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Abstract
Deep neural networks, including the Trans-
former architecture, have achieved remarkable
performance in various time series tasks. How-
ever, their effectiveness in handling clinical
time series data is hindered by specific chal-
lenges: 1) Sparse event sequences collected asyn-
chronously with multivariate time series, and
2) Limited availability of labeled data. To ad-
dress these challenges, we propose TransEHR1,
a self-supervised Transformer model designed
to encode multi-sourced asynchronous sequen-
tial data, such as structured Electronic Health
Records (EHRs), efficiently. We introduce three
pretext tasks for pre-training the Transformer
model, utilizing large amounts of unlabeled
structured EHR data, followed by fine-tuning on
downstream prediction tasks using the limited
labeled data. Through extensive experiments
on three real-world health datasets, we demon-
strate that our model achieves state-of-the-art
performance on benchmark clinical tasks, in-
cluding in-hospital mortality classification, phe-
notyping, and length-of-stay prediction. Our
findings highlight the efficacy of TransEHR in
effectively addressing the challenges associated
with clinical time series data, thus contributing
to advancements in healthcare analytics.

1. Introduction

Clinical time series data, such as structured Electronic
Health Records (EHRs), provide critical information
for healthcare. They contain detailed measurements
and clinical events that help diagnose, treat, and
manage patients. Structured EHR data is generated
continuously throughout a patient’s hospital stay and

∗ These authors contributed equally
1. Our code is available at https://github.com/SigmaTsing/

TransEHR.git.

can include a wide range of information, such as vi-
tal signs, lab tests, and medication administrations.
Recently, deep sequential models, such as recurrent
neural networks (RNNs) and Transformers, have been
applied to clinical time series data and achieved state-
of-the-art performance in predicting patient outcomes
such as mortality, length of stay, and sepsis onset (Xu
et al., 2018; Zerveas et al., 2021; Tipirneni and Reddy,
2022). However, the predictive performance of these
models is often hindered by two unique challenges in
complex clinical time-series data.

One of the main challenges in clinical time series
data is the presence of diverse data types. It en-
compasses continuous multivariate time series, like
evenly sampled vital signs, as well as discrete event
sequences, including lab tests and medication admin-
istrations, which are generated asynchronously with
random timestamps. Although deep learning advance-
ments in healthcare primarily concentrate on continu-
ous measurements (Xu et al., 2018; Che et al., 2018;
Shukla and Marlin, 2019; Horn et al., 2020; Zerveas
et al., 2021; Tipirneni and Reddy, 2022), the event
data, particularly the timestamp of medical events,
can contain more critical information. Alternatively,
neural point process models (Zuo et al., 2020; Zhang
et al., 2020) have achieved successful applications in
analyzing short event sequences within the medical
domain. However, these models overlook the presence
of regularly recorded continuous measurements in con-
junction with long irregularly sampled discrete events.
Therefore, the joint modeling of multiple sources of
complex structured EHR data presents a nontrivial
task. The second challenge lies in the difficulty of
obtaining labeled data, despite the abundance of in-
put data collected in EHR systems. Acquiring clinical
labels can be costly and may raise ethical concerns.
Labeling the data often demands substantial time,
effort, specialized infrastructure, and domain exper-
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tise. Consequently, there is a pressing need to develop
healthcare models capable of delivering accurate pre-
dictions with limited labeled data or by leveraging
the vast amount of available unlabeled data.

To tackle these challenges, we propose TransEHR, a
self-supervised Transformer model for modeling clini-
cal time series data from contemporary EHR systems.
Our framework offers a unified triplet representation
that encompasses the two types of structured EHR
time series. This asynchronous triplet representation
eliminates the necessity for traditional data prepro-
cessing techniques that involve timeline discretization
and binning values into two-dimensional feature ma-
trices, which may lead to the loss of crucial temporal
information. Instead, TransEHR embeds triplets us-
ing distinct encoding procedures and leverages the
Transformer architecture to capture the intricate tem-
poral dependencies present in the sequences. The
non-recurrent structure of the Transformer facilitates
excellent training efficiency and scalability, unlike re-
current networks that often encounter issues such as
inefficient sequential processing and gradient vanish-
ing problems.

To leverage unlabeled data, our proposed model,
TransEHR, utilizes self-supervision during training. It
pretrains the Transformer model on a pretext task
with unlabeled data, then fine-tunes it for downstream
supervised tasks using labeled data. The objective is
to tailor the pretext tasks specifically for multi-sourced
EHR time-series data, aiming to learn robust repre-
sentations. We employ a denoising method inspired
by masked language modeling (MLM), corrupting
the input by randomly masking values within triplets
and predicting masked values using Mean Square Er-
ror (MSE) loss. Additionally, we propose training
a discriminative model to predict the substitution
of triplets (Clark et al., 2020), another pretext task
based on a sample-efficient approach. We also design
a third pretext task focused on training a Transformer
Hawkes process model (Zuo et al., 2020) to forecast
event occurrence based on historical data. This task
aims to capture changes in patients’ status and aids in
predicting clinical tasks like disease risk and mortality.

