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Abstract
Recently, Large Language Models (LLMs) have
become essential players in the deep learning
domain. While their capabilities are evident
across various textual tasks, this study aims
to bridge the gap and explore the potential
of leveraging LLMs in diagnosing cardiac dis-
eases and sleep apnea from Electrocardiogra-
phy (ECG). Earlier work touched on converting
ECG signals into text for LLMs, but a compre-
hensive LLM-based approach for dealing with
more complicated symptoms remains relatively
unexplored. To investigate the ECG diagno-
sis with an LLM-based approach, our research
introduces a zero-shot retrieval-augmented di-
agnosis technique. We have built databases
filled with specific domain knowledge for car-
diac symptom and sleep apnea diagnosis, which
encourages the LLMs from merely relying on
the inherent LLM knowledge to a more holis-
tic pipeline from carefully crafting prompts and
infusing expert knowledge to guide LLMs. We
evaluate the proposed approach on two datasets
for diagnosing arrhythmia and sleep apnea,
respectively. The evaluation results indicate
that our zero-shot approach not only surpasses
previous few-shot LLM-based methods but is
also competitive with supervised learning tech-
niques fully trained on extensive datasets.

Keywords: Electrocardiogram (ECG), Large
Language Model (LLM), Retrieval-Augmented
Generation (RAG), Zero-Shot Learning, Ar-
rhythmia, Apnea

1. Introduction

The rapid advancements in large language models
(LLMs) have established them as a paramount subset

of deep learning algorithms. With exponentially in-
creasing parameters and expansive training datasets,
LLMs can encode a massive amount of textual infor-
mation, thereby improving their proficiency in under-
standing and generating human-like text (Touvron
et al., 2023; OpenAI, 2023; Chowdhery et al., 2022).
While many researchers have harnessed LLMs for
tasks such as dialogue and question-answering across
varied domains including generation (Rozière et al.,
2023), finance (Wu et al., 2023), and health (Sing-
hal et al., 2023), the emphasis has primarily been
on textual data. However, data in the real world
is diverse and extends beyond just text. For vari-
ous applications, we have other formats of data such
as image, audio, and clinical physiological sequences
such as electrocardiogram (ECG). This observation
leads us to a pivotal research question: Can LLMs
be adeptly utilized for analyzing clinical physiologi-
cal data, specifically in this paper, ECG to diagnose
medical conditions?

Inspired by the potential of integrating various
modalities into LLMs, researchers have investigated
the processing of non-linguistic inputs including im-
ages (Chen et al., 2023), videos (Zhang et al., 2023),
speech (Chen et al., 2023), and human activities
(Girdhar et al., 2023) using LLMs. Although ECG
is crucial for cardiac disease diagnosis and numerous
auto-diagnosis approaches using deep learning meth-
ods have been developed (Liu et al., 2021b; Pyakillya
et al., 2017; Sannino and De Pietro, 2018), the ap-
plication of LLMs in the ECG diagnosis domain is
still in its early stages. Li et al. (2023) introduced
a method of converting physiological signals, includ-
ing 1-lead ECGs, into textual descriptions for LLMs
to infer health-related question-answering systems
through few-shot fine-tuning. However, the LLM-
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based diagnosis system for more intricate symptoms
such as arrhythmia remains under-investigated.

Moreover, previous LLM-based studies inferred
ECG conditions by fine-tuning the prompts that per-
form the diagnosis process primarily using the in-
trinsic knowledge of the LLMs. As highlighted by
researchers, the vast pre-training corpora of LLMs
can sometimes lead to biased information or halluci-
nations, which poses risks for many domain-specific
tasks (Lewis et al., 2020; Liu et al., 2023). In an
ECG diagnosis system, it is essential to avoid such
biased and misleading results. On the other hand,
the acquisition of diagnostic labels for ECGs is usu-
ally expensive as they require the input of clinical
professionals. Thus, developing an auto-diagnosis ap-
proach even without training samples can benefit a
larger population.

To address these challenges, this study proposes a
zero-shot retrieval-augmented diagnosis method em-
ploying LLMs. We build databases to manage doc-
uments with domain knowledge related to selected
sources, e.g., textbooks and papers. Consequently,
instead of depending on the existing knowledge of
the LLMs, we augment the whole process including
prompt preparation and answer generation by in-
troducing expert domain knowledge to help LLMs
understand the problem thoroughly. The feature
selection and the prompt engineering processes are
steered by the domain knowledge stored in the built
database. Also, we augment the final prompts by
retrieving relevant documents of the observed ECG
abnormalities for more accurate diagnosis.

Our contributions can be summarized as follows:

• We introduce a retrieval-augmented ECG analy-
sis model that integrates feature extraction and
prompt design, and leverages domain expertise
for more accurate model inferences.

• We conduct comprehensive evaluations for diag-
nosing arrhythmia and sleep apnea. Our tech-
nique demonstrates superior performance in a
zero-shot learning context, not only surpassing
the few-shot learning methods of previous re-
search but also rivaling fully supervised meth-
ods.

• While previous studies have explored the use of
few-shot tuned LLMs for basic information ex-
traction from ECG signals, to the best of our
knowledge, we are the first to utilize LLMs for

the analysis of ECGs in relation to cardiac dis-
eases without any tuning.

