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Abstract
Identifying change points (CPs) in time series is
crucial to guide better decision-making in health-
care, and facilitating timely responses to poten-
tial risks or opportunities. In maternal health,
monitoring health signals in pregnant women
allows healthcare providers to promptly respond
to complications like preeclampsia or enhance de-
livery time detection, improving overall maternal
care. Existing Change Point Detection (CPD)
methods often fail to generalize effectively due to
diverse underlying changes that can cause a CP.
We propose Time Varying CPD (TiVaCPD),
a change point detection method that captures
different types of changes in the underlying dis-
tribution of multidimensional data. It combines
a dynamic window MMD test with a graphical
Lasso estimator of feature covariance to mea-
sure both changes in the joint distribution of
the observations as well as changes in feature
dynamics. TiVaCPD generates a unifying CP
score by evaluating the relative similarity of the
statistical tests. Additionally, TiVaCPD score
enhances interpretability by offering insight into
the underlying causes of CPs through a detailed
analysis of feature dynamics, which is especially
valuable in healthcare applications. We evaluate
the performance of TiVaCPD on both simulated
and real-world data, showing that it can out-
perform state-of-the-art methods. We further
demonstrate the appliance of TiVaCPD in a
pregnancy-related case study, showcasing the
joint shifts in physiological signals that facilitate
the detection of delivery time.
Keywords: Change point detection, Time se-
ries, Dynamic window, Health monitoring
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1. Introduction

Identifying change points (CP) in healthcare time
series data is of significant importance that enables
the detection of changes in health state, plays a piv-
otal role in risk management and enhancing clinical
decision-making (Truong et al., 2018; Aminikhanghahi
and Cook, 2017), and more. Given the exponential
growth in healthcare time-series data (Yang et al.,
2007), and the increase in popularity of technologies
such as wearable devices for recording physiological
signals, the need for automated change point detec-
tion (CPD) methods has significantly increased. CPD
enables prompt identification of variations in signals
like heart rate or oxygen saturation levels, which re-
sults in the identification of critical changes in health
state and can ultimately be used to alert for potential
health concerns.

Many existing CPD methods often overlook the
underlying variability in CP properties and its root
causes, limiting their effectiveness in handling time-
series with complex change dynamics. CPs are typ-
ically characterized as shifts in the distribution of
measurements over time. Alternatively, they can re-
sult from changes in the correlation structure between
features. While the former is well-studied, the latter
is also important in various applications. For instance,
in physiological signals, an increasing negative cor-
relation between Heart Rate Variability (HRV) and
Heart Rate (HR) measurements can signal increased
nervous system activity caused by stress or anxiety,
requiring medical attention (Sacha, 2014). Methods
that solely focus on detecting changes in marginal
distributions may fail to identify such scenarios.
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In this paper, we propose a statistical CPD method
called TiVaCPD that captures different types of CPs
in time series without the need for labeled instances
of change. TiVaCPD offers a non-parametric solution
that does not require any distributional assumption
of the generative process, and can therefore generalize
to various scenarios. TiVaCPD assigns a CP score
at every time-point that measures 2 types of shift: 1)
change in the correlation of features and 2) change in
the underlying distribution of the time-series features
(Figure 1). Each part of the score is interpretable,
allowing us to characterize and classify CPs with sim-
ilar underlying properties and understand the cause
of the change. To identify changes in the joint dis-
tribution of features over time, TiVaCPD employs a
dynamic network inference method to acquire sparse
time-varying precision matrices for feature interac-
tions to detect changes in feature correlation patterns.
To identify changes in the probability distributions
of adjacent windows, TiVaCPD builds on the theory
of non-parametric two-sample MMD tests (Schrab
et al., 2021), and augments existing methods by dy-
namically adapting the window size to accommodate
variable state lengths between CPs. We show that
this alleviates major issues with fixed size windows.
Namely having small windows that can weaken sta-
tistical power, and larger ones that may mix different
distributions. Finally, different components of the
TiVaCPD score are combined to detect CPs using
an ensemble method that adaptively assigns weights
to scores based on their dissimilarity, placing greater
emphasis on scores that capture changes not detected
by other components. We evaluate the performance
of TiVaCPD across simulated and real-life datasets,
comparing it to state-of-the-art CPD methods and
show that our method outperforms competitors in all
datasets. We also study the application of CPD in
wearable data for a cohort of pregnant individuals.
This study explores the potential utility of daily wear-
able data for aiding clinicians in identifying significant
pregnancy-related events.

