed

To observe the impact of unlabeled loss components
on the final performance of Eigen, we kept the
amount of labeled data as fixed and varying the quan-
tity of unlabeled data. Table 2 presents the perfor-
mance of Eigen with 1% labeled data and varying
proportions of unlabeled data, specifically 90%, 95%,
and 97%. It is evident from the results that there is
a consistent improvement in the F1-score as the vol-
ume of unlabeled data increases. This underscores
the significance of joint learning with the unlabeled
loss component (Graphical Model Loss) in our Eigen
framework.

5.2. When unlabelled data is fixed

To understand the significance of labeled loss compo-
nents in the overall framework, we conduct an exper-
iment in which the unlabeled set is constant, while
the quantity of labeled data is varying. In Table 3,
we present the performance of Eigen on CORD and
Hospital dataset with varying quantities of labeled
data. We observe that increasing labeled data from
1% to 5% leads to significant improvements in the
F1-score. However, we do not observe a commensu-
rate improvement when the labeled data is further
increased from 5% to 10%. We observe marginal im-
provements when percentage of labeled dataset ex-
ceeds 5%. The feature model demonstrate the abil-
ity to harness the labeled data effectively, resulting
in overall performance improvement. Both of these
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% of L % of U Dataset F1

1%
90% CORD

0.735
5% 0.884
10% 0.905
1%

90% Hospital
0.590

5% 0.872
10% 0.928

Table 3: F1 score of Eigen on various Datasets,
when % of U(unlabeled) is kept fixed and
% of L(labeled) set is varying.

.

ablation experiments signifies the importance of the
unlabeled and labeled loss components, as well as the
interaction between them, in our framework.

6. Conclusion

In this paper, we proposed Eigen, a joint fine-tuning
approach for large language models along with data
programming to improve the efficiency and accu-
racy of information extraction from document im-
ages. Eigen successfully leveraged the power of
LLMs and the flexibility of labeling functions, result-
ing in information extraction from document images.
LFs, used in our Eigen approach, provide a flexi-
ble, reusable, and efficient approach to learning from
unlabeled data. They capture diverse heuristics, do-
main knowledge, and high-level patterns, which al-
low them to generalize well across various datasets.
Instead of explicitly annotating each instance, we
merely need to define high-level patterns or rules,
thereby reducing the dependency on human annota-
tion. As shown in our evaluation, Eigen achieves
remarkable results even with as little as 1% or 5%
of labeled data, across diverse datasets. This means
we can reduce annotation efforts significantly with-
out compromising on performance. This approach
not only reduces the cost and time associated with
data labeling but also enables models to learn from
richer, diverse data sources, enhancing their general-
izability and robustness.
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Appendix A. Labeling function
generation

As previously discussed in Section 1 and illustrated
in Fig. 1, labeling functions entail the utilization
of domain expert knowledge to construct functions
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that encapsulate specific knowledge relevant to the
task. In our particular case, the need for a domain
expert was obviated, as we employed rule-based label-
ing functions. These labeling functions incorporate a
variety of techniques, including regular expressions
and pattern matching rules. Additionally, we im-
plemented context-based labeling, which takes into
account not only patterns but also the positional re-
lationship with respect to other words. An example
of a context-based labeling function is illustrated
in 1. These functions can become increasingly com-
plex depending on the specific requirements of the
dataset. For each new dataset, the creation of label-
ing functions is essential, and they can be formulated
by examining a limited amount of labeled data or by
drawing upon domain expert knowledge.

Therefore, it becomes evident that labeling func-
tions contribute equivalently to what can be ex-
tracted by the feature model. It is of paramount im-
portance to eliminate non-performing labeling func-
tions and address conflicting ones, a task facilitated
by the Quality Guide as described in 3.2. The eval-
uation of labeling functions can be conducted using
specific metrics such as Coverage, Overlap, Conflicts,
and others, all of which are already integrated into
the CAGE model. For a visual representation of
the performance of labeling functions on the CORD
dataset, please refer to 3.

Appendix B. Miscellaneous Results

We conducted an experiment to assess the robustness
of our approach (Eigen) by increasing the amount
of labeled data. This experiment aimed to evaluate
how our model performs when provided with a more
substantial dataset. In Table 4, we present the ex-
periment results and compare them with the perfor-
mance of LayoutLMV1, which was fine-tuned using
the same amount of data as the baseline. And It’s
evident from the table that the baseline occasionally
outperforms EIGEN when labeled data is in the vicin-
ity of 50%. This reaffirms our assertion: EIGEN truly
shines when data is sparse. As more labeled data be-
comes accessible, the model naturally veers towards
learning directly from the data rather than relying on
weak functions.

Appendix C. Limition of Eigen

Crafting labeling functions isn’t straightforward for
all datasets, particularly when faced with high vari-

ability in layout, Labeling tricky key-value pairs is
challenging using only these basic labeling functions,
which is a concern for us. There is a significant
amount of variability and ambiguity when creating
labeling functions because, in some cases, a single
word’s class cannot be determined solely based on
its semantic properties. (For example, certain words
can be both keys and values), leading to confusion.
Therefore, relying solely on the semantic meaning of
a word is insufficient, and we must also take into ac-
count factors like its position, neighboring words, and
structural properties. These considerations are essen-
tial not only for predicting the correct class for spe-
cific data but also for generalizing across future data.
Even when humans are responsible for labeling, they
might not always include all these valuable details in
the labeling functions. Our ongoing research seeks to
devise labeling functions rooted in exemplars.