2. Related Work

2.1. ECG Diagnosis with Deep Learning

The success of deep learning approaches in various
domains has naturally led to their exploration in ECG
diagnosis applications (Liu et al., 2021b; Pyakillya
et al., 2017; Sannino and De Pietro, 2018; Wagner
et al., 2020; Śmigiel et al., 2021; Mostafa et al., 2019).
For example, Śmigiel et al. (2021) utilized a 1D-CNN
model on processed ECG data, enriched with en-
tropy information, to distinguish patient arrhythmia
classes, achieving an AUC score of 0.91 across five dis-
tinct classes. Mostafa et al. (2019) curated an exhaus-
tive survey of deep learning techniques targeted at
ECGs for sleep apnea detection, emphasizing models
including convolutional neural network (CNN) and
recurrent neural network (RNN) that have surpassed
90% accuracy on dedicated datasets.

However, the cost-intensive nature of clinical an-
notation has motivated researchers to study pre-
training methods, which were designed to reduce the
dependency on the labeled ECG sequences (Sarkar
and Etemad, 2020; Mehari and Strodthoff, 2022; Oh
et al., 2022). For instance, Mehari and Strodthoff
(2022) leveraged prominent self-supervised learning
paradigms such as SimCLR (Chen et al., 2020b),
BYOL (Grill et al., 2020), and CPC (Oord et al.,
2018) for 12-lead ECG pre-training. The prelimi-
nary phase accentuated the models’ robustness, re-
sulting in a 2% AUC score uplift against their purely
supervised counterparts for 5-class arrhythmia clas-
sification. Nevertheless, even though pre-training
strategies generally provide insights into performance
improvement and the decreasing demands of the
required clinical annotations, these methods usu-
ally face challenges in generalization. For example,
Mehari and Strodthoff (2022) learned the ECG em-
bedding from the 12-lead 10-second sequences with a
sampling rate of 500 Hz, which can trigger distribu-
tion shifts on the ECG sequences under different con-
ditions. This limitation raises the complexity when
dealing with general ECG applications.

2.2. Large Language Models (LLMs)

LLMs are a class of language models that are de-
signed in large-scale transformer-based architectures
and pre-trained on massive corpora of general textual
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data, such as GPT-4 (OpenAI, 2023), PaLM (Chowd-
hery et al., 2022), LLaMA2 (Touvron et al., 2023),
etc. LLMs have demonstrated extreme capabilities
in understanding natural language and inferring com-
plex tasks via text generation.

Beyond their foundational capabilities in textual
data, there has been a rising interest in adapting
LLMs to other data types, such as images (Lu et al.,
2019; Tsimpoukelli et al., 2021) and tabular struc-
tures (Liu et al., 2021a). While some of these tech-
niques involve adjustments to the input/output lay-
ers, thereby potentially incurring the ”catastrophic
forgetting” issue (Chen et al., 2020a), others, like the
approach suggested by Dinh et al. (2022), proposed
a solution for the conversion of feature spaces into
pure textual data for LLM interpretation, followed
by task-specific fine-tuning. Notably, Li et al. (2023)
employed this strategy on physiological time-series
data, including ECG sequences. They converted the
ECG sequences into textual descriptions with a series
of numeric inter-beat-intervals (IBIs) in milliseconds
and fine-tuned the prompts for detecting conditions
such as heart rates and Sinus rhythms with promis-
ing results. Such adaptations have yielded encourag-
ing outcomes in few-shot learning compared to 1D-
CNN-based few-shot learning from scratch. However,
the detection of more complicated ECG symptoms
such as arrhythmias, remains unexplored. Further,
the domain-specific knowledge learned within LLMs
can sometimes be a limiting factor. For instance,
the dataset used for training LLaMA, with 65% of
its data sourced from the generalized common crawl
corpus (Touvron et al., 2023), might pose risks of in-
complete or skewed clinical interpretations.

To prevent LLMs from hallucinating and gener-
ating biased texts, some researchers have pivoted
towards retrieval-augmented generation approaches.
These methods empower LLMs to merge input
prompts with trusted, domain-specific knowledge
sources, thereby facilitating more accurate informa-
tion understanding and generation (Lewis et al., 2020;
Liu et al., 2023). Inspired by these methods, we pro-
pose our strategy for solving clinical applications by
engineering the ECG data into textual prompts and
inferences with the combined domain knowledge.

3. Objective & Datasets

In this study, we explore the diagnosis of arrhyth-
mia with PTB-XL(+) datasets(Wagner et al., 2020;
Strodthoff et al., 2023) and sleep apnea with Apnea-

ECG dataset (Penzel et al., 2000). The summary of
the two datasets can be found in Table 1.

3.1. Arrhythmia Diagnosis

Our study examines the proposed methods on the
PTB-XL+ and PTB-XL datasets for examining ar-
rhythmia diagnosis. The PTB-XL dataset is a
large dataset containing 21,837 clinical 12-lead ECG
records from 18,885 patients of 10-second length,
where 52% are male and 48% are female with ages
ranging from 0 to 95 years (median 62 and in-
terquartile range of 22). There are two sampling
rates: 100 and 500 Hz, available in the dataset.
The raw ECG data are annotated by two cardiol-
ogists into five major categories, including normal
ECG (NORM), myocardial infarction (MI), ST/T
Change (STTC), Conduction Disturbance (CD), and
Hypertrophy (HYP). The PTB-XL+ dataset cov-
ers algorithm-extracted features on the ECG se-
quences, such as durations, amplitudes, on/off-sets
of segments, fiducial points, median beats, etc. The
datasets contain a comprehensive collection of many
different co-occurring pathologies and a large propor-
tion of healthy control samples. To ensure a fair com-
parison of machine learning algorithms trained on the
dataset, we follow the recommended splits of train-
ing and test sets. However, given that our proposed
method employs a zero-shot approach, we do not use
the training samples to fine-tune the models.