2. Related Work

There is abundant literature on CPD methods (Truong
et al., 2018; Aminikhanghahi and Cook, 2017; Reeves
et al., 2007). CPD methods consider a time-series
to be a collection of random variables with abrupt
changes in distributional properties over time. Most
of these methods are parametric (Yamanishi and
Takeuchi, 2002; Kawahara et al., 2007) and involve

estimating the underlying probability density function
of the signal, which limits detection to certain types of
distributions and is usually computationally expensive.
Non-parametric methods (Chang et al., 2019; Cheng
et al., 2020; Matteson and James, 2014) are employed
when time-series dynamics are hard to model, and
prior data distribution assumptions are not feasible.
An optimal transport-based approach by Cheng et al.
(2020) conducts two-sample Wasserstein tests between
cumulative distributions of contiguous subsequences,
utilizing fixed-size sliding windows. However, relying
on local maxima of this statistic can lead to a higher
false positive rate. Additionally, this method projects
data to one dimension and uses mean statistics, poten-
tially reducing detection power. In contrast, Roerich
Hushchyn and Ustyuzhanin (2021) adopts classical ma-
chine learning and regression models to detect distri-
bution changes. Deep learning-based non-parametric
methods have gained popularity, driven by the increas-
ing availability of data. For instance, Time-Invariant
Representation (TIRE) (De Ryck et al., 2021) is an
autoencoder-based CPD approach that learns a par-
tially time-invariant representation of time series and
computes CPs using a dissimilarity measure. Another
method, TS − CP 2 (Deldari et al., 2021a), employs
contrastive learning with representations from tem-
poral convolutional networks for CP detection. Some
deep learning-based CPD approaches incorporate ker-
nel functions (Li et al., 2015) for greater flexibility
in representing density functions. One such method,
KLCPD (Chang et al., 2019) uses deep generative
models to enhance the test power of the kernel two-
sample MMD test statistic (Gretton et al., 2007). It
overcomes the limitations of prior kernel-based CPD
methods by removing the need of a fixed number
of CPs or prior knowledge of a reference or train-
ing set for kernel calibration. However, its perfor-
mance depends on the choice of kernel and kernel
bandwidths. Deep learning-based CPD methods lack
interpretability, hindering our understanding of their
predictions. Current methods also struggle to capture
changes in correlation patterns in evolving multivari-
ate time series. To address this, Gibberd and Nelson
(2015) introduced GraphTime, a Group-Fused Graph-
ical Lasso estimator for CP estimation in time series
dependency structures. This method is suitable for
detecting abrupt changes but produces excessive false
positives for gradual CPs due to its piece-wise con-
stant graph topology. Our method not only offers
interpretability by quantifying the magnitude and di-
rection of changes in correlation between variables
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Figure 1: Overview of TiVaCPD that illustrates the score generation process and all the components including
DistScore, CovScore, and the ensemble weights W . SG stands for Savitzky-Golay filter.

that trigger a specific CP but also utilizes a novel
ensemble technique to effectively aggregate unsuper-
vised CP scores from various statistical tests, ensuring
better accuracy.

3. Method

3.1. Problem Formulation

Consider a multivariate time-series sample X ∈ Rd×T

to be a sequence of random variables [X1, X2, ..., XT ]
with d indicating the number of features and T repre-
senting the total number of measurements over time.
To identify change points in time steps of a data
sample, a score S[t], ∀t ∈ [T ] is estimated for each
time step that measures the amount of change in the
underlying generative process of the data.

3.2. Our CPD Algorithm - TiVaCPD

In this section, we introduce our CPD algorithm called
Time Variable Change Point Detection (TiVaCPD).
CPD detects 2 types of change in the underlying
distribution over time: 1) change in correlation be-
tween features, i.e. change in the joint distribution of
features over time 2) change in distribution of mea-
surements over time, i.e. the marginal distribution of
the observations. In the rest of the section we intro-
duce TiVaCPDscore, explain how it captures a variety
of CP types, and demonstrate how to interpret the
score to better understand the CPs.

Detecting changes in feature correlation A CP
can be caused by a change in the correlation between
features. This can be identified through a change in
the covariance of the joint distribution of the feature
network. The evolving dynamics of features can be
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Figure 2: Temporal changes in 3 feature interactions
using a correlation matrices heatmap. Each row rep-
resents correlation shifts between feature pairs, with
colours indicating their direction.
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modeled using graphical models, i.e. at every time
point, the interactions of features can be modeled as
a graph network, with nodes and links correspond-
ing to each feature and correlation between sets of
variables, respectively (Figure 2). However, to detect
CPs, we need to calculate the covariance matrix and
therefore the graphical network at every time step,
which is computationally challenging. To overcome
this, we use a Graphical Lasso estimator to estimate
the sparse inverse covariance matrix (precision ma-
trix) of the multivariate time-series with time-varying
structures. The precision matrix aids in numerical
stabilization, ensuring that the resulting matrix is pos-
itive semi-definite. This helps in better representing
the conditional dependence among the features. We
use the dynamic extension called the Time-Varying
Graphical Lasso (TVGL) (Hallac et al., 2017) that can
model the varying covariance over time. Additional
details on TVGL can be found in Appendix D.

Using the inverse covariance matrices estimated at
every time step Pt, we can estimate the partial cor-
relation of each pair of features P̂t as − Pt(i,j)√

Pt(i,i)Pt(j,j)

for i ̸= j and Pt(i, i) otherwise. The absolute value
of the difference of consecutive correlations over time
quantifies change points caused by the change in the
features’ dynamics as a score we call CovScore.