Appendix D. Quantative Result

In our study, we presented quantitative results 4,
where we showcased the inference outcomes of Eigen
trained on 1% of labeled data using a sample Hos-
pital dataset. During the inference process, the in-
put image undergoes initial processing through the
Doctr model, producing OCR output. Subsequently,
this output serves as input for Eigen, leading to the
classification of each token into specific classes. The
resulting classifications are then projected onto the
image to facilitate visualization and comprehension.
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Hospital SROIE CORDS% of (L) Models Acc F1 Acc F1 Acc F1
Base 0.982 0.898 0.966 0.693 0.983 0.95120% EIGEN 0.983 0.918 0.971 0.696 0.977 0.933
Base 0.988 0.943 0.967 0.738 0.985 0.96140% EIGEN 0.984 0.919 0.970 0.735 0.985 0.957
Base 0.985 0.935 0.985 0.824 0.991 0.96760% EIGEN 0.985 0.933 0.986 0.821 0.986 0.957
Base 0.987 0.937 0.985 0.828 0.988 0.95870% EIGEN 0.987 0.933 0.985 0.807 0.989 0.958
Base 0.988 0.945 0.988 0.852 0.985 0.94880% EIGEN 0.984 0.918 0.986 0.798 0.984 0.951

Table 4: F1 score and accuracy of Eigen on various dataset and comparison with LayoutLM V1 baseline
having varying amounts of labeled data (L).

Performance on Val set
% of Labeled Data Method Acc F1 Precision Recall

1% CORD(Eigen) 0.953 0.843 0.830 0.858
5% CORD(Eigen) 0.973 0.908 0.897 0.919
10% CORD(Eigen) 0.983 0.943 0.945 0.941
1% SROIE(Eigen) 0.954 0.519 0.551 0.491
5% SROIE(Eigen) 0.978 0.690 0.763 0.630
10% SROIE(Eigen) 0.978 0.721 0.791 0.663
1% Hospital(Eigen) 0.944 0.762 0.728 0.800
3% Hospital(Eigen) 0.941 0.823 0.789 0.861
5% Hospital(Eigen) 0.969 0.867 0.840 0.896
10% Hospital(Eigen) 0.972 0.906 0.877 0.906

Table 5: Comparative Performance of Eigen method on the Val Set Across Diverse Datasets and Proportions
of Labeled Data
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Performance on Test set
% of Labeled Data Method Acc F1 Precision Recall

100% CORD(sky-v1) 0.989 0.963 0.968 0.957
1% CORD(Base-v1) 0.881 0.684 0.662 0.706
5% CORD(Base-v1) 0.964 0.894 0.880 0.908
10% CORD(Base-v1) 0.971 0.905 0.884 0.926
100% CORD(sky-v3) 0.989 0.965 0.957 0.973
1% CORD(Base-v3) 0.872 0.685 0.638 0.741
5% CORD(Base-v3) 0.946 0.830 0.812 0.849
10% CORD(Base-v3) 0.979 0.844 0.840 0.849
1% CORD(Eigen) 0.928 0.772 0.746 0.800
5% CORD(Eigen) 0.973 0.896 0.873 0.921
10% CORD(Eigen) 0.973 0.905 0.880 0.930
100% SROIE(Sky-v1) 0.987 0.842 0.819 0.865
1% SROIE(Base-v1) 0.913 0.236 0.297 0.196
5% SROIE(Base-v1) 0.953 0.585 0.535 0.646
10% SROIE(Base-v1) 0.957 0.698 0.675 0.721
100% SROIE(Sky-v3) 0.986 0.839 0.838 0.840
1% SROIE(Base-v3) 0.906 0.058 0.122 0.038
5% SROIE(Base-v3) 0.960 0.605 0.621 0.590
10% SROIE(Base-v3) 0.965 0.656 0.703 0.614
1% SROIE(Eigen) 0.934 0.487 0.433 0.557
5% SROIE(Eigen) 0.965 0.647 0.615 0.683
10% SROIE(Eigen) 0.978 0.715 0.713 0.717
100% Hospital(sky-v1) 0.988 0.961 0.956 0.966
1% Hospital(Base-v1) 0.827 0.301 0.245 0.390
3% Hospital(Base-v1) 0.949 0.731 0.685 0.783
5% Hospital(Base-v1) 0.974 0.854 0.849 0.859
10% Hospital(Base-v1) 0.979 0.862 0.849 0.875
100% Hospital(sky-v3) 0.989 0.961 0.954 0.968
1% Hospital(Base-v3) 0.757 0.212 0.173 0.274
3% Hospital(Base-v3) 0.886 0.5 0.473 0.53
5% Hospital(Base-v3) 0.953 0.829 0.804 0.856
10% Hospital(Base-v3) 0.970 0.883 0.870 0.898
1% Hospital(Eigen) 0.949 0.689 0.658 0.724
3% Hospital(Eigen) 0.959 0.821 0.809 0.835
5% Hospital(Eigen) 0.977 0.865 0.863 0.867
10% Hospital(Eigen) 0.982 0.928 0.925 0.930

Table 6: Comparative Performance of Baseline and Eigen method on the Test Set Across Diverse Datasets
and Proportions of Labeled Data
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Figure 3: Comparison of the performance of the Labeling functions on the validation set of the CORD
dataset.
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Figure 4: Quantative Result- Sample Hospital data is when input to Eigen trained on 1% (i.e. 4 images)
labeled images, Color of the boxes in right side image (i.e. output image) signifies that a particular
token classified among one of the class (Color-Class: Magenta-field ,blue-value, orange-text).
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