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Abstract

Automating the segmentation of various cardiac
chamber structures (e.g., pulmonary artery,
aorta, etc.) in 3D CT cardiac imaging remains
a significant challenge. This challenge primar-
ily arises from the dynamic nature of the hu-
man heart and substantial anatomical varia-
tions in terms of organ texture, shape, and size
across different patients. These factors collec-
tively result in a scarcity of annotated data,
posing a significant hurdle for training data-
hungry deep models. The self-supervised learn-
ing (SSL) paradigm offers a promising solu-
tion to overcome this obstacle since it elimi-
nates the reliance on massive annotated data
for training deep models. However, existing
SSL approaches fall short in capturing effec-
tive representations from 3D cardiac volumes
due to the oversight of the dynamic nature
of human hearts in the design of their pre-
text tasks. To address this challenge, we pro-
pose a novel SSL method based on the curricu-
lum learning paradigm, which progressively in-
creases the task difficulty during the pretraining
stages. Our method enables the SSL model to
initially acquire fundamental knowledge about
the data, which can subsequently serve as valu-
able contextual clues for solving more complex
tasks during later stages of pretraining. Our ex-
tensive experiments demonstrate that the SSL
pre-trained model, trained using our strategy,
acquires generalizable representations capable
of effectively segmenting various existing car-
diac chamber structures.

Keywords: Self-supervised learning, 3D seg-
mentation, CT cardiac imaging
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1. Introduction

Accurate segmentation of cardiac chamber structures
in 3D CT cardiac imaging—one of the most challeng-
ing visualization techniques among numerous CT or-
gan imaging procedures—is crucial for comprehen-
sive cardiac morphology and function analysis, as
well as facilitating cardiac arrhythmia detection, car-
diac surgery planning, and radiation therapy plan-
ning (Chen et al., 2020a; Wang et al., 2022a). The ac-
curate delineation of different cardiac structures can
be a very time-intensive process and presents notable
challenges, primarily stemming from the dynamic na-
ture of the human heart and substantial anatomical
variations in terms of organ texture, shape, and size
across different patients. As such, there is a substan-
tial demand for robust automated segmentation sys-
tems for 3D CT cardiac imaging in real-world clinical
settings.

In recent years, there has been a significant surge
in the adoption of deep learning solutions for med-
ical image segmentation tasks. The effectiveness
of deep learning models depends heavily on the
availability of large-scale, high-quality annotated
datasets (Hosseinzadeh Taher et al., 2021). How-
ever, acquiring such datasets can be costly and time-
consuming, particularly in 3D CT cardiac segmen-
tation applications, where the acquisition of anno-
tated data is inherently difficult due to the afore-
mentioned hurdles. A promising solution for ad-
dressing the scarcity of annotated data in CT car-
diac imaging is the self-supervised learning (SSL)
paradigm (Hosseinzadeh Taher et al., 2023, 2021),
which has stunning successes in Natural Language
Processing (NLP) (Ray, 2023; Liu et al., 2023) and
computer vision applications (Chen et al., 2020b;
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Grill et al., 2020; Misra and Maaten, 2020). SSL
methods aim to extract general representations di-
rectly from unlabeled data. In this paradigm, a neu-
ral network is pretrained on a manually crafted (pre-
text) task, where ground-truth data is available for
free. The learned representations can be later fine-
tuned on numerous target tasks even with dearth
of annotated data (Haghighi et al., 2021). Despite
the numerous self-supervised algorithms proposed in
medical vision (Azizi et al., 2023; Haghighi et al.,
2020; Hosseinzadeh Taher et al., 2022), existing SSL
approaches fall short in capturing effective represen-
tations from 3D cardiac volumes due to the oversight
of the dynamic nature of human hearts in the design
of their pretext tasks.
To address this challenge, we propose a novel SSL

strategy based on the curriculum learning paradigm.
Curriculum learning, inspired by the structured ap-
proach of human education, emphasizes the impor-
tance of organizing learning examples in a gradual
manner rather than randomly. Bengio et al. (2009)
pioneered this concept in machine learning, demon-
strating its effectiveness in achieving significant gen-
eralization. They argued that curriculum learning
serves as a specific form of continuation learning
method within the realm of machine learning (Bengio
et al., 2009; Wang et al., 2022b). Motivated by this,
we propose a novel SSL strategy for 3D CT cardiac
image segmentation, incorporating the principles of
curriculum learning. Considering the complex nature
of heart anatomy and substantial anatomical varia-
tions across subjects, we initiate the learning process
with a simple task. After that, we transfer the ac-
quired knowledge to the next step and progressively
increase the next task complexity. This approach al-
lows the SSL model to initially acquire fundamental
knowledge about the data, which can subsequently
serve as valuable contextual clues for solving more
complex tasks during later stages of pretraining. Our
extensive experiments demonstrate that this system-
atic and iteratively adaptive approach leads to ac-
quiring highly generalizable representations tailored
to heart anatomy.
In summary, we make the following contributions:

1. A novel self-supervised learning strategy that en-
hances the segmentation of heart sub-structures
in 3D CT cardiac volumes, outperforming the
supervised baseline.