We pretrain TransEHR on three real-world health
datasets and evaluate its performance on benchmark
predictive tasks: in-hospital mortality, length-of-stay
and phenotype classification. Our model surpasses su-
pervised and self-supervised learning baselines, achiev-
ing a 3.0% AU-PRC improvement for mortality classi-
fication and 1.5 days MAE reduction for LOS predic-
tion compared to the previous state-of-the-art method.

Remarkably, TransEHR achieves comparable AU-ROC
scores using only 50% of the labeled data for fine-
tuning. Our results highlight the significance of mod-
eling rich event information alongside conventional
multivariate measurements in clinical time series data.

2. Related Work

Transformer for multivariate time series data.
Most of the deep models developed for time series
are still based on recurrent or temporal convolutional
neural networks, which hinders parallel processing.
Recent work (Horn et al., 2020) utilizes differentiable
set function learning that is highly parallelizable and
has a low memory footprint, making it scalable for
large datasets with long time series. With the success
of Transformer models in computer vision (CV) and
natural language processing (NLP) domains, a few
recent works have started employing the Transformer
architecture for EHR time series data. BEHRT (Li
et al., 2020) is designed for simple EHR data, which
only contains sparse diagnosis sequences, and does not
apply to modern EHR data containing real-valued mul-
tivariate time series. Zerveas et al. (2021) extended
the masked Transformer language model to handle
multivariate time series. In their approach, they treat
time series as a set of triplets and propose Continu-
ous Value Embedding to encode continuous time and
variable values without discretization (Tipirneni and
Reddy, 2022).
Transformer for event data. Temporal point pro-
cesses, such as the Hawkes process (Hawkes, 1971),
utilize an intensity function to model event sequences.
Neural Hawkes process models parameterize the in-
tensity function using recurrent neural networks (Du
et al., 2016; Mei and Eisner, 2017) and Transformers
(Zuo et al., 2020; Zhang et al., 2020). The Trans-
former model consists of multiple Transformer layers,
each containing a self-attention mechanism and a feed-
forward neural network. The attention mechanism as-
signs attention weights between any two events, where
small weights indicate weak dependencies and large
weights indicate strong dependencies. This makes
the Transformer model more powerful than recurrent
neural networks in modeling event sequences.
Self-supervised learning. The current state-of-the-
art methods for language representation learning, such
as BERT (Kenton and Toutanova, 2019) and XLNet
(Yang et al., 2019), utilize denoising autoencoders
(Vincent et al., 2008) that mask a small subset of the
input sequence and train the network to reconstruct
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the original input. However, these MLM approaches
incur high computational costs because the network
only learns from a fraction of the tokens per example.
In an alternative approach, Clark et al. (2020) propose
a replaced token detection pretraining task. This
method corrupts the input by replacing some of the
tokens with samples from a proposal distribution. The
model then learns to distinguish between genuine
input tokens and synthetic replacements, making it
more computationally efficient compared to MLM.

While self-supervised learning has demonstrated
significant performance improvements in image and
text data, its application to time-series data has been
limited. However, some efforts have been made in
this area. For example, Jawed et al. (2020) used a
1D CNN for dense univariate time-series classification,
achieving increased accuracy by incorporating fore-
casting as an additional task in a multi-task learning
framework. Zerveas et al. (2021) also pretrained a
Transformer model using a denoising objective and
demonstrated improved performance on regression
and classification tasks involving dense multivariate
time series. Furthermore, Tipirneni and Reddy (2022)
demonstrated that time-series forecasting can be a vi-
able and effective self-supervision task for pretraining
a Transformer model; Dong et al. (2023) propose an
alternative self-reconstruction task considering neigh-
borhood similarity; Zhou et al. (2023) apply frozen
pre-trained language models as a series encoder.

3. Method

3.1. Problem Setup

The goal of TransEHR is to learn robust representa-
tions from the multi-sourced EHR data, consisting of
both continuous multivariate time series and discrete
event sequences in continuous timelines, with limited
labeled data. For multivariate time series, we use a
triplet (zj ,vj , tj) to denote a K-dimensional multi-
variate data point observed at time tj ∈ R+, where
the indicator vector zj ∈ {0, 1}K for [zj ]k = 1 if the
k-th variate is observed at time tj and 0 otherwise,
the value vector vj ∈ (R∪∅)K for [vj ]k ∈ R if a value
was measured at time tj and ∅ if the value is missing.
Similarly, to denote a set of events that happened at
time ts, we can use a triplet (es, ∅, ts), where event
indicator es = {0, 1}D for [es]d = 1 if the d-th event
occurred at time ts and 0 otherwise. Together with
a static feature vector x0 ∈ RL denoting the charac-
teristics of a patient that do not vary over time, we

can represent the observed EHR time series input as
DN =

{
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where the superscript (i) denotes patient i in the data
set. Beyond the unlabeled data DN , we also have ac-
cess to a limited data set DN ′ with labels {y(i′)}N ′

i′=1

(usually N ′ << N). Our objective is to learn a Trans-
former model f(·) by first pre-training it on DN with
self-supervision and then tuning it on DN ′ for the
final supervised downstream task. We summarize the
notations used in this paper in Appendix A Table 4.