Detecting shift in distribution Detecting
changes in feature correlation is an important indica-
tion of a CP, but it would not be enough to explain all
changes. In some cases, the distribution of all features
can undergo concurrent shifts over time, without any
change in feature interaction. To address such cases,
we introduce the DistScore, as elaborated in the fol-
lowing. Assuming in a time series sample X, each Xt

is generated from a joint probability distribution pt(·),
a CP can occur at time t∗ if observations after t∗ are
generated from a different distribution. To compare
the probability distributions of adjacent windows, we
employ a non-parametric two-sample testing proce-
dure called MMD Aggregate (MMDAgg), introduced
in Schrab et al. (2021). Kernel-based MMD tests
serve as a measure between two probability distribu-
tions. With the statistical test threshold α, if the
null hypothesis H0, is rejected, the time-series may
be partitioned by a CP at t∗, signifying that mea-
surements in the past window of size ∆− (Xt∗−∆−:t∗)
come from a different distribution than measurements
in Xt∗:t∗+∆+ . MMDAgg aggregates multiple MMD
tests using different kernel bandwidths, ensuring max-
imized test power over the collection of kernels used

Ground Truth CP

Estimated CP

Figure 3: Dynamic window procedure. The expand-
ing window (gray) and fixed-size future observation
window (blue) enlarge to include more samples from
the generative distribution as the algorithm proceeds.
Once a CP is detected at t̃, the window size reverts
to its initial size.

and eliminating the need for data splitting or arbi-
trary kernel selection. One shortcoming of MMDAgg
is its lack of consideration for dynamic intervals of
change points. Considering constant values for ∆−

can lead to increased false alarms when applied to real-
world data without a predefined schedule. We propose
to dynamically establish the window size based on
the presence of CPs (Figure 3). Let ∆− represent
the size of the dynamic window of data points from
the last estimated CP (t̃), up until the current time
point (t). Starting with a constant ∆+ and a small
∆− window, the length of the running window ∆ in-
creases with each new observation until a new CP
occurs, according to the MMD test. If a significant
change in distribution is not detected by the MMD
test, i.e. the MMD score is smaller than a pre-defined
threshold ϵ, the two sub-sequences are combined and
compared against the next sub-sequence in the se-
ries. Our dynamic windowing method eliminates the
need for repetitive fixed-window comparisons and uti-
lizes a growing sample set for the MMD test. In the
evaluation section, we also demonstrate how dynamic
windowing can significantly improve the performance
of the statistical test in identifying CPs.

For determining the final CP score, we need to
meaningfully ensemble the MMD score with the cor-

639



TiVaCPD

Algorithm 1 Estimating TiVaCPD score

1: Input: X, α (Statistical threshold), ∆− (Ini-
tial past window size), ∆+ (Future window
size), ϵ (Score threshold)

2: Output: YS (TiVaCPDscore)
3: ∆ = ∆− // Size of the running window
4: P = Conv−1(X) // Sparse inverse covariance
5: P̂ Partial Correlation
6: for all t ∈ [1, ..., T ] do
7: S[t] = MMDAgg(Xt−∆:t, Xt:t+∆+ , α)
8: if S[t] ≥ ϵ then
9: DistScore[t]= S[t] & ∆ = ∆−

10: else
11: DistScore[t]= 0 & ∆ = ∆+ 1
12: end if

13: CovScore[t] =
{ ∑

|P̂ [t]− P̂ [t− 1]| t > 0
0 t = 0

14: end for
15: CovScore = Smoothing(CovScore)
16: SGCombined = SG(|CovScore|+|DistScore|)
17: All_Score = [SGCombined, Normalize(DistScore),

Normalize(CovScore), CovScore]
18: for all t_win ∈ [T ] do
19: W =

∑
j mean(|All_Score − All _Scorej |)

20: Ŵ : Update W based on #CPs difference
21: S = Ŵ · All_Score
22: end for
23: return YS

relation change score, which is challenging because
the correlation score is bounded while MMD is a posi-
tive unbounded score. Hence, TiVaCPD incorporates
kernel normalization in the MMDAgg algorithm. We
use a generalization of Cosine normalization (Ah-Pine,
2010) to normalize our kernels so as to have a similarity
index. For a given kernel function, Kz=1(x, y) repre-
sents the normalized kernel of order z. We use the gen-
eralized mean with exponent z = 1 (arithmetic mean),
which means Kz=1(x, y) = K(x,y)

Mz=1(K(x,x),K(y,y)) , where
Mz=1(api=1) =

1
p

∑p
i=1(a

z
i ). This normalization tech-

nique projects the objects from the feature space to a
unit hypersphere and guarantees |Kz=1(x, y)| ≤ 1.