2. A set of masking modules tailored for curriculum
learning within the SSL paradigm and examin-

ing their effectiveness in acquiring generalizable
representations.

3. A comprehensive set of experiments that evalu-
ate our proposed SSL learning method across a
variety of 8 common heart sub-structures in CT
cardiac imaging target tasks.

2. Related work

Cardiac CT Image Segmentation. While deep
learning methods have been predominantly proposed
for cardiac image segmentation in MRI and ultra-
sound modalities (Chen et al., 2020a), there has been
limited exploration in the context of CT images.
Dormer et al. (2018) employed a 2D CNN model to
segment four heart chambers using patches extracted
from 3D CT images. Other approaches (Tong et al.,
2018; Wang and Smedby, 2018) have combined a 3D
fully convolutional network (FCN) with a localiza-
tion network to initially identify the region of inter-
est for whole heart segmentation in multi-modality
applications. Morris et al. (2020) introduced a net-
work design based on a 3D U-net with multiple mod-
ifications to segment cardiac substructures in paired
MRI/CT images. Harms et al. (2021) proposed a seg-
mentation network based on regional convolutional
neural networks. Wang et al. (2022a) presented a hy-
brid model that combines a CNN and a transformer
for cardiac segmentation. Momin et al. (2022) intro-
duced a method that utilizes mutual enhancing net-
works to simultaneously localize and segment each
cardiac substructure in a bootstrapping manner. A
common challenge across all existing works pertains
to the scarcity of annotated data available for training
deep models in the domain of heart chamber segmen-
tation. In contrast to prior works, our method seeks
to tackle this challenge by developing an effective self-
supervised learning approach for Cardiac CT Image
Segmentation.
Self-supervised Learning. Due to the limited
availability of large-scale annotated datasets, self-
supervised learning (SSL) shows great potential for
medical applications. In this paradigm, a neural
network is trained on a carefully crafted (pretext)
task for which ground-truth data is obtained from
raw images for free. The learned representations
can then be further fine-tuned for various target
tasks using only limited annotated data (Haghighi
et al., 2021; Hosseinzadeh Taher et al., 2021). The
state-of-the-art SSL methods can be broadly cat-
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egorized into instance discrimination learning and
masked image modeling approaches. Instance dis-
crimination methods (He et al., 2020; Azizi et al.,
2023; Chen et al., 2020c; Chaitanya et al., 2020;
Haghighi et al., 2023) treat each image as a sepa-
rate class and aim to learn representations that re-
main invariant to image distortions. However, these
approaches are sub-optimal for medical applications,
which involve images of consistent anatomical struc-
tures, and require fine-grained image representations
for segmenting small structures (Hosseinzadeh Taher
et al., 2022). A line of work incorporated anatom-
ical information to enhance instance discrimination
learning for medical tasks (Hosseinzadeh Taher et al.,
2023) or added reconstruction (Hosseinzadeh Taher
et al., 2022; Tang et al., 2022; Haghighi et al., 2022).
On the other hand, masked image modeling (MIM)
approaches (Xie et al., 2022; He et al., 2022; Zhou
et al., 2021) randomly mask regions within images
and train a model to reconstruct the masked por-
tions. Nevertheless, existing MIM-based SSL meth-
ods fall short in addressing the distinctive challenges
that arise in the context of 3D CT cardiac imaging.
For instance, these methods introduce distortions to
a significant portion of the images, which can be a
challenging task for a model to solve when applied
to CT cardiac images due to the dynamic nature
of human hearts and the considerable inter-subject
and inter-image variations. Consequently, the self-
supervised model may struggle to successfully recon-
struct the distorted images, leading to a potential fail-
ure in capturing rich representations from unlabeled
images. In contrast to existing SSL methods, we pro-
pose a novel SSL method based on the curriculum
learning paradigm, which progressively increases the
task difficulty during the pretraining stages. Initially,
lightweight distortions are applied to images, allow-
ing the model to learn general knowledge from im-
ages and serve as effective contextual clues for solving
more complicated tasks during subsequent pretrain-
ing stages, resulting in more generalizable features for
cardiac CT imaging.