3.2. Sleep Apnea Detection

While sleep apnea is widely detected by analyz-
ing polysomnography (PSG), researchers also inves-
tigated the potential of using ECG to diagnose the
apnea, for example using the Apnea-ECG dataset
(Penzel et al., 2000). The database can be accessed
through Physionet (Goldberger et al., 2000). The
dataset contains 70 records of ECG recorded at a
sampling rate of 100 Hz without features extracted,
35 of which are used for training and 35 for test-
ing. The duration of the records ranges from almost
7 hours to nearly 10 hours. Labels indicating the
presence or absence of sleep apnea are assigned to
each minute of the recordings. Consequently, we seg-
ment the ECG recordings into one-minute intervals,
which result in 6000 data points for each segment.
There are 17233 training samples and 17010 samples
for the test set with a non-apnea to apnea sample
ratio of 61.49% to 38.51%.
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Table 1: Summary of datasets used in this study
Dataset PTB-XL+ Apnea-ECG
Tasks Arrhythmia Diagnosis Sleep Apnea Detection
Total Records 21,837 34,243 (split from 70)
Annotations 5 categories of arrhythmia Presence/Absence of sleep apnea
Data Types Raw ECG & Fiducial Annotations Raw ECG
Test Set Size 2203 17,010

4. Methods

In this section, we introduce the methods for fea-
ture extraction, prompt preparation, and retrieval-
augmented model inference. To ensure clarity, we il-
lustrate our framework using the PTB-XL+ dataset
(Strodthoff et al., 2023). This approach is exempli-
fied in the context of arrhythmia diagnosis, as demon-
strated in Figure 1.

4.1. Construct Database of Domain
Knowledge

To enhance our understanding of ECG in arrhyth-
mia diagnosis, we construct a local vector database
with guidance from two published books: (1) ECG
Workout: Exercises In Arrhythmia Interpretation by
Huff (2006) and (2) 12-Lead ECG: The Art of Inter-
pretation by Garcia (2015). For diagnosing sleep ap-
nea with Apnea-ECG dataset, we prepare the vector
database by encoding apnea-related textbook (Ran-
derath et al., 2006) and papers (Almazaydeh et al.,
2012; Drinnan et al., 2000; McNames and Fraser,
2000; Zywietz et al., 2004). For both datasets, we uti-
lize the text-embedding-ada-002 embedding extrac-
tion API (OpenAI, 2023) and manage the extracted
embedding using the Chroma database tool in con-
junction with the LangChain Python library (Mend-
able, 2023). This setup facilitates the search and re-
trieval of related text from the embedding space with
appropriate prompts.

4.2. Feature Extraction and Prompts
Preparation

Prompts are crucial for guiding LLMs to generate
relevant responses, especially for models that are not
further fine-tuned (frozen LLMs). To transform ECG
into effective prompts, we first extract hand-crated
features from sequences and engineer the selected fea-
tures into prompts. In the case of the PTB-XL+
dataset, comprehensive features including the de-
tailed fiducial information are annotated by the orig-

inal authors using both commercial and open-source
algorithms. Thus, we leverage the calculated features
rather than engineering features from scratch on the
PTB-XL+ dataset.

For the Apnea-ECG dataset, which does not cover
pre-annotated fiducial points or specific ECG fea-
tures, we use a Python library NeuroKit2 (Makowski
et al., 2021) to detect the fiducial points and extract
features such as heart rate variability and spectral
power.

4.2.1. Retrieval-augmented Feature
Selection

While extracting features from original ECGs typi-
cally involves universal elements such as waveforms
and amplitudes of fiducial points and intervals, the
large number of diverse features across ECG leads
presents a challenge. However, overloading LLMs
with an extensive array of comprehensive features for
reasoning and inference might not only exceed input
length restrictions of LLMs but also may introduce
redundant information, which potentially hinders ac-
curate diagnosis.

To mitigate this, we intend to refine our fea-
ture extraction strategy by looking up the domain-
specific databases and extracting crucial insights from
two leading ECG textbooks. Our strategy involves
querying targeted questions pertaining to the in-
terpretation of specific arrhythmia types, such as
ST/T segment change (STTC), myocardial infarction
(MI), conduction disturbance (CD), and hypertrophy
(HYP). This method enables us to identify and focus
on the most relevant features for each diagnostic cat-
egory, which provides LLMs with clinically related
data and helps avoid information overload. Conse-
quently, We extract features with the queried diag-
nosis guidance and check 15 different fiducial points
and segments across different leads such as QRS com-
plex, T wave, P wave, PR segment, RS segment, etc.
For example, we look for the J-point amplitude for
ST-segment elevation and depression and the ratio of
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Pre-step: Construct Database of Domain Knowledge for Retrieval-Augmented QA

Feature Query

"How to
Interpret

{Arrhythmia
Types}
Related

Arrhythmias in
a 12-Lead

ECG?"

Retrieval-
Augmented

QA

Query

Diagnosis Guidance (DG)
queried from vector database

Step 1: Feature Extraction and Prompts Preparation

Prompts Template

Please diagnose arrhythmia with
the guidance {Diagnosis
Guidance (DG)}.

The details of potential
abnormalties shows as follows:
- General: wider QRS range at
130ms
- Lead 1: ST segment elevation ...
...
- Lead V6: ...