3.2. Triplet Embedding

Given the three different attributes specified in the
triplets for representing an EHR input data point, we
apply different encoding procedures to obtain their
initial embeddings accordingly.
Categorical type encoding. We fit an embedding
matrix U = [UK ,UD] ∈ RM×(K+D) for encoding the
indicator vectors zj and es. That is, we compute their
embeddings as UKz⊤

j and UDe⊤s respectively.
Continuous value encoding. We fit a linear projec-
tion layer to encode the dense multivariate value vector
vj ∈ RK×1 observed at time tj . It is zero-padded if
any value is missing in the original observation or
masked in a pretext task (will introduce later). Each
element [vj ]k is normalized using the mean and vari-
ance computed from training samples, so the value
embedding vector cj ∈ RM×1 is defined as

cj = Wvvj + bv

with parameters Wv ∈ RM×K and bv ∈ RM×1.
Temporal time encoding. We use trigonometric
functions (Zuo et al., 2020) to generate deterministic
temporal embedding vector u(t) ∈ RM×1 for time t:

[u(t)]m =

{
cos

(
t/10000

m−1
M

)
, if m is odd,

sin
(
t/10000

m
M

)
, if m is even,

where [u(t)]m is the m-th element of vector u(t).
Note that all three encoding vectors reside in the

embedding space RM×1. Thus, given a multivariate
triplet (zj ,vj , tj) or an event triplet (es, ∅, ts), we can
compute the correspondingM -dimensional embedding
as a sum of the single-attribute encoding vectors:

Multivariate Embedding: Xj = UKz⊤
j + cj + u(tj),

Event Embedding: Es = UDe⊤s + u(ts).

After the embedding layers, we obtain X =
[X1, · · · ,XT ] ∈ RM×T for a multivariate time se-
ries input and E = [E1, · · · ,ES ] ∈ RM×S for an
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Figure 1: An overview of the three pretext tasks designed in TransEHR for self-supervised learning on unlabeled
EHR time series data.

event sequence input. We pass them through two
separate self-attention modules that share the same
architecture. Details of the Transformer architecture
are described in Appendix B.

3.3. Self-Supervised Learning

We design three pretext tasks for pre-training the
Transformer model in TransEHR by leveraging the
unlabelled EHR data DN , depicted in Figure 1.
Pretext task 1: Denoising values. We define
the first pretext task by drawing inspiration from the
widely used masked language modeling MLM tech-
nique in NLP. The core idea of MLM is to randomly
mask certain positions within the input sequence and
train a generator primarily consisting of a Transformer
network encoder to predict the original values of the
masked tokens.

In our context, considering a multivariate input
time series denoted as x = (zj, vj, tj)|j = 1T , we
introduce a random set of masks denoted as m =
{(k, j) : 1 ≤ k ≤ K, 1 ≤ j ≤ T}, and obtain the
masked input as

xmasked = REPLACE(x,m, [MASK]).

Consequently, we obtain the embedding of the masked
input as Xmasked. The objective of our first pretext
task is to learn a generator G : RM×T → RK×T pa-
rameterized by θG, which minimizes the MSE between
the generated values and the true values of the masked
positions. Formally, the MSE Loss is defined as:

L1(θG;DN ) = Ex∼DN

∑
(k,j)∈m

(vkj − v̂kj)
2, (1)

where v̂kj represents the generated value at position
(k, j) in G(Xmasked;θG). The generator G primarily

consists of the aforementioned Transformer network
fG(·) producing the hidden representations HG =
fG(X

masked), and a linear layer gG(·) reconstructing
the values v̂ = gG(HG) ∈ RK×T . θG encompasses all
the parameters of networks fG and gG.
Pretext task 2: Classifying value replace-
ments. Inspired by the sample-efficient training
method ELECTRA (Clark et al., 2020), which has
been shown to outperform MLM in NLP, we intro-
duce our second pretext task as a classification task
to determine whether each token in a corrupted input
has been replaced by a sampled value from the gener-
ator or not. This approach enhances the efficiency of
pre-training as it operates on all tokens rather than
just a small set of masked tokens as in MLM.

Given the original input x and the randomly masked
positions m, the corrupted input is obtained by re-
placing the masked values in the input triplets with
the predicted values generated by G:

xcorrupted = REPLACE(x,m, v̂).

The corresponding embedding is denoted as
Xcorrupted. The key idea behind ELECTRA is to
train an additional discriminator D : RM×T →
{True, Sampled}K×T parameterized by θG that classi-
fies whether each token in xcorrupted has been replaced
by the generator G or not. This is achieved by mini-
mizing the cross-entropy (CE) loss defined as follows:

LDisc(θD;DN ) = Ex∼DN∑
(k,j)

[
−1(v̂kj = vkj)·log pkj−1(v̂kj ̸= vkj)·log(1−pkj)

]
,

where pkj represents the predicted probability
of a token being replaced at position (k, j) in
D(Xcorrupted;θD). The discriminator D primar-
ily consists of another Transformer network fD(·)
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that generates the hidden representations HD =
fD(Xcorrupted), and a linear layer gD(·) followed by
a sigmoid function, which predicts the probabilities of
a token being replaced as p = Sigmoid