3. Method

Our self-supervised learning strategy, depicted in 1,
aims to learn generalized and transferable visual rep-
resentations. The main intuition behind our learning
strategy is the curriculum learning concept: it be-
gins with a simple task and gradually increases the
task’s complexity during the pre-training procedure.

Figure 1: Our proposed Curriculum Self-Supervised
Learning framework involves a sequential
process. It begins by taking an input,
applying masking, and passing it through
an encoder-decoder network to restore the
original input. As the framework pro-
gresses, the difficulty of the tasks gradu-
ally increases, and the knowledge acquired
at each step is seamlessly transferred to the
next stage.

Inspired by this concept, we propose a self-supervised
learning (SSL) strategy based on restorative learning.

During pre-training, regardless of their level of
complexity, we consistently follow a structured ap-
proach. First, we mask a portion of an input image,
and then we feed this masked input to our model
to reconstruct the original input. Figure 2 illus-
trates three distinct masking strategies that we em-
ploy in our learning strategy:(i) Mean Value Masking:
Masks the input using the mean value of designated
areas. (ii) Zero Masking: Masks the input by replac-
ing designated parts with zeros, and (iii) Random
Noise Masking: Masks the input by introducing ran-
dom noise to designated portions. Figure 3 illustrates
the outputs of our masking module used during our
pre-training. Specifically, the leftmost one in Figure
3 corresponds to an output of the masking module
at level 1 (representing an easy task), the middle one
corresponds to an output at level 2 (representing a
medium task), and the rightmost one in Figure 3 re-
lates to an output of the masking module at level 3
(representing a hard task).

For training our SSL model, we start by training
the network at level 1, and then the acquired knowl-
edge is passed on to the second level to help the
model restore more extensively masked inputs (level
2). Similarly, the knowledge acquired at level 2 is
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Figure 2: An overview of three masking strategies
employed in our learning strategy includes:
(i) Mean Value Masking, which masks the
input using the mean value of the desig-
nated area; (ii) Zero Masking, involving
the replacement of designated parts in the
input with zeros; and (iii) Random Noise
Masking, introducing random noise to the
designated portions.

transferred to level 3 to assist the model in restoring
highly distorted inputs at level 3. As demonstrated
by our experimental results, the knowledge acquired
at each level contributes to the next level, enabling
the model to extract more effective and fine-grained
representations from input data. Our backbone ar-
chitecture employs a U-Net design, and the model is
trained by minimizing the L2 distance between an
original image and a restored one at the pixel level:

LSSL = ||X − X̂||2, (1)

where X is an original input image and X̂ is a re-
stored image by the model.

4. Implementation Details

4.1. Pre-training protocol

Our SSL model is trained exclusively on unlabeled
CT cardiac volumes. To ensure no test-case leaks
from proxy tasks to target tasks, any volumes that
will be used for testing in target tasks are excluded
from pre-training. Following (Haghighi et al., 2021),
we employ a 3D U-Net (Ronneberger et al., 2015) as
the primary architecture of our proxy model; nev-
ertheless, alternative architectures, such as vision
transformers (Tang et al., 2022), can also be used
seamlessly. The SSL loss function is based on mean

Figure 3: An illustration of the masking module’s
output that is utilized in our SSL frame-
work. Moving from left to right, the task
difficulty progressively increases, resulting
in greater distortion of the input. The left-
most image corresponds to level 1, the mid-
dle image to level 2, and the rightmost im-
age to level 3.

squared error (MSE). The input volumes are resized
to 256×256×16, and we apply min-max normaliza-
tion to standardize the 3D imaging volumes. This
normalization ensures that pixel values are within an
HU range between -1024 and 2000, effectively clip-
ping any values that fall below or above this range.
We modify the last layer of the decoder to reconstruct
the image rather than a segmentation mask in the
proxy task. We consider different masking techniques
as shown in Figure 2. For the level 1, 2, and 3 of cur-
riculum learning, we mask out 25, 30, and 35 blocks,
respectively, with a probability of 0.8. We utilize the
minimum 8×8 pixels, and the maximum 16×16 pix-
els for block’s spatial sizes. The masking block sizes
and locations are randomly selected. We use AdamW
optimizer (also considered RMSprop, the further de-
tail is available in the next section) with a learning
rate of 0.001. We use the early-stopping technique
with a patience of 50 using 10% of training data as
the validation set. We save the best model based on
the validation loss and transfer the best model to the
target task.