Please response in a JSON format
of
{
    MI: {
        result: True / False,
        explanation: 

}, ...
}

Feature
Prompt
(FeatP)

Format
Prompt

(FP)

Feature Prompts
(FeatP)

Query

ECG-specific
kownledge documents

D
atabase

C
onstruction

R
etrieval-

A
ugm

ented
Q

A

"What is PR
segment in

ECG?"

Ask

Chunking

Retriever

Text

Vector

The PR segment
occupies ...

[2.4 3.3 1.9 0.6 ...]

Vector Database

    Text Em
bedding

Vector

LLM

Answer

"PR segment occupies
between the end of P wave and
the start of the QRS complex."

Look-up
Relevant

text

MI

CD

HPY

STTC

  MI:
 - Look for ST segment elevation,
which occurs when the J point is
displaced above baseline over 1
mm...

CD:
- Look for prolonged QRS complex
with duration over 120 ms...

HPY: ...

STTC: ...

P T

S / J

R

Q

ECG waveform and fiducial
annotations from PTB-XL+

  Features:

 - J Amplitude: 12 mv (1.2 mm)
 - QRS width: 130 ms
 - ...

Feature
Engineering

Look-up target
features

Retrieval-
Augmented

QA

LLM

Diagnosis Guidance
(DG)

Feature Prompts
(FeatP)

Augmenting
Information (AI)

Format Prompts
(FP)

Prompts

Step 2: Zero-shot Diagnosis

{
  MI: {
          result: True,
          explanation: ST segment

  elevation is detected ... 
      },
  ...

}

Structured
Output

Augmenting Information (AI):

- ST segment elevation (STE) represents a
repolarization dispersion marker underlying
arrhythmogenesis in ST segment elevation
myocardial infraction (STEMI) ... 
- ...

Answer

Figure 1: The overall framework of the proposed method includes constructing database of domain knowl-
edge, feature extraction & prompts preparation, and zero-shot retrieval-augmented inference for
arrhythmia diagnosis as an example.
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R / S amplitude for the waveform of RS complexes,
etc. We conduct the same procedures for the querying
guidance of diagnosing sleep apnea. In the absence
of crafted features within the original Apnea-ECG
dataset, we extract 8 features using the NeuroKit2
library (Makowski et al., 2021), which focus on the
heart rate variability analysis and spectral analysis,
especially for depression and elevation of heart rate
and spectral power in the very low frequency (VLF)
band (0.01-0.04 Hz). The extracted features cover
the average heart rate, variability of R-R intervals,
elevation of spectral power in the VLF band, power
in both the low-frequency (LF) and high-frequency
(HF) bands, as well as the ratio of power between LF
and HF bands.

4.2.2. Prompts Preparation

With the guidance queried from the domain-specific
databases and the correspondingly engineered fea-
tures, we structure the prompts for LLMs in three
folds:

Diagnosis Guidance: We begin by integrating
the insights previously queried from the textbooks,
which cover the essential information on interpreting
specific arrhythmia types or sleep apnea detection.
LLMs can receive this information along with the in-
put prompts.

Feature Prompt: Next, we incorporate detailed
ECG information highlighting potential abnormal-
ities that are converted from the features we ex-
tracted. This information is organized into two main
categories including general information and lead-
wise information:

• General Information: This covers general in-
sights into the ECG, such as the QRS duration,
providing an overview of the ECG and anoma-
lies.

• Lead-wise Information: Since abnormalities can
present differently across the 12 leads, we inte-
grate specific information for each lead, such as
the waveform of the P and T waves. This en-
sures that the LLMs can discern and diagnose
conditions that might be prominent in one lead
but subtle or absent in other leads.

Format Prompt: We also introduce format
prompts that would guide the LLMs to produce struc-
tured responses for easy post-processing. To be more

specific, we ask the LLMs to respond in a structured
JSON format with each arrhythmia type as the first-
layer key followed by boolean diagnosis results and
reasoning explanation.

4.3. Zero-shot Generation

Leveraging the engineered prompts, we employ a
retrieval-augmented generation for zero-shot infer-
ence. The initial step involves utilizing the detailed
ECG information prompts as a querying mechanism.
We can retrieve relevant textual information on the
target ECG samples as the augmenting information
by querying the potential ECG abnormalities. Dif-
fering from the diagnosis guidance, the augmenting
information is queried based on the features we ex-
tracted in prompts, e.g., ST segment elevation and
prolonged QRS complex. This step aims to retrieve
information derived from specific features so that pro-
vides a more detailed context for these abnormal-
ities. For example, by querying keywords of ”ST
segment elevation”, the augmenting information cov-
ers ”This can be indicative of myocardial injury or
infarction (heart attack). However, it can also be
caused by other conditions such as coronary artery
spasm, acute pericarditis, ventricular aneurysm, early
repolarization pattern, hyperkalemia, or hypother-
mia...”. Then, we concatenate the augmenting infor-
mation with the original prompts to finalize our input
prompts for LLMs for more comprehensive insights.
Finally, we leverage LLMs to directly understand and
infer the prompts without training or fine-tuning.

In essence, we aim to make the LLMs consistently
augmented with domain-specific insights, guarantee-
ing that the outputs are precise and reflect a deep-
rooted understanding of the ECG condition and di-
agnosis.

4.3.1. Frozen Large Language Models

In this study, we leverage both the open-source model
such as LLaMA2 and the closed-source GPT-3.5
models in zero-shot inference.