(
gD(HD)

)
∈

[0, 1]K×T . The parameters θD encompass all the pa-
rameters of networks fD and gD. Therefore, the
objective of the second pretext task is to minimize
the combined loss:

L2(θ;DN ) = L1(θG;DN ) + λLDisc(θD;DN ), (2)

where parameters θ = {θG,θD}. In practice, genera-
tor G is typically a smaller network than discriminator
D. After pre-training, we discard the generator and
only fine-tune the encoder of the discriminator fD on
downstream tasks.
Pretext task 3: Forecasting time to event. We
have designed two pretext tasks that work exclusively
with multivariate time series data. To leverage event
data, such as clinical events like lab tests or medication
prescriptions, which often provide rich information re-
garding a patient’s status change, we propose the third
pretext task. A pre-trained network that accurately
predicts these clinical events can potentially facilitate
downstream benchmark tasks such as mortality and
disease risks.

To model the event data, we utilize the Trans-
former Hawkes Process (THP) (Zuo et al., 2020),
which assumes that an event sequence is sampled
from a Hawkes Process where the occurrence of a
current event depends on all the past events. Given
an event sequence observed up to time ts: e1:ts =
(es′ , ∅, ts′)|ss′=1, we obtain the event embedding E1:ts .
The objective of our third task is to learn a Hawkes
Process encoder E : RM×T × R+ → R+K×1 pa-
rameterized by θE that outputs intensity functions
λk(t|e1:ts) for each event type k at t > ts. The
conditional density of the time to the next event
given the past events e1:ts is defined as p(t|e1:ts) =
λ(t|e1:ts) exp

(
−

∫ t

ts
λ(τ |e1:ts)dτ

)
, where the overall

intensity function

λ =
∑
k

λk(t|e1:ts) for t > ts.

We minimize the negative log-likelihood (NLL) loss:

LNLL(θE ;DN ) = Ee∼Dn

[
−

S∑
s=1

logλ(ts|e1:ts)+∫ tS

t1

λ(t|e1:t)dt
]
, (3)

where the second integration term is approximated
by Monte Carlo integration, for which the details can
be found in the paper (Zuo et al., 2020). In order to
output λ, the Hawkes process encoder E primarily
consists of a Transformer network fE(·) that outputs
the hidden representation HE = fE(E) and a K-
head linear layer gE(·) with a softplus function. This
layer estimates the conditional intensity functions
[λk(t|e1:ts)]Kk=1 = Softplus

(
gE([HE [ts, :], t])

)
. The

parameters θD encompass all the parameters of net-
works fD and gD.

The complete objective of our third pretext task is
to minimize the combined loss:

L3(θ;DN ) = L2(θG,θD;DN ) + ψLNLL(θE ;DN ), (4)

where the parameters θ consist of θG, θD, and θE .
After pre-training, we take the encoders fD and fE

and fine-tune them on downstream tasks. In these
tasks, the row vectors of the two hidden representa-
tions, HD and HE , are concatenated to form the final
representation vector.

3.4. Supervised Fine-Tuning

Given a Transformer encoder f(·) that was pre-trained
on unlabeled data DN for a pretext task, we fine-tune
it through supervised learning on the downstream
dataset DN ′ with labels yN ′ . We then train an addi-
tional multilayer perceptron (MLP) with parameters
θMLP to produce the final predictions on the labels.
To fine-tune our model, we minimize the CE loss as:

min
θ

E(x,e,x0)∈DN′ CELoss(ŷ, y), (5)

where y is the true label for the input data triplet
(x, e,x0), and ŷ = Sigmoid

(
MLP([h,x0];θMLP)

)
.

Here, h ∈ RM is the concatenation of the row vectors
of the hidden representation H output by f . The
parameters θ include the parameters of f and θMLP.

4. Experiments

We demonstrate the effectiveness of our model using
three real-world healthcare datasets collected from
different Intensive Care Units (ICUs). We compare
TransEHR to baseline methods on three benchmark
tasks: predicting in-hospital mortality, length-of-stay,
and acute care phenotypes.
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4.1. Datasets

Physionet-12 (Goldberger et al., 2000): This dataset
is derived from the Physionet Challenge 2012. It
comprises 12, 000 adult ICU stays with time series
data on 36 covariates and events (excluding ‘MechVet ’
here). The objective of the challenge is to predict
in-hospital mortality based on the first 48 hours of
data for each stay. We follow the setup outlined in
Horn et al. (2020)’s by merging all three sets (set-
a, set-b, and set-c) and performing a 64 : 16 : 20
train-validation-test split.

AmsterdamUMCdb (Thoral et al., 2021): This
dataset consists of 23, 106 ICU stays collected from
20, 109 adult patients at the Amsterdam University
Medical Center. We extract the same set of variables
as in Physionet-12, except we zero-pad the ‘GCS ’
variable because it is missing in this data set. We
exclude ICU stays with a length-of-stay of less than
48 hours or no data available within the first 48 hours.
This results in a total of 7, 484 time series, and we
perform a 64 : 16 : 20 train-validation-test split.