4.2. Fine-tuning protocol

We utilize a 3D U-Net network for cardiac structures
segmentation task. During this phase, the encoder
is initialized with the pre-trained encoder through
our SSL approach, while the decoder is randomly
initialized due to the substantial differences between
the target segmentation and the proxy reconstruc-
tion tasks. Furthermore, all the downstream model’s
parameters are fine-tuned. We use AdamW opti-
mizer (also considered RMSprop) with a learning rate
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Figure 4: An example of a CT cardiac chamber im-
age annotated by clinical experts. Each
unique color represents different heart sub-
structures, including the left atrium (LA),
left ventricle (LV), right atrium (RA), right
ventricle (RV), myocardium (MYO), aorta
(AO), pulmonary artery (PA), and left
atrial appendage (LAA).

of 0.001. To prevent over-fitting, we employ early-
stopping technique with a patience of 50 using 10%
of the training data as the validation set. We evaluate
the segmentation performance using the Dice coeffi-
cient. We adopt training from random initialization,
which is the prevailing approach in 3D cardiac CT
segmentation methods, as the standard baseline for
comparison. For fair comparisons, the baseline and
our method benefit from the same data and settings
in the training and testing phases.

4.3. Data preparation

In this study, we use an in-house dataset of 3D CT
cardiac imaging. The dataset has been collected from
32 different hospitals in 10 different countries world-
wide, introducing inherent challenges such as hetero-
geneity and distribution shifts stemming from the
utilization of different imaging scanners. Addition-
ally, the dataset exhibits a broad diversity in pa-
tient cohorts and is characterized by class imbalance.
As such, the dataset under the study represents a
significant level of diversity, serving as a valid indi-
cator for evaluating the generalizability of our pre-
trained model. The dataset includes a total number
of 262 3D scans obtained from 262 patients. The

dataset includes a total number of 65,418 slices. The
dataset provides pixel-wise segmentation masks for
eight heart substructures, including left atrium (LA),
left ventricle (LV), right atrium (RA), right ventricle
(RV), myocardium (MYO), aorta (AO), pulmonary
artery (PA), and left atrial appendage, (LAA), which
were manually annotated by clinical experts on all
262 cardiac CTA series (see Figure 4 for an example
of annotation results by clinical experts). The size
of each 3D image volume is 512×512 with varying
numbers of images in the z-direction, ranging from
140 to 560 with a median of 224. Each image vol-
ume is normalized to [0, 1] by -1000 Hounsfield Unit
(HU) and +2000 HU.We randomly divide the dataset
into train, validation, and test sets, including 168, 43,
and 51 volumes, respectively. It should be noted that
the test set is an independent set that is not used in
pretraining and fine-tuning stages. The information
about the cardiac substructures data distribution is
available in the appendix.

4.4. Data sampling strategy

The scarcity of training data, coupled with the pro-
nounced class imbalance in the cardiac CT datasets,
hinders the training of deep models with broad gen-
eralizability for cardiac segmentation task. To over-
come this challenge, we propose a data sampling
strategy to augment the quantity and diversity of
training and validation data. Figure 5 illustrates an
example of the proposed sampling strategy. Typ-
ically, the initial and final slices within a 3D im-
age volume tend to carry less crucial information,
whereas the middle slices frequently encompass the
most information for diagnosis tasks. This pattern
is often observed in medical imaging, particularly in
CT cardiac scans, where human hearts are often sit-
uated in the middle slices within each image volume,
whereas the initial and final slices often carry less
relevance to cardiac issues, containing limited infor-
mation for model training. Consequently, it holds
greater promise to selectively sample the more in-
formative slices, primarily situated in the middle of
the CT volume. To achieve this, we first divide the
slices of each 3D volume into three distinct buck-
ets. Subsequently, we randomly sample 60 3D image
patches, each sized 512×512×16, from every CT vol-
ume in training and validation sets. Notably, for each
CT volume, slices from the middle bucket (bucket
2) are sampled twice as frequently as slices from the
other two buckets. Table 1 summarizes the number of
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Figure 5: Data Sampling Strategy for Expanding
Training Data and Mitigating Class Imbal-
ance. Images from each 3D volume, which
may have varying z-dimensions, are cate-
gorized into three buckets. This strategy
enables the selection of 512×512×16 3D
image sub-volumes, with an emphasis on
the second bucket. This approach not only
addresses class imbalance but also ensures
compatibility with GPU memory.

training and validation data after applying our pro-
posed sampling strategy. These samples are used dur-
ing the pretraining and fine-tuning stages.