LLaMA2: LLaMA2 is an LLM developed by Meta
AI. LLaMA2 has 7 billion to 70 billion parameters,
and it can be used for a variety of tasks, such as dia-
logue and question-answering. It has been shown to
outperform other open-source LLMs on many bench-
marks. LLaMA2 is available for free for research and
commercial use. Due to the constraints on the com-
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putational resources, we employ only the 7B and 13B
versions.

GPT-3.5: GPT-3.5 is an LLM developed by Ope-
nAI. GPT-3.5 has 175 billion parameters, which
makes it one of the largest LLMs ever created. It can
be used for a variety of tasks. It has been shown to
outperform other LLMs on many benchmarks. Gen-
erally, GPT-3.5 is accessible via API calls.

5. Experiments

5.1. Methods of Evaluation

For our evaluations, we utilize a diverse set of models,
ranging from traditional supervised methods to state-
of-the-art LLMs. The selected models are as follows:

5.1.1. Supervised Method

We implement a 1D-CNN model as the supervised
baseline. Following the prior studies (Strodthoff
et al., 2023), the 1D-CNN kernel is designed to cap-
ture the temporal patterns in the ECG sequences,
making it suitable for tasks that require understand-
ing the sequential nature of the ECGs. With the
supervised baseline, we implement the full training
strategy, which leverages all the available training
samples to help models learn useful parameters from
scratch.

5.1.2. Numerical prompts with few-shot
tuning

We implement the method from the prior LLM-based
study (Li et al., 2023) as a part of the evaluation
for performance comparisons. This method converts
ECG signals into a textual sequence of IBIs, e.g.,
”Identify the average heart rate from given interbeat
interval sequence 896,1192,592,1024,1072,808,888
...”, which shows promising results in detecting heart
rates and Sinus rhythms in a 25-shot training setting.
Due to the discrepancy between tasks of detecting
heart rhythms and detecting cardiac diseases, we re-
produce their approach by converting the ECGs into
sequences of IBI numbers and enhancing the prompts
by covering the location and amplitudes of fiducial
points including P, T, Q, R, and S for each lead. Also,
randomly sampled 25 ECGs are used as the training
sample following the few-shot learning scheme. We
employ LoRA (Hu et al., 2021), which is an efficient
fine-tuning method widely applied for LLMs, in fit-
ting the training data.

5.1.3. Retrieval-augmented Generation

To evaluate the proposed method, we use only the
test sets for examining the performance. The prepa-
ration including vector database and prompt engi-
neering is described in Section 4.

5.2. Evaluation Results

5.2.1. Arrhythmia Diagnosis

Table 2 shows the evaluation performances on the
arrhythmia diagnosis. The performances are eval-
uated in metrics of accuracy rate, macro precision,
macro recall, and macro f1 score across all the classes.
The GPT-3.5 model outperformed the open-source
LLaMA2 models in all metrics. When comparing our
proposed zero-shot retrieval-augmented strategy with
the supervised learning method, we observed superior
performances in accuracy rate, macro precision, and
macro F1 scores in our proposed method; whereas
the supervised method shows a higher macro recall
score compared to the proposed method. This result
suggests that our proposed approach can be effective
in detecting arrhythmia even without leveraging any
training samples.

The class-wise diagnostic performance offers in-
sights into the efficacy and potential limitations of
our zero-shot retrieval-augmented approach using the
GPT-3.5 model. A deeper dive into the results, as
presented in Table 3, reveals patterns in diagnosis
across various classes of arrhythmia. CD, HYP, and
MI detection show high precision scores, indicating
that once these conditions are detected, the false de-
tecting rate remains relatively low. While precision
is promising in certain classes, there have been in-
stances where conditions were not detected and were
instead misclassified as normal ECGs. This could
be caused by the fact that the engineered features
and prompts might not have captured comprehensive
nuances associated with certain arrhythmia types.
In addition, the detecting performance for STTC is
relatively lower compared to the other arrhythmia
classes.

The explanations generated by the LLM also pro-
vide some insights into our error analysis. For all
samples incorrectly identified as HYP by LLMs, the
explanations cite that the ECG matches the Sokolov-
Lyon criteria for diagnosing HYP by checking the R
waves in lead V1/V2 and S waves in lead V5/V6,
even when HYP was not identified in the human-
annotated labels. Such inconsistencies might stem
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Table 2: The evaluation results of arrhythmia diagnosis in metrics of accuracy rate, macro precision, macro
recall, and macro F1 score. Few-shot TNP : few-shot textual numeric prompts. Zero-shot RAG :
zero-shot retrieval-augmented generation. Bold represents the highest performances in the evalua-
tion set.

Method Model Training Accuracy Macro Precision Macro Recall Macro F1
Supervised 1D-CNN 17441 0.748 0.708 0.643 0.660

Few-shot TNP
(Li et al., 2023)

LLaMA2-7B 25 0.417 0.391 0.277 0.357
LLaMA2-13B 25 0.422 0.401 0.294 0.348

Zero-shot RAG
(Ours)

LLaMA2-7B 0 0.714 0.765 0.548 0.617
LLaMA2-13B 0 0.726 0.770 0.561 0.622

GPT-3.5 0 0.757 0.791 0.616 0.669

Table 3: Class-wise performances for the zero-shot
retrieval-augmented method

Class Samples Precision Recall F1 Score
NORM 912 0.54 0.79 0.61

CD 473 0.93 0.61 0.77
HYP 243 0.91 0.55 0.70
MI 415 0.80 0.63 0.70

STTC 516 0.77 0.50 0.58

from information loss during the signal filtering pro-
cess or flawed fiducial point annotations. The errors
from signal processing can directly affect the precision
of prompts. On the other hand, currently detecting
STTC majorly depends on abnormalities observed in
the T wave and the duration of PT. Another chal-
lenge arises when trying to precisely describe com-
plex waveform patterns in textual data, such as the
varying waveform morphology in real ECGs.