MIMIC-III (Johnson et al., 2016): This publicly
available database contains 61, 532 adult ICU stays
from 46, 476 patients, collected at the Beth Israel
Deaconess Medical Center between 2001 and 2012.
We preprocess the data using the code repository
provided by Johnson et al. (2018) and extract the
same set of variables as in Physionet-12. To create the
benchmark tasks, we follow the procedure described
in Harutyunyan et al. (2019)’s, obtaining 41, 902 stays
after excluding pediatric patients and the records with
unknown length-of-stay. We perform an 85 : 15 train-
test split on the entire dataset, followed by an 80 : 20
train-validation split on the training set. Furthermore,
we also prepare the MIMIC-III data by including only
the first 48 hours of each stay. We exclude ICU stays
with unknown or less than 48 hours of length-of-stay,
as well as those with no available data within the first
48 hours. This results in a training set of 17, 903 ICU
stays and a test set of 3, 236 ICU stays.

All datasets consist of 36 variables, including 8
vital signs (e.g., diastolic blood pressure, heart rate,
temperature, etc.) and 28 lab test results. We use
all the variables to construct K = 36 multivariate
time series and utilize the lab events to form D = 28
event sequences. Additionally, we include two time-
invariant static features: age and gender. Details of
data preprocessing are in Appendix C.

4.2. Benchmark Tasks

We evaluate three prediction tasks using the afore-
mentioned datasets. We use the first 48 hours of each
ICU stay for in-hospital mortality and length-of-stay,
whereas the complete duration for phenotyping.
In-hospital mortality: This task involves binary
classification, with a prevalence of approximately 13%
to 14% across all three datasets. We evaluate the
performance of this task using the metrics of macro-
average AU-ROC and AU-PRC.
Length-of-stay (LOS): For this task, we approach
it as both a regression task and a multi-class classifi-
cation task by categorizing the real-valued LOS into
ten discrete buckets (for detailed information, refer
to Harutyunyan et al. (2019)’s). We assess the per-
formance using the mean absolute error (MAE) and
Cohen’s linear weighted kappa (Cohen, 1960).
Phenotyping: The objective of this task is to ret-
rospectively classify patients into 25 acute care phe-
notypes (Harutyunyan et al., 2019). Since 99% of pa-
tients in the data have multiple phenotype labels, this
task is considered a multi-label classification problem.
We evaluate this task exclusively on the MIMIC-III
dataset, as the other two datasets lack the necessary
labels. The evaluation metrics used for this task are
Micro/Macro-avg AU-ROC.

4.3. Baselines

We compare our proposed TransEHR with the cur-
rent state-of-the-art methods developed for modeling
EHR time series data. The majority of these methods
are supervised models, with the exception of STraTS
(Tipirneni and Reddy, 2022), which is a self-supervised
Transformer model. It is worth noting that all of these
methods exclusively work with multivariate time se-
ries data and disregard the information contained in
event timestamps.
• (C-)LSTM (Harutyunyan et al., 2019): This
method utilizes a standard (channel-wise) Long Short-
Term Memory (LSTM) network, which is fitted to a
binned multivariate input matrix.
• GRU-D (Che et al., 2018): This approach extends
the Gated Recurrent Unit (GRU) by incorporating a
decay term, which is employed for imputing missing
values in multivariate time series.
• SeFT (Horn et al., 2020): SeFT employs triplets
to represent the irregular time series data, applies set
functions to encode these triplets, and utilizes a GRU
network to model the temporal dynamics.
• Transformer (Vaswani et al., 2017): In this
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Table 1: Experimental results for mortality prediction on the three datasets: ‘Self’ pre-training procedure
refers to the model being pre-trained using the same dataset, while ‘Transferred’ pre-training
procedure refers to the model being pre-trained using the other two distinct datasets.

Model Pre-train
Procedure

Physionet-12 MIMIC-III AmsterdamUMCdb
AU-ROC AU-PRC AU-ROC AU-PRC AU-ROC AU-PRC

SeFT - 85.1± 0.4 52.4± 1.1 83.9± 0.4 46.3± 0.5 - -
GRU-D - 86.3± 0.3 53.7± 0.9 85.7± 0.2 52.0± 0.8 - -

Transformer - 86.3± 0.8 52.8± 2.2 86.5± 0.8 51.7± 0.8 80.5± 0.2 50.7± 1.3
STraTS Self 86.5± 0.5 54.0± 0.4 86.7± 0.6 50.5± 0.6 81.0± 0.2 50.6± 0.3

TransEHR Self 86.7± 0.2 52.9± 1.2 87.6± 0.3 53.5± 0.6 80.9± 0.3 51.1± 0.5
Transferred 87.1± 0.1 53.8± 0.6 87.8± 0.5 52.8± 1.3 81.5± 0.1 53.4± 0.8

Table 2: Experimental results of length-of-stay prediction on the three datasets.