Ensemble CP Score TiVaCPD identifies change
points based on the CovScore and DistScore as de-
fined and presented in Algorithm 1, using an ensemble
method that utilizes the score differences to highlight
the scores that contribute the most to representing
the CPs. We use four score variants to generate dy-
namic dissimilarity weight W to effectively aggregate

the scores into a unified score (As shown in Figure
1). The four scores used are as follows: a) b) Normal-
ize(CovScore) and Normalize(DistScore): standard-
ized CP scores using z-score normalization to bring
them into the same scale, c) Smoothing(CovScore):
Since CovScore is sensitive to small distributional
changes that can lead to false change point detection,
we mitigate the risk of detecting spurious CPs by ap-
plying Savitzky-Golay (SG) smoothing filter (Press
and Teukolsky, 1990), which is a widely used method
for smoothing patterns and reducing noise in time se-
ries data. d) SGCombined: We also apply the filter to
the sum of filtered CovScore and DistScore, which ef-
fectively reduces noise and improves the performance
of CPD. The ensemble approach utilizes a weighted
average of the aforementioned four scores. The im-
portance weight W is calculated based on the mean
absolute difference between scores. This approach
assigns a higher weight to scores that exhibit greater
dissimilarity, enhancing the detection of CPs that
might be overlooked by other scoring methods. The
weights are calculated for each time-point window,
as the distribution of scores’ importance may vary
over time. To reduce the number of false positives,
we modify the weights to Ŵ . The detail on how Ŵ
is calculated is in Appendix D. Finally, to locate the
exact time of the CPs, we identify peaks in ensemble
scores by searching for local maxima with a threshold
to reduce false positives created by noise.

Understanding change points and interpreting
TiVaCPD score TiVaCPD offers valuable insights
into the underlying nature of the observed change
points. In real-world applications such as the health-
care domain, understanding the cause for a change
point has significant importance, as it may represent
very different circumstances. For instance, a change
in patient state caused by a shift in the distribution of
blood pressure has different clinical implications com-
pared to when heart rate and blood pressure measures
change from being negatively correlated or uncorre-
lated to positively correlated. Different components
of TiVaCPD score, and more specifically analyzing
the generated correlation graphs, provide a detailed
analysis of the feature dynamics at each time step.
This information allows for the categorization of CPs,
thereby enhancing interpretability, as shown in Figure
4. This figure presents a multivariate time series sam-
ple showcasing TiVaCPD results, featuring CovScore,
DistScore, and a weighted ensemble score. In addition,
CovScore’s heatmap illustrates the feature pairs that

640



TiVaCPD

caused a CP, and TiVaCPD identifies the direction of
correlation change at each CP. The first two CPs (CP1

and CP2) are caused by changes in the correlation
between features 0 and 1, where CP1 corresponds to
a positive change in correlation and CP2 corresponds
to a negative change in correlation. CP3 is caused by
changes in the mean between features 0 and 1 where
DistScore is the highest and CP4 is caused by changes
in a combination of variance, correlation, and mean.

4. Experiments

4.1. Datasets

We evaluate the performance of our method compared
to multiple baselines on the following datasets:

Simulated Data: We created 4 different datasets to
simulate different types of CPs for which we know the
ground truth cause. In all datasets, each time series
sample X ∈ Rd×T consists of d = 3 features, and X is
sampled from a d-dimensional Gaussian distribution
Nd(µi, σ

2
i ). The time at which each change point

occurs is randomly chosen within a range of 50 to
100 time points. The properties of the 4 datasets are
as follows and the description and results on another
real-world dataset are in Appendix A:
• Jumping Mean: The variance is assumed to be

constant (σ2 = 1) over time and across all features.
The ground-truth CPs correspond to abrupt jumps
in the mean that can happen independently in any
of the features.

• Changing Variance: All three features are
generated with constant mean µ = 1, but their
distribution variance changes over time. CPs are
indicated as time points with changes in σ2.

• Changing Correlation: This data set consists of
a multivariate time-series generated with constant
σ2 and µ. The correlation between features (1, 2)
and (2, 3) can change between {-1, 0, 1}. Here,
the ground truth CPs correspond to points in time
where the correlation ρt changes.

• Arbitrary CPs: This dataset consists of a multi-
variate time series with CPs due to varying µ, or σ2,
or correlations between pairs of variables, resulting
in a mixture of CPs scattered over time.

Human Activity Recognition (HAR) (Anguita
et al., 2013): We use a subset of HAR which in-
cludes periods of 6 activities such as normal walking
and standing. These activities are measured with 3-
axial linear acceleration and angular velocity sensors,

for a total of 6 features. The ground-truth CPs are
labeled as the transitions between activities.

Pregnancy study (BUMP) (Goodday et al.,
2022): Better Understanding of Metamorphosis of
Pregnancy (BUMP) is a longitudinal feasibility study
aimed to gain a deeper understanding of the preg-
nancy experience using digital tools, including the
Oura ring, Garmin watch, and Bodyport scale along-
side study apps to capture various physiological and
psychological symptoms.

4.2. Baseline Methods

We compare the performance of TiVaCPD with a num-
ber of CPD methods commonly used in the literature.1
The selected approaches include those that measure
change in distribution (KL-CPD and Roerich) and
those that focus on the graphical structure of features
over time (GraphTime and TIRE). More detail on all
methods is provided in Appendix E and Appendix H,
along with a description of best parameters and sensi-
tivity to hyperparameters. All hyper-parameters are
determined based on a random search over 10% of
the datasets (more details on best parameters and
sensitivity to hyperparameter change are provided in
Appendix H). We utilized the SciPy peak detection
method to identify the CP location. This approach
was consistently applied to all models to compute
precision, recall, and F1 scores, ensuring a fair basis
for comparison.