Table 1: Data set details after the sampling process.

Data split Sub-volumes Ratio

Train 10,080 80%
Validation 2,580 20%

5. Experimental results

The following delves into the cornerstone of our ex-
perimental results.

5.1. Cropping strategy: Random vs. Center
Crop

Given the dynamic nature of human heart structures,
both proxy and target tasks can be sensitive to the
choice of hyperparameters during training. Conse-
quently, it is crucial to explore various hyperparame-
ter configurations to achieve optimal performance for
cardiac CT segmentation task. As such, we conduct
experiments to examine the impact of multiple crop-
ping strategies as well as crop sizes on the target task
performance.

Figure 6: Impact of Random Crop with Varying Sizes
on Segmentation Performance of Each
Cardiac Structure: Larger cropping sizes
significantly outperform smaller cropping
sizes for each cardiac structure.

Figure 7: Impact of Center Crop with Varying Sizes
on Segmentation Performance of Each
Cardiac Structure: Larger cropping sizes
significantly outperform smaller cropping
sizes for each cardiac structure.

Figure 8: Impact of Cropping Strategy: Random
Crop outperforms Center Crop in the seg-
mentation of the majority of heart sub-
structures.
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First, we delve into the impact of cropping size on
the performance of CT cardiac segmentation tasks.
We examine two cropping strategies, including Ran-
dom Crop (RC) and Center Crop (CC). We specif-
ically explore two distinct scenarios for both ran-
dom and center cropping strategies. In the first sce-
nario, we span a range of crop sizes, from small to
large, where the crop sizes are randomly selected from
within the interval of [96, 400]. In the second sce-
nario, we exclusively opt for larger crop sizes, ran-
domly chosen from the range of [400, 500]. In both
scenarios, we employ a uniform distribution to ran-
domly generate crop sizes for both center and ran-
dom crop strategies. Figure 6 illustrates the impact
of crop size when employing the random cropping
strategy. Notably, the crop size emerges as a piv-
otal factor influencing target task performance, with
consistently lower performance observed for crop sizes
in the [96, 400] range compared to larger crop sizes
in range [400, 500]. Figure 7 depicts the impact of
crop size when employing the center cropping strat-
egy, confirming a similar observation: larger crops
in the [400, 500] range consistently deliver superior
performance across all chamber structures.

We further investigate the impact of cropping
strategy, specifically comparing random and center
cropping, on the performance of CT cardiac segmen-
tation tasks. In this experiment, we employ the best-
performing crop size range (i.e., crops with a mini-
mum size of 400 and a maximum size of 500) for both
random and center cropping. As observed in Figure 8,
in the majority of cases, random cropping surpasses
the performance of center cropping. The superior
performance of random cropping can be attributed
to its ability to generate a more diverse set of train-
ing samples during the training process. Addition-
ally, since the cropping operation varies in each epoch
due to the use of random numbers, a greater vari-
ety of cases is introduced during the training phase,
contributing to the observed improvement in perfor-
mance.

5.2. Optimizer: RMSprop vs. AdamW

We investigate the impact of different optimizers on
the segmentation performance of each cardiac struc-
ture. To do so, we examine two optimizers, includ-
ing RMSprop (Ruder, 2016) and AdamW (Loshchilov
and Hutter, 2019). As seen in Figure 9, AdamW
provides superior performance over RMSprop, high-

Figure 9: Impact of Optimizers: AdamW outper-
forms RMSprop in the segmentation of
most heart substructures, underscoring its
potential as a promising optimizer for CT
cardiac image segmentation of heart sub-
structures.

lighting its potential to be considered as a proper
optimizer for the cardiac CT segmentation tasks.

5.3. Impact of Self-supervised Learning

To demonstrate the effectiveness of our developed 3D
curriculum SSL method, we adopt training from ran-
dom initialization, which is the prevailing approach
in 3D cardiac CT segmentation methods, as the stan-
dard baseline for comparison. Figure 10 illustrates
the results of fine-tuning our pretrained model for
cardiac CT segmentation versus training the target
model from random initialization.As seen, our devel-
oped 3D curriculum SSL method consistently out-
performs the baseline across all cardiac structures.
Particularly, in challenging cardiac structures, such
as LA, LAA, RA, PA, and RV, the gap between
our method and the baseline becomes more pro-
nounced. Our results demonstrate the effectiveness
of our method in capturing generalizable representa-
tions capable of effectively segmenting various cardiac
chamber structures.