Model Pre-train
Procedure

Physionet-12 MIMIC-III AmsterdamUMCdb
Kappa↑ MAE↓ Kappa↑ MAE↓ Kappa↑ MAE↓

Transformer - 32.8± 0.3 6.56± 0.6 39.9± 1.3 3.15± 0.09 31.4± 0.4 7.16± 0.04
STraTS Self 32.6± 1.0 7.36± 1.4 41.6± 0.2 4.09± 0.14 31.2± 0.9 9.01± 0.17

TransEHR Self 34.9± 0.1 6.43± 0.5 41.9± 0.4 2.98± 0.08 31.7± 1.0 7.04± 0.02
Transferred 34.0± 0.3 6.42± 0.2 42.3± 0.2 2.91± 0.06 31.9± 0.5 6.97± 0.02

method, the GRU network from SeFT is replaced
with a Transformer network to capture the temporal
dynamics.
• STraTS (Tipirneni and Reddy, 2022): STraTS is
a self-supervised Transformer model that undergoes
pre-training through a time-series forecasting task.

4.4. Pre-training and fine-tuning Setup

We conducted two sets of experiments for each task,
involving pre-training and fine-tuning stages. In the
first group of experiments, the model was pre-trained
on two datasets without any revealed labels. Sub-
sequently, it was fine-tuned using the training and
validation sets of the third dataset, and evaluated
on its corresponding test set. This procedure aimed
to train the model to acquire robust representations
capable of transfer learning across different source
domains. In our results, we refer to this procedure as
‘transferred’ pre-training.

In the second group of experiments, the model was
pre-trained on each dataset’s own training set, again
without any revealed labels. It was then fine-tuned
using the labeled training and validation sets, and
evaluated on the respective test set. This procedure
aimed to train the model to learn generalized repre-
sentations, thereby mitigating the risk of overfitting
to unbalanced classes in the supervised setting. In our
results, we denote this procedure as ‘self’ pre-training.
Implementation details including the training hyper-
parameters are described in Appendix D.

Table 3: Experimental results of phenotype multi-
label classification on MIMIC-III dataset.

Model Pre-train
Procedure

MIMIC-III AU-ROC
Macro-avg Micro-avg

LSTM - 76.8± 0.4 81.8± 0.4
C-LSTM - 77.4± 0.4 82.3± 0.4
Transformer - 80.9± 0.1 85.3± 0.2
STraTS Self 80.7± 0.2 84.8± 0.3
TransEHR Self 81.2± 0.2 85.6± 0.2

Transferred 81.6± 0.1 85.8± 0.1

4.5. Results

Mortality prediction. Table 1 presents the experi-
mental results for mortality prediction on the three
datasets. We include results of SeFT and GRU-D
from their respective papers for comparison. Our best-
performing model, referred to as TransEHR throughout
the paper, is pre-trained using Pretext task 3 (details
refer to Section 4.5.1). From the table, we observe that
TransEHR, pre-trained on the two distinct datasets
(referred to as ‘Transferred’ pre-train), outperforms
all other methods consistently. Notably, on MIMIC-
III and AmsterdamUMCdb, TransEHR demonstrates
significant improvements compared to the strongest
baseline, STraTS, achieving an approximate 3% in-
crease in AU-PRC. This is particularly valuable for an
imbalanced binary classification task such as mortality
prediction, with a prevalence of approximately 14%.
Length-of-stay prediction. Table 2 shows the re-
sults for LOS prediction. For the LOS multi-class clas-

629



TransEHR

sification task, TransEHR outperforms STraTS across
all datasets, achieving an average increase of approx-
imately 1% in Kappa score. In the LOS regression
task, TransEHR surpasses STraTS with a significant
reduction of ∼1.5 days in MAE on average.
Phenotype prediction. Table 3 presents the re-
sults of the MIMIC-III phenotype prediction task.
Our model, TransEHR, achieves superior performance
compared to the LSTM baselines reported in Haru-
tyunyan et al. (2019) as well as STraTS. Specifically,
TransEHR achieves a 4.2% higher Macro-avg AU-ROC
(3.5% higher micro-avg AU-ROC) compared to the
LSTM baselines. TransEHR with the ‘Transferred’ pre-
training procedure achieves ∼1% increase in AU-ROC
compared to the strongest baseline, STraTS.

Based on these results, we observe that the
self-pretrained TransEHR outperforms the super-
vised Transformer, indicating that unsupervised pre-
training helps regulate overfitting in imbalanced or
multi-label/multi-class supervised learning. Further-
more, the evidence that self-pretrained TransEHR out-
performs STraTS highlights the effectiveness of the
proposed pretext task 3 for forecasting event arrival
times compared to forecasting multivariate values.
Lastly, the transferred pre-trained TransEHR performs
the best across all tasks and datasets, demonstrating
the advancements achieved by leveraging unlabeled
data from other sources.