4.3. Evaluation

Tables 1-3 show the performance of TiVaCPD and
all baselines on detecting CP locations measured by
F1 scores, Precision, and Recall. To estimate perfor-
mance metrics, we define a margin of error M for the
exact location of CP, which is common practice in the
CPD literature (van den Burg and Williams, 2020;
Deldari et al., 2021b). Given a user-defined margin
of error, M > 0, an estimated CP is a True Positive
(TP) if the distance between the ground truth (t∗)
and the estimated CP (t̃) is smaller than the margin,
i.e. |t∗ − t̃| ≤ M . As explained in Figure 5, if an esti-
mated CP falls outside the margin, then it is consid-
ered False Positive (FP), i.e. t̃ /∈ [t∗−M/2, t∗+M/2].
We show the impact of margin values M = {5, 10}
on the performance of all baselines in Appendix B.
TiVaCPD outperforms all other baselines, achieving

1. The implementation of the baselines was done using publicly
released source code by the authors.
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Figure 4: This example shows a simulated time-series with various CPs. Row 1: raw data with heatmap
interpretation (blue: negative correlation change, red: positive correlation change). Rows 2: TiVaCPD score,
along with a breakdown of the DistScore and CovScore. The black dotted lines represent the ground truth
CPs and the red dots are predicted CPs. Please see the results of other baselines in the appendix Figure 8.

Table 1: Performance of CPD methods on the Jumping Mean and Changing Variance with M = 5.

Jumping Mean Changing Variance

Method Precision Recall F1 Precision Recall F1

KL-CPD 0.84 (0.24) 0.42 (0.14) 0.49 (0.15) 0.13 (0.02) 0.72 (0.13) 0.21 (0.03)
Roerich 0.15 (0.01) 0.97 (0.05) 0.26 (0.02) 0.16 (0.02) 0.92 (0.12) 0.27 (0.03)
GraphTime 0.38 (0.08) 0.90 (0.17) 0.50 (0.10) 0.10 (0.03) 1.00 (0.00) 0.17 (0.03)
TIRE 0.9 (0.12) 0.87 (0.17) 0.88 (0.16) 0.30 (0.34) 0.08 (0.08) 0.12 (0.14)
TiVaCPD 1.00 (0.00) 0.90 (0.12) 0.93 (0.08) 0.8 (0.16) 0.85 (0.12) 0.82 (0.15)

Table 2: Performance of CPD methods on the Changing Correlations and Arbitrary CPs with M = 5.

Changing Correlations Arbitrary CPs

Method Precision Recall F1 Precision Recall F1

KL-CPD 0.11 (0.03) 0.75 (0.15) 0.19 (0.06) 0.72 (0.17) 0.56 (0.09) 0.63 (0.12)
Roerich 0.12 (0.03) 0.77 (0.10) 0.22 (0.05) 0.17 (0.02) 0.95 (0.08) 0.28 (0.02)
GraphTime 0.13 (0.03) 1.00 (0.00) 0.24 (0.06) 0.21 (0.07) 0.88 (0.13) 0.34 (0.10)
TIRE 0.14 (0.13) 0.10 (0.09) 0.12 (0.11) 1.00 (0.00) 0.55 (0.21) 0.67 (0.18)
TiVaCPD 0.33 (0.04) 0.88 (0.09) 0.47 (0.06) 0.93 (0.08) 0.77 (0.15) 0.83 (0.11)

TP FP FN

Figure 5: Definition of margin of error. The ground
truth CPs (t∗) are shown as circles and t̃ are the de-
tected CPs. The prediction is a true positive if t̃ falls
within the margin around the ground truth.

Table 3: HAR dataset performance comparison

Method Precision Recall F1(M=5)

KL-CPD 0.66 (0.11) 0.20 (0.03) 0.30 (0.04)
Roerich 0.69 (0.15) 0.11 (0.03) 0.18 (0.05)
GraphTime 0.04 (0.00) 0.96 (0.02) 0.08 (0.01)
TIRE 0.52 (0.19) 0.14 (0.05) 0.22 (0.08)
TiVaCPD 0.72 (0.06) 0.48 (0.06) 0.58 (0.06)
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5% to 70% increase in F1 score. This difference is
particularly noticeable in simulated data scenarios
involving changes in variance and correlation, where
other methods exhibit high Recall scores but low Pre-
cision. This highlights that in these cases, SOTA
methods tend to detect numerous false change points
due to their over-sensitivity to data variation. Similar
results are observed in the HAR dataset.

4.4. Interpreting TiVaCPD scores

Figure 4 shows a graphical representation of TiVaCPD
for a sample (row 1) from the Arbitrary CP dataset,
and demonstrates how different methods generate
scores for CPs. The different components of TiVaCPD
are shown in rows 2 and 3, and highlight the types
of CPs they identify. The heatmaps of CovScore
offer interpretability, helping identify which pair of
features experienced a change in correlation and the
direction of that change. This visualization enhances
our understanding of how TiVaCPD analyzes and
interprets CPs in the data.