5.4. Ablation studies

Impact of Task Difficulty Level. We examine the
influence of varying pretraining task difficulty levels
on target task performance. In particular, starting
from level 1, we progress through level 4 while em-
ploying two masking strategies: Random Noise and
Zero Masked. Figure 11 displays the target task per-
formance at different pretraining difficulty levels for
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Figure 10: Our proposed self-supervised method con-
sistently outperforms the baseline in the
segmentation of all eight heart substruc-
tures.

Figure 11: Ablation Study on Task Complexity Lev-
els during the Pre-training Stage: As task
complexity increases, the performance im-
proves for both Random Noise and Zero
Masked strategies, highlighting the effec-
tiveness of our learning strategy. Notably,
the optimal complexity level in both sce-
narios occurs at L3, suggesting that ex-
cessively challenging tasks may negatively
impact representation learning.

both strategies. Notably, in both Random Noise and
Zero Masked scenarios, performance begins to de-
crease after Level 3. This could be attributed to
the increased difficulty at Level 4, where substan-
tial image distortion impedes the model’s ability to
capture meaningful representations, resulting in de-
graded target performance.

Impact of Different Masking Strategies. We
investigate the effect of different masking strategies
in our self-supervised design. To do so, we exam-
ine the three different masking techniques as pre-
sented in Figure 2. Figure 12 illustrates the tar-
get task performance for different masking strategies
in our self-supervised learning framework. We draw
the following observations from the results. First,
the mean value masking module provides the lowest

Figure 12: Ablation Study on Different Masking
Strategies: The Mean Value strategy
doesn’t significantly enhance our SSL
model’s ability to capture more gener-
alizable representations. In contrast,
both the Zero Masked and Random
Noise strategies exhibit competitive per-
formance compared to each other.

performance among all three different masking tech-
niques. Intuitively, it appears that when using the
mean masking strategy, the model may learn shortcut
solutions, rather than capturing informative features
for solving the reconstruction task at hand. This can
be attributed to the local image continuity, where
nearby pixels often share similar content and have
similar pixel intensities, approximating their mean
value. Consequently, the model may take a shortcut
by predicting this mean value which minimizes the
objective function, but potentially neglecting impor-
tant image details and nuanced patterns throughout
the images. This oversight significantly hinders the
model’s ability to extract meaningful representations
effectively, thus impacting its overall performance.
Moreover, the Random Noise and Zero Masked al-
ternatively provide the best performance in different
chamber structures.

6. Conclusion and Future Work

In this paper, we propose a new Self-Supervised
Learning (SSL) method for CT cardiac image seg-
mentation. Our proposed SSL method is designed
based on the curriculum learning paradigm and
masked image modeling. In particular, we gradually
increase the levels of complexity in the masked im-
age modeling proxy task. Initially, lightweight dis-
tortions are applied to images, allowing the model

152



Curriculum Self-Supervised Learning

to learn general knowledge from images and serve
as effective contextual clues for solving more com-
plicated tasks during subsequent pretraining stages,
resulting in more generalizable features for cardiac
CT imaging. We also propose and examine different
masking strategies for self-supervised pretraining, in-
cluding Mean masking, zero masking, and random
noise masking. Our experimental results show that
our curriculum SSL technique improves the perfor-
mance of the CT cardiac image segmentation task
in each cardiac chamber. Additionally, our ablation
studies suggest that as task complexity increases in
SSL, the performance improves, highlighting the ef-
fectiveness of our learning strategy. Moreover, our
results suggesting that excessively challenging tasks
may negatively impact representation learning. Al-
though our SSL method was evaluated for CT car-
diac imaging, it is generic and applicable to semantic
image segmentation tasks in various medical imaging
modalities. As part of future research, we aim to ex-
tend our SSL approach to other imaging modalities,
including MR and Ultrasound imaging.
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Figure 13: The cardiac substructure data distribu-
tion in the data set.

Appendix A. Appendix

Figure 13 shows the cardiac substructure data dis-
tribution in the data set we use in this paper. Each
cardiac substructure has roughly equal ratios of pixel
values except the Left Atrial Appendage (LAA). As
we discuss in the introduction section, the LAA is the
most difficult substructure to segment by a computa-
tional method because of the size of the anatomy.
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