4.5.1. Ablation study

Pretext tasks for pre-training. We investigate
the three pre-training tasks defined in Section 3.3 for
the downstream task of mortality prediction. We pre-
train TransEHR by minimizing the losses L1, L2, L3

as defined in Equations (1), (2), and (4) respectively.
We also consider a variant L′

3 by substituting L2 with
L1 in Equation (4). The results are depicted in Figure
4.5.1. It is noteworthy that incorporating a discrimina-
tor D to formulate a value replacement classification
pretext task leads to an improvement in downstream
task performance. Furthermore, the inclusion of the
Hawkes process encoder E for time-to-event forecast-
ing further enhances the overall performance. Thus,
we identify pretext task 3 as the most effective for
downstream classifications on EHR data.
Sensitivity to data availability. To assess the
fine-tuning efficiency of the pre-trained TransEHR com-
pared to the baseline models STraTS and Transformer,
we vary the availability of labeled data from 10% to
50% for the downstream mortality prediction task

(a) MIMIC-III (b) AmsterdamUMCdb

Figure 2: Mortality prediction performance of
TransEHR on the two datasets when pre-
trained to minimize the different pretext
losses (L′

3 is a variant of L3 by substituting
the L2 with L1 in Equation (4)).

on MIMIC-III. The corresponding performance in
terms of AU-ROC and AU-PRC is plotted in Figure
3(a). We observe that the performance gaps between
TransEHR, STraTS, and Transformer are maximized
between 20% and 40% data availability. Furthermore,
when using only 50% of the labeled data, TransEHR
achieves a comparable AU-ROC of ∼86.1% and an AU-
PRC of ∼49.2%, whereas STraTS and Transformer
require the use of the entire labeled dataset.

To investigate the optimal ratio for splitting the
training data into a pre-training set (with no revealed
labels) and a fine-tuning set, we conduct a further
study. Currently, we use the full "unlabeled" training
set for pre-training and then add the labels back for
fine-tuning, corresponding to a 10:10 ratio as shown
in Figure 3(b). We vary the ratio between 2:8, 5:5,
and 8:2, and plot the corresponding AU-ROC scores
in Figure 3(b). Remarkably, we find that TransEHR
achieves comparable results to the supervised Trans-
former on both AU-ROC scores when using a split
ratio of 2:8 and 5:5. This result confirms our ear-
lier findings in Figure 3(a) that TransEHR requires a
smaller set of labeled data for fine-tuning to achieve
strong prediction performance on downstream tasks.
Fine-tuning on the full model vs. only the
MLP layer. Regarding fine-tuning, we investigate
the choice between fine-tuning the full pre-trained
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model and fine-tuning only the last MLP layer for
downstream classification. We present the results
of fine-tuning ‘transferred’ pre-trained TransEHR for
mortality prediction on the three datasets in Figure
4. We observed a reduction of approximately 6% in
AU-ROC and 13% in AU-PRC when fine-tuning only
the last MLP layer compared to fine-tuning the full
model. It is worth noting that this performance gap
could potentially be mitigated with a larger and more
sufficient pre-training dataset.

(a) Vary the label availability during MIMIC-III mor-
tality fine-tuning

M
ac
ro

M
ic
ro

(b) Vary the pre-training vs. fine-tuning ratio in
MIMIC-III phenotype training set

Figure 3: Performance changes when varying the pre-
training or fine-tuning data availability.

Figure 4: Comparison of fine-tuning the ‘transferred’
pre-trained TransEHR on the full model vs.
only the last MLP layer for mortality pre-
diction. Error bars present the standard
deviation across three fine-tuning runs.

5. Discussion and Conclusions

We propose a self-supervised Transformer model and
an efficient pre-training pretext task to address two
key challenges in classification tasks using modern
EHR time series data: 1) the asynchronous collec-
tion of event sequences alongside multivariate time
series, and 2) the limited availability of labeled data.
Our experiments on three real-world health datasets
demonstrate the proposed model TransEHR achieves
state-of-the-art performance on three benchmark clin-
ical prediction tasks: in-hospital mortality, length-of-
stay, and phenotyping.
TransEHR’s impact on healthcare is marked by im-

proved accuracy, efficient data utilization, and the
advancement of healthcare analytics. Enhanced ac-
curacy in benchmark clinical tasks is crucial for pro-
viding timely and accurate medical care. Healthcare
professionals can rely on more accurate predictions
and insights, ultimately leading to better patient care
and resource allocation. The efficient use of data helps
in building robust models even when labeled data is
scarce, which is often the case in healthcare.

The proposed method has limitations arising from
the insufficient availability of public health data, which
can impede pre-training performance. Overcoming
these limitations necessitates collaborative efforts to
enhance data availability, thereby improving the per-
formance and applicability of TransEHR. Additionally,
there is potential for extending TransEHR by incorpo-
rating recent Transformer-based time series models,
such as Liu et al. (2021); Zhou et al. (2021, 2022);
Nie et al. (2022); Wu et al. (2022), etc. This inte-
gration could enable TransEHR to capitalize on the
architectural advancements presented by these models,
thereby further optimizing its capabilities. Further
model considerations should also be made to accommo-
date transfer learning when leveraging and combining
diverse data sources or encompass a broader range
of data modalities, such as electrocardiogram (ECG)
signals (Raghu et al., 2023).
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Appendix

Appendix A. Notation Table

Table 4 summarizes the notations in this paper .