4.5. Ablation Study

We evaluate the importance of the different compo-
nents TiVaCPD namely the CovScore, DistScore, and
the dynamic windowing, through an ablation study
in the Arbitrary dataset. First, we show that the
dynamic windowing considerably improves the perfor-
mance of TiVaCPD score, as shown by comparison of
the TiVaCPD and without dynamic window columns
in Figure 7. Dynamic windowing also improves the
performance of the MMD test alone, as presented in
the without Covscore column. Applying smoothing
results in a 0.06 increase in the F1 score. Nevertheless,
our method outperforms other baselines even without
the addition of smoothing. Most importantly, the
results in Figure 7 show that by carefully ensembling
the scores for different types of CP, TiVaCPD better
balances Precision and Recall. Overall, the results
show that for various types of CPs that can occur, all
parts of the method play a role in achieving its overall
high performance.

4.6. Case Study - BUMP

In the BUMP study, identifying a significant change
in the physiology of the mother during pregnancy
through wearable measurements is of great impor-
tance. TiVaCPD score can be used to detect such
changes, for instance, readiness for delivery, as this

knowledge can help in enhancing the accuracy of de-
livery time prediction. Figure 6 shows an example
of how TiVaCPD effectively identifies CPs, especially
the ones associated with the event of delivery using
seven daily features: total sleep time, total REM
sleep time, total restless sleep time, deviation of skin
temperature from the long-term average, total day-
time resting time, metabolic-equivalent minutes (MET
mins) during medium-intensity activities, and MET
mins during high-intensity activities Erickson et al.
(2023). The delivery date is marked as a black vertical
line as the ground truth. The overlaid interpretation
matrix shows changes in pairwise feature correlations.
A value of -1 (blue) shows a shift from a positive to
a negative correlation between variables, and a value
of 1 (red) indicates the opposite, from a negative to a
positive correlation. Notably, the correlation between
total restless sleep time and total daytime rest time
changes more frequently than other pairs, suggesting
that sleep quality is a key indicator for the events
detected in this study.

We evaluated the performance of our TiVaCPD in
detecting changes in the delivery date using the F1
score on the final ten days leading up to the deliv-
ery. This timeframe provides a focused evaluation of
alterations in the delivery date and ensures the F1
score’s representativeness in computing performance.
Our TiVaCPD scored 0.46 outperforming other meth-
ods: Roerich: 0.10, GraphTime: 0.21, TIRE: 0.0,
and KL-CPD: 0.0. For the complete table please re-
fer to Appendix G. These results demonstrate that
our model is significantly more accurate in detecting
delivery date changes compared to other methods.

With TiVaCPD , clinicians are empowered to dis-
cern the specific features linked to each detected CP.
This identification not only helps with a deeper un-
derstanding of what caused these changes but also
serves as a resource for clinical decision-making and
improves actionability. While initially focused on de-
livery dates, the TiVaCPD method can also detect
other significant events like lifestyle changes. How-
ever, evaluating those CPs is challenging and requires
an extensive study with clinicians which is the next
step of our work. This flexibility makes TiVaCPD a
valuable tool for monitoring patients using wearable
devices, not only for pregnancy check-ins but also for
various aspects of healthcare.
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0: total sleep time
1: total REM sleep time
2: total restless sleep time
3: temperature change
4: daytime rest time
5: total medium MET activity time
6: total low MET activity time

Figure 6: An example of CPD for a subject in the BUMP study. The paired numbers on the right side of the
image represent feature numbers, while the color of the bars illustrates their partial correlation.

w/o dynamic window w/o DistScore w/o CovScore w/o smoothing TiVaCPD
0.0

0.2

0.4

0.6

0.8

1.0 Precision Recall F1 (M=5)

Figure 7: Ablation study on Arbitrary simulated
dataset (M=5). wo stands for without.

5. Discussion

In this paper, we introduce TiVaCPD, a novel CPD
method for detecting and characterizing various types
of CPs in time-series data. By capturing changes in
feature distribution, dynamics, and correlation net-
works, TiVaCPD provides valuable insights into the
underlying causes of CPs, enhancing interpretability
for end users. This is particularly crucial in domains
like healthcare, where the type of CP significantly
influences downstream decision-making. The method
is currently designed for offline settings to retrospec-
tively detect changes. For future work, we intend to
extend TiVaCPD to the online setting for real-time
measurements. Moreover, we plan to incorporate
techniques for handling missing data by leveraging
correlated features and temporal dynamics.
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Appendix A. Beedance Dataset

Bee dance (Min Oh et al., 2008): This dataset
consists of six three-dimensional time-series of bees’
positions while performing three-stage waggle dances.
The bees communicate through actions like left/right
turn, and waggle. The transition between the states
represents ground truth CP.

As demonstrated in Table 4, our TiVaCPD method
achieves the highest F1 score among other state-of-
the-art methods, further highlighting its strong per-
formance.

Table 4: Performance of multiple CPD methods on
the Bee Dance dataset.