5.2.2. Sleep Apnea Diagnosis

Table 4 displays the performance of the examined
method in diagnosing sleep apnea. This table reveals
that the supervised learning method excels in terms
of accuracy and precision scores. In contrast, the pro-
posed method using the GPT-3.5 model delivers the
highest recall and F1 scores. Similar to our findings
in arrhythmia diagnosis, the numeric prompts with
the few-shot tuning method yield less-than-ideal re-
sults for the apnea task.

Despite our method showing promise in recall
rates, the LLM-based approaches produce a compar-
atively low precision score when compared with the
supervised learning method. We find that this dis-

parity may arise from signal quality and prompt en-
gineering precision. Our prompts, engineered from
features crafted based on R-R intervals extracted by
software, are susceptible to signal noises. By com-
bining the error analysis with signal quality check
(Zhao and Zhang, 2018), we find the average preci-
sion scores on test sequences in ”excellent” quality
(6.38% of all test sequences) are 6.4% higher than
ECGs in ”barely acceptable” quality (74.21% of all
test sequences). Additionally, ECG processing soft-
ware can mis-detect R peaks in some sequences, re-
sulting in extended intervals that manifest as confus-
ing features, even when the original signal is normal.
Among the false-positive samples that are detected as
ECG with apnea, 72.1% highlights either high VLF
power or significant heart rate variability.

5.3. The Contribution of Each Step in
Proposed Framework

We conduct an ablation study to assess the contribu-
tion of each component of our proposed LLM-based
retrieval-augmented method. The input prompt for
the proposed method consists of diagnosis guidance,
feature prompts, augmenting information, and for-
mat prompts, which build a comprehensive under-
standing of ECG signals and diagnostic information.
Among these prompt components, the feature and
format prompts are not removable as they function
essentially in describing the ECGs and generating
processable output, respectively. Thus, we evalu-
ated the performance of removing diagnosis guidance
or augmenting information in prompts on the PTB-
XL+ dataset to understand the impacts of these com-
ponents. Table 5 shows the performances of remov-
ing specific components in prompts on the PTB-XL+
dataset with GPT-3.5. From the table, we can see
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Table 4: The evaluation results of sleep apnea diagnosis in metrics of accuracy rate, precision, recall, and
F1 score. Few-shot TNP : few-shot textual numeric prompts. Zero-shot RAG : zero-shot retrieval-
augmented generation. Bold represents the highest performances in the evaluation set.

Method Model Training Accuracy Precision Recall F1

Supervised 1D-CNN 17233 0.821 0.804 0.843 0.787

Few-shot TNP
(Li et al., 2023)

LLaMA2-7B 25 0.675 0.492 0.535 0.504

LLaMA2-13B 25 0.691 0.512 0.562 0.522

Zero-shot RAG
(Ours)

LLaMA2-7B 0 0.753 0.710 0.855 0.758

LLaMA2-13B 0 0.772 0.728 0.859 0.770

GPT-3.5 0 0.804 0.763 0.910 0.801

When the Diagnosis Guidance (DG) component is
removed, the F1 score drops from 0.669 to 0.593, in-
dicating a decrease of 0.076. Removing the Augment-
ing Information (AI) component results in a smaller
decrease in the F1 score from 0.669 to 0.628. When
both the DG and AI components are removed, the
F1 score drops significantly to 0.571, which is a de-
crease of 0.098 from the full method. This suggests
that both components contribute to the overall per-
formance, with the DG component being more criti-
cal in the model performance than the AI component.

Table 5: Performances in arrhythmia diagnosis on
PTB-XL+ dataset with GPT-3.5. Macro-
F1 score is used as the evaluation metric.
Diff. indicates the performance differences
after removing prompts components.

Removed Prompts F1 Diff.
None (Full Method) 0.669 -
Diagnosis Guidance (DG) 0.593 ↓ 0.076
Augmenting Information (AI) 0.628 ↓ 0.041
DG & AI 0.571 ↓ 0.098

6. Discussion & Conclusion

This study underscores the potential and limitations
of leveraging advanced language models, such as
LLaMA2 and GPT-3.5, for complex medical diag-
nostic tasks such as arrhythmia and sleep apnea de-
tection. Our zero-shot retrieval-augmented approach
demonstrated promising performances, even when no
training samples were used, highlighting its applica-

bility in scenarios where labeled data is scarce or ex-
pensive to obtain. The proposed approach outper-
formed the few-shot LLM-based approach in a prior
study and even achieved competitive results on fully
trained supervised learning methods. While the effi-
cacy of the retrieval-augmented generation was show-
cased using ECG data, its potential extends further.
We believe that this technique can be effectively ap-
plied to an array of physiological signals such as
photoplethysmogram (PPG) and electrodermal ac-
tivity (EDA). Furthermore, this methodology can be
adapted into a multimodal system to tackle more in-
tricate diagnostic tasks and insights.

Nevertheless, our study has limitations. First, our
current prompts may not capture all the nuances of
signals that might cause misdiagnosis, for example,
the STTC arrhythmia as demonstrated in the previ-
ous section. Second, our current feature and prompt
design are currently based on books and datasets. To
address these issues and leverage more capabilities of
the proposed method, we will (1) prioritize design-
ing more robust pre-processing algorithms or prompts
engineering methods that make prompts more com-
prehensive with the information in the original signal
and (2) inject clinical domain knowledge to design
features and prompts by collaborating with clinicians.
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Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in
Neural Information Processing Systems, 33:9459–
9474, 2020.