Appendix B. Model architecture

After the embedding layers, we obtain X =
[X1, · · · ,XT ] ∈ RM×T for a multivariate time series
input and E = [E1, · · · ,ES ] ∈ RM×S for an event
sequence input. We pass them through two separate
self-attention modules that share the same architec-
ture. We compute an H-head attention output A for
the input X as follows:

Ah = Softmax
(XWQ

h (XWK
h )⊤√

MK

)
XW V

h ,

A = Concat(A1, · · · ,AH)WO,

where matrices WQ
h ,W

K
h ∈ RM×MK and WV

h ∈
RM×MV are the query, key, and value projections,
respectively. The matrix WO ∈ R(MV ×H)×M ag-
gregates the final attention outputs. Finally, A is
fed through a position-wise feed-forward neural net-
work (FFN) to obtain the final hidden representations
H ∈ RT×M as follows:

H = FFN(A) = max(0,AWFC
1 + b1)W

FC
2 + b2,

where WFC
1 ,WFC

2 ∈ RM×MK , b1 ∈ RMK , and b2 ∈
RM are the parameters of the neural network. The
j-th row in the matrix H encodes the time series up
to time tj .

Similarly, we obtain a hidden representation for the
event sequences E with a dimension of S ×M , where
the s-th row of the representation matrix encodes all
the events up to time ts. When computing the s-th
row of the attention output Ah, we need to mask fu-
ture positions in the matrix WQ

h to prevent assigning
dependencies to future events. This is necessary be-
cause the Hawkes process assumes that current events
depend only on the past history but not future events.

Appendix C. Data description

We present the detailed statistics of our dataset in
Table 5. The list of covariates contains demographic
features of Age and Gender, vital signs of Diastolic
blood pressure, Glucose, Heart Rate, Mean blood pres-
sure, Systolic blood pressure, Temperature, Respira-
tory rate, and Oxygen saturation, events of Albumin,

Alkaline phosphate, Alanine aminotransferase, As-
parate aminotransferase, Bilirubin, Blood urea nitro-
gen, Cholesterol, Creatinine, Fraction inspired oxygen,
Glascow coma scale total, Bicarbonate, Hematocrit,
Potassium, Lactate, Magnesium, Sodium, Diastolic
blood pressure (noninvasive), Mean blood pressure
(noninvasive), Systolic blood pressure (noninvasive),
Partial pressure of carbon dioxide, Partial pressure of
oxygen, pH, Platelets, O2 saturation in hemoglobin,
Troponin-I, Troponin-T, Urine output, and White
blood cell count. Data preprocessing scripts are avail-
able in our code repo.

Appendix D. Implementation details

All models are implemented using PyTorch. We re-
ferred to the implementation from Zuo et al. (2020)
and Zerveas et al. (2021) when building our time se-
ries encoder and event series encoder. We set the
input embedding dimension, M , to 256. The Trans-
former encoder consists of one encoding layer with
256 feed-forward variables and 2 attention heads, and
the size of the linear output layer is 256. Specifically
for pretext task 2, the generator D is configured to be
one-fourth of the hidden size. For downstream tasks,
we added a one-layer MLP with a hidden size of 64
on top of the encoders.

For pre-training, we chose the Adam optimizer with
a learning rate of 2e − 3, a decay of 0.5 every 50
epochs, and a maximum of 2000 training epochs. For
downstream tasks, we used Adam with a learning rate
of 2e − 4 and an exponential decay of 0.8 every 20
epochs. The training process would be stopped either
when it reaches the maximum epoch number of 500
or when the validation loss stops decreasing for 30
epochs. All experiments were conducted using a single
NVIDIA RTX A5000 GPU.

634



TransEHR

Table 4: List of notations
Multivariate Notations
tj Sample time of the j-th multivariate triplet
v
(i)
j Value vector of the j-th triplet of patient i. Each dimension [vj ]k correspond to the

k-th variable’s sampled value at tj (or ϕ if the value is missing)
z
(i)
j Multivariate indicator vector of the j-th triplet of patient i. Each dimension [zj ]k is 1 if

the k-th variable is observed (that is, [v(i)
j ]k ̸= ϕ at time tj , and 0 otherwise.

Event Notations
t
(i)
s Sample time of the s-th event triplet from patient i
e
(i)
s Event indicator vector of the s-th event triplet from patient i. Each dimension [e

(i)
s ]d is

1 if the d− th event happens at ts, or 0 otherwise.
General Data Notations
DN Set of observed EHR time series, composed of both multivariate triplets and event

triplets
X Series of multivariate time series input
E Series of event sequence input
y(i) Label of patient i
x
(
0i) Statistical demographics of patient i

Embedding Notations
u(tj) Temporal encoding of time tj
UK Embedding matrix for multivariate indicator vector z
c Embedding bias vector for multivariate indicator vector z
UD Embedding matrix for event indicator vector e
Wv Embedding matrix for multivariate value vector v
bv Embedding bias vector for multivariate value vector v
Training Variables Notations
m Randomly generated mask matrix
θG Parameters of a Transformer-based sequence-to-sequence generator
θD Parameters of a Transformer-based discriminator
thetaE Parameters of a Transformer-Hawkes event encoder
θMLP Parameters of a MLP classifier.

Table 5: Details of datasets
MIMIC-III Physionet-2012 AmsterdamUMCdb

ICU stays 61,532 12,000 23,106
48h LOS volume 21,139 11,988 7484
Raw signs 154 37 1676
Max Length-of-Stay (days) 99 295 237
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