Bee Dance

Method Precision Recall F1(M=5)

KL-CPD 0.24 (0.26) 0.10 (0.07) 0.13 (0.11)
Roerich 0.50 (0.34) 0.32 (0.26) 0.40 (0.30)
GraphTime 0.13 (0.04) 0.77 (0.13) 0.22 (0.07)
TIRE 0.34 (0.44) 0.14 (0.19) 0.20 (0.26)
TiVaCPD 0.36 (0.18) 0.59 (0.22) 0.45 (0.15)

Appendix B. Effect of the margin of
error on CPD
performance

The following tables demonstrate the performance
of TiVaCPD and other baselines in detecting CPs
with a margin of error of 10. In general, a larger
margin allows for more flexibility in detecting CPs. By

increasing the margin of error, the F1 score increases
as it requires to be less exact in detecting the change
point time. Once again, TiVaCPD outperforms all
baselines in detecting the exact time of CPs in both
simulated and real-world datasets.

Appendix C. Additional Results
Visualization
Comparison

Please see Figure 8.

Appendix D. Additional Structural
Info

TVGL additional information: TVGL method Hallac
et al. (2017) can be used for inferring multiple net-
works in time and in constructing adjacency matrices
from local time windows. Two regularization parame-
ters are used in TVGL - α and β. The parameter α
controls the network’s sparsity. A large α will lead
to a precision matrix with fewer non-zero elements.
The parameter β controls the temporal consistency
by determining how strongly correlated adjacent net-
work estimations should be. A large β will result in a
more temporally consistent network, where the preci-
sion matrices at different time points can be similar.
Another parameter is slice size which is the size of
the window used to calculate the precision matrix.
A larger window not only includes more information
but also introduces more noise into the estimation.
Moreover, to promote the identification of shifts in
the covariance pattern of features, we integrated an
L2-norm penalty function into the estimation of the
matrix inverse.

Instruction on how Ŵ is calculated: Initially, Ŵ
mirrors W . Then we calculate the number of peaks
detected in each score individually. Subsequently, we
calculate the number of detected peaks for each score
individually. If a score identifies a significantly higher
number of CPs compared to the number detected by
other scores (where five CPs are considered signifi-
cant), we update the weights of that specific score to
zero.

Appendix E. Baseline methods

Kernel Change Point Detection (KLCPD)
(Chang et al., 2019) is a kernel learning framework
for CPD that uses a two-sample test and optimizes
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Table 5: Performance of CPD methods on the Jumping Mean and Changing Variance with M = 10.

Jumping Mean Changing Variance

Method Precision Recall F1 (M=10) Precision Recall F1 (M=10)

KL-CPD 0.90 (0.16) 0.50 (0.14) 0.60 (0.12) 0.22 (0.05) 0.75 (0.21) 0.34 (0.08)
Roerich 0.29 (0.03) 0.97 (0.06) 0.44 (0.03) 0.23 (0.04) 0.75 (0.17) 0.36 (0.07)
GraphTime 0.41 (0.11) 0.90 (0.07) 0.54 (0.09) 0.08 (0.02) 1.00 (0.00) 0.15 (0.03)
TIRE 0.97 (0.07) 0.87 (0.12) 0.90 (0.12) 0.30 (0.35) 0.08 (0.09) 0.12 (0.13)
TiVaCPD 1.00 (0.00) 0.95 (0.17) 0.94 (0.14) 1.0 (0.0) 0.98 (0.06) 0.98 (0.03)

Table 6: Performance of CPD methods on the Changing Correlations and Arbitrary CPs with M = 5.

Changing Correlations Arbitrary CPs

Method Precision Recall F1 (M=10) Precision Recall F1 (M=10)

KL-CPD 0.22 (0.04) 0.78 (0.13) 0.35 (0.06) 0.84 (0.18) 0.6 (0.19) 0.64 (0.19)
Roerich 0.28 (0.04) 0.77 (0.18) 0.40 (0.07) 0.32 (0.04) 0.9 (0.12) 0.46 (0.05)
GraphTime 0.13 (0.04) 1.00 (0.00) 0.23 (0.07) 0.23 (0.08) 0.90 (0.09) 0.36 (0.10)
TIRE 0.16 (0.14) 0.15 (0.08) 0.15 (0.13) 1.00 (0.00) 0.58 (0.19) 0.70 (0.16)
TiVaCPD 0.33 (0.03) 1.00 (0.00) 0.48 (0.05) 0.96 (0.07) 0.85 (0.15) 0.88 (0.10)

Table 7: Performance of multiple CPD methods on the Bee Dance and HAR datasets with M = 10.

Bee Dance HAR

Method Precision Recall F1(M=10) Precision Recall F1(M=10)

KL-CPD 0.26 (0.25) 0.15 (0.10) 0.17 (0.13) 0.66 (0.10) 0.24 (0.02) 0.31 (0.05)
Roerich 0.51 (0.34) 0.36 (0.38) 0.42 (0.32) 0.69 (0.16) 0.14 (0.04) 0.20 (0.06)
GraphTime 0.13 (0.03) 0.80 (0.11) 0.24 (0.08) 0.08 (0.001) 0.96 (0.01) 0.09 (0.01)
TIRE 0.36 (0.46) 0.17 (0.20) 0.23 (0.25) 0.55 (0.20) 0.16 (0.03) 0.25 (0.07)
TiVaCPD 0.36 (0.18) 0.62 (0.20) 0.46 (0.14) 0.72 (0.05) 0.51 (0.05) 0.60 (05)

a lower bound of test power via an auxiliary genera-
tive model. For this method, we used window sizes
w ∈ [10, 25] for all experiments and trained the model
for 25 epochs, unless more training led to improved re-
sults. Consistent with our own post-processing steps,
we performed peak detection to detect the exact time
of change.