Jun Li, Che Liu, Sibo Cheng, Rossella Arcucci,
and Shenda Hong. Frozen language model
helps ecg zero-shot learning. arXiv preprint
arXiv:2303.12311, 2023.

Jiongnan Liu, Jiajie Jin, Zihan Wang, Jiehan Cheng,
Zhicheng Dou, and Ji-Rong Wen. Reta-llm: A
retrieval-augmented large language model toolkit.
arXiv preprint arXiv:2306.05212, 2023.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. Tapex:
Table pre-training via learning a neural sql execu-
tor. arXiv preprint arXiv:2107.07653, 2021a.

Xinwen Liu, Huan Wang, Zongjin Li, and Lang
Qin. Deep learning in ecg diagnosis: A review.
Knowledge-Based Systems, 227:107187, 2021b.

659



Zero-Shot ECG Diagnosis with LLMs

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. Ad-
vances in neural information processing systems,
32, 2019.

Dominique Makowski, Tam Pham, Zen J. Lau,
Jan C. Brammer, François Lespinasse, Hung
Pham, Christopher Schölzel, and S. H. Annabel
Chen. NeuroKit2: A python toolbox for neu-
rophysiological signal processing. Behavior Re-
search Methods, 53(4):1689–1696, feb 2021. doi:
10.3758/s13428-020-01516-y. URL https://doi.

org/10.3758%2Fs13428-020-01516-y.

JN McNames and AM Fraser. Obstructive sleep ap-
nea classification based on spectrogram patterns in
the electrocardiogram. In Computers in Cardiology
2000. vol. 27 (Cat. 00CH37163), pages 749–752.
IEEE, 2000.

Temesgen Mehari and Nils Strodthoff. Self-
supervised representation learning from 12-lead ecg
data. Computers in biology and medicine, 141:
105114, 2022.

Mendable. Langchain: A framework for developing
applications powered by language models. Soft-
ware framework, 2023. Retrieved from https:

//github.com/mendable/langchain.

Sheikh Shanawaz Mostafa, Fábio Mendonça, Antonio
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Appendix A. Examples of Prompts
and Outputs

In this section, we present examples of using LLM to
diagnose ECG. The prompts will be shown in each
prompt component.
Example 1: Normal ECG in PTB-XL+.
Prompts:

Identify the types of arrhythmia in the ECG sig-
nal with diagnostic guidance and the extracted
features.

The diagnostic guidance you should follow is
detailed below. Additionally, consider the sup-
plemental information from textbooks regarding
the detected features. Please be careful about
the features in the different leads.

——————————————————
Diagnosis Guidance:

When diagnosing a Myocardial Infarction
(MI), various ECG changes must be considered.
The ST segment elevation is a critical indicator
that signals myocardial injury. For instance, if
the ST elevation is observed in leads II, III, and
aVF, an inferior MI is suggested, whereas ST el-
evation in leads V2 to V4 points to an anterior
MI. Additionally, ST depressions opposite the
infarct area, known as reciprocal changes, are
also significant. T wave abnormalities are an-
other aspect, where inverted or sharply peaked
”tombstone” T waves can be seen in the affected
leads. Lastly, the presence of Q waves, which are
pathological, indicates a transmural MI and will
appear in the corresponding leads of the infarct
area.

Conduction disturbances in the heart manifest
through various changes in the ECG. A QRS
complex that is wider than 0.12 seconds is in-
dicative of a disturbance. Specifically, an RSR’
or rSR’ pattern in lead V1 suggests a right bun-
dle branch block (RBBB), whereas a wide S wave
or notched R wave in lead V6 indicates a left
bundle branch block (LBBB). In lead III, mul-
tiple peaked QRS complexes may show local-
ized intraventricular conduction delays. Addi-
tionally, a QRS complex wider than 0.12 seconds
without the specific characteristics of LBBB or
RBBB points to a generalized intraventricular
conduction delay (IVCD).

Hypertrophy within the heart can be detected
by assessing certain ECG features. Left Ven-

tricular Hypertrophy (LVH) is characterized by
tall R waves in leads I and V5-V6, coupled with
deep S waves in V1-V2. A sum greater than
35 mm of the S wave depth in V2 and the R
wave height in V5 is indicative of LVH. Right
Ventricular Hypertrophy (RVH) is suggested by
increased R wave amplitude in V1 and a deep S
wave in V6, with an R:S ratio greater than 1 in
V1. Atrial enlargement is also identifiable; left
atrial enlargement shows as a broad and notched
P wave in lead II (P-mitrale), while right atrial
enlargement presents as a tall and peaked P wave
in the same lead (P-pulmonale).

(Only when there is no other diagnosable ar-
rhythmia.) STTC is only significant when there
is no other arrhythmia types, otherwise, abnor-
malities are diagnostic rather than STTC. Ana-
lyzing ST/T changes on an ECG requires a look-
out for any obvious abnormalities. For example,
wide and bizarre complexes interspersed with
normal cycles may hint at ventricular tachycar-
dia. ST depression and T waves that deviate
from the normal direction are indicative of is-
chemia. ST elevation, which may or may not
be accompanied by changes in T waves, denotes
injury. The presence of pathological Q waves,
especially in leads other than V1, is significant.
Moreover, symmetrical or asymmetrical changes
in the ST segment and T waves provide in- sights
into the underlying pathology. Clear signs of is-
chemia or infarction are regional T wave abnor-
malities, ST segment changes, and the appear-
ance of Q waves.