Roerich (Hushchyn and Ustyuzhanin, 2021)
is a CPD method based on direct density ratio es-
timation to detect the change in distribution. We
set all parameters to default and use window sizes
w ∈ [10, 25] for all experiments.

Group Fused Graph Lasso (GraphTime)
(Gibberd and Nelson, 2015) is a time-varying
graphical model based on the group fused-lasso. Simi-
lar to TiVaCPD it uses the graphical model to model
the dependencies of variables in time series. Graph-
Time models the temporal dependencies between vari-

ables while TiVaCPD models the pairwise dependen-
cies to identify CPs.

Time-Invariant Representation (TIRE)
De Ryck et al. (2021) is an autoencoder-based
CPD method, we used window sizes w between 10, 25
for all experiments. For the domain parameter,
we chose both to include both time, and frequency
domains. We used 200 epochs to train the model.

Appendix F. Time Complexity
Analysis

We conducted a comprehensive set of experiments to
evaluate how increasing data dimensionality impacts
our methodology. Our analysis encompassed three
distinct experiments, focusing on: 1. The influence
of expanding the number of features. 2. The effects
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Data

TiVaCPD 
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KLCPD 
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Figure 8: This example shows a simulated time-series with various CPs. Row 1: raw data. Rows 2-3:
TiVaCPD score with heatmap interpretation. Rows 4-6: other CP baseline scores.

Table 8: Empirical Time Complexity Analysis on Arbitrary dataset (M=5). #Dim stands for a number of
input features. Time x 2 has twice the length of recording and CP (10 change points with 728 time points)
with 3 features.

Arbitrary dataset

#Dim 3 Time x 2 #Dim 5 #Dim 10 #Dim 20 #Dim 40

24.78 (1.39) 43.00 (4.34) 25.09 (4.56) 50.75 (7.20) 116.2 (9.23) 453.18 (30.19)

of extending the temporal scope of the data. 3. The
outcomes of dimensionality reduction, involving the
removal of highly correlated data during preprocess-
ing.

The results in table 8 demonstrate that our ap-
proach exhibits linear scalability over time. This
property renders that our model is suitable for data
streaming scenarios, where new data continually en-
ters the system. Specifically, our algorithm takes 22
seconds to process each sample of arbitrary data with
368 time points and 3 variables. Furthermore, our
investigations revealed that our model’s performance
remains consistent even when highly correlated fea-
tures with a correlation of 0.9 are removed. Therefore,

adding a feature reduction preprocessing step can
help ensure that computational costs do not increase
disproportionately with a growing number of features.

Our choice to employ TVGL comes from its dedi-
cated efforts to mitigate the computational load as-
sociated with inverse covariance calculations by the
introduction of parallelism and sparsity into the al-
gorithm. Although TVGL’s time complexity is cubic
in relation to the number of features, it still proves
considerably more efficient than the O(n6) complexity
of some conventional methods for inverse covariance
computation (Hallac et al., 2017). Based on table
8, when increasing the number of features from 5 to
10, and subsequently to 20 and 40, per-sample run
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time increases by 2.0, 2.3, and 3.9 times, respectively.
Therefore, we recommend considering employing the
mentioned correlation removal approach or other di-
mensionality reduction methods for high-dimensional
data before passing it to our TiVaCPD model.

Appendix G. BUMP Result Table

Please see Table 9.

Table 9: Performance of multiple CPD methods on
BUMP dataset (M=5).

BUMP

Method Precision Recall F1(M=5)

KL-CPD 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Roerich 0.07 (0.16) 0.23 (0.27) 0.10 (0.17)
GraphTime 0.12 (0.07) 0.92 (0.17) 0.21 (0.11)
TIRE 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
TiVaCPD 0.52 (0.30) 0.46 (0.30) 0.46 (0.31)

Appendix H. Random Search and
Hyper-parameter
Sensitivity

To determine the best hyper-parameters for finding
CPs and evaluate the model’s sensitivity to these pa-
rameters, we implemented a random search with 20
random combinations of the dynamic window thresh-
old ϵ and CovScore’s α, β, and SliceSize. The search
is run over only 10% percent of each data, and the seg-
mentation is done through the data file and not time.
In our testing, we evaluated the impact of different
window lengths on the computation of the covariance
matrix, which was achieved by adjusting the algo-
rithm slice size SliceSize : {14, 10, 5}. We also tested
TiVaCPD with ϵ : {.2, .02, .002}, α : {5, 1, 0.4}, and
β : {12, 6, 0.4}.

Through experimentation and parameter random
search, we found that smaller α values lead to very
dense networks that are less interpretable as the model
overfits the data. Large β values lead to smoother
network estimates over time that do not easily change
from window to window. For all datasets, the standard
deviation of the F1 score is between 0.003 and 0.1 and
the CPD performance slightly varies depending on
the parameters settings. In general, choosing a small
threshold, medium alpha value, a small beta value,

and a small slice size leads to more granular, timely,
and interpretable CPs.
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