——————————————————
Feature Prompts:

General: N/A Leads: -I: N/A, -II: N/A, -III:
Notched R Wave. -aVF: N/A, -aVR: N/A, -
aVL: N/A, -V1: N/A, -V2: N/A, -V3: N/A,
-V4: N/A, -V5: N/A, -V6: N/A

——————————————————
Augmenting Information:

Supplemental information on the ECG fea-
tures: The notched R wave in lead III is not
a cause for concern. It is just a part of the com-
plex and does not indicate any abnormality.

——————————————————
Format Prompts:

Based on the above guidance and consider-
ing the supplemental information, please cat-
egorize the ECG into the following arrhyth-
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mia categories: - Normal ECG (NORM) -
ST/T Change (STTC) - Myocardial Infarc-
tion (MI) - Conduction Disturbance (CD) -
Hypertrophy (HYP).Please output in a Json for-
mat of NORM:, MI:, STTC:, CD:, HYP: with
the explanation of each type. For example:
{NORM: {Result: True, Explanation: ...}}

Note: please directly provide the results in a
JSON format with no other explanation.

Response:
NORM: - Result: true, - Explanation: ”The only

feature detected is a notched R wave in lead III,
which, according to the supplemental information, is
not indicative of any abnormality.”

STTC: Result: false, Explanation: ”There are no
ST depressions, T wave inversions, or any other ST/T
changes mentioned in the ECG features.”

MI: - Result: false, - Explanation: ”There is no evi-
dence of ST segment elevation, pathological Q waves,
or reciprocal changes in any of the leads provided.”

......
Example 2: ECG with both CD and MI in PTB-
XL+.

The starter prompt and diagnostic guidance is
the same as in example 1 ......

——————————————————
Format Prompts:

The following information describe a 12-lead
ECG in features:

General: Long PR interval of 214.0 ms,
which might indicate a conduction disturbance
or ST/T change. Prolonged QT interval de-
tected with a corrected QT of 469.0 ms. Leads:
-I: Inverted T wave is approximated at -1.31
mm. Inverted T wave detected, which might
suggest ST/T change if no other arrtythmia di-
agnosed. -II: Abnormal RS complex might in-
dicate Left anterior fascicular block (LAFB) as
condution disturbance. -III: ST segment eleva-
tion is approximated at 1.26 mm. Abnormal RS
complex might indicate Left anterior fascicular
block (LAFB) as condution disturbance. -aVF:
Abnormal RS complex might indicate Left an-
terior fascicular block (LAFB) as condution dis-
turbance. -aVR: N/A -aVL: Inverted T wave is
approximated at -2.14 mm. Prolonged R peak
time, might indicate condution disturbance. In-
verted T wave detected, which might suggest
ST/T change if no other arrtythmia diagnosed.

-V1: ST segment elevation is approximated at
2.19 mm. Deeper Q wave is approximated at
amplitude of -22.99 mm. Q wave can be seen
in lead V1, which might indicate an abnormal
pattern. -V2: ST segment elevation is approxi-
mated at 3.95 mm. Abnormal T wave detected,
which might suggest ST/T change if no other ar-
rtythmia diagnosed. -V3: ST segment elevation
is approximated at 2.63 mm. -V4: N/A -V5:
N/A -V6: N/A

——————————————————
Augmenting Information:

Supplemental information on the ECG fea-
tures: Based on the information provided, the
ECG shows a long PR interval, which may in-
dicate a conduction disturbance. The ECG
also shows ST segment elevation in leads III,
aVF, V1, V2, and V3, which may suggest ST/T
changes. Inverted T waves are seen in leads I and
aVL, which may also indicate ST/T changes.
Abnormal RS complexes in leads II, III, and aVF
may suggest left anterior fascicular block as a
conduction disturbance. The ECG also shows a
prolonged QT interval. Overall, the ECG find-
ings suggest possible conduction disturbances,
hypertrophy, and ST/T changes.

——————————————————
The format prompts are the same as in exam-

ple 1 ......

Response:
NORM: - Result: false, - Explanation: ”The ECG

shows significant abnormalities including ST segment
elevation, inverted T waves, and abnormal RS com-
plexes, indicating the presence of arrhythmias and
excluding a normal ECG.”

STTC: Result: false, Explanation: ”Diagnosable
change in ST and T waves has been detected.”

CD: - Result: true, - Explanation: ”There is no ev-
idence of ST segment elevation, pathological Q waves,
or reciprocal changes in any of the leads provided.”

MI: - Result: true, - Explanation: ”Abnormal RS
complexes in leads II, III, and aVF suggest a left ante-
rior fascicular block. Prolonged PR and QT intervals
also indicate conduction disturbances.”

HYP: - Result: false, - Explanation: ”There is no
direct evidence of hypertrophy such as tall R waves
in leads V5-V6 or deep S waves in V1-V2 for LVH, or
increased R wave amplitude in V1 and deep S wave
in V6 for RVH.”

663


	Introduction
	Related Work
	ECG Diagnosis with Deep Learning
	Large Language Models (LLMs)

	Objective & Datasets
	Arrhythmia Diagnosis
	Sleep Apnea Detection

	Methods
	Construct Database of Domain Knowledge
	Feature Extraction and Prompts Preparation
	Retrieval-augmented Feature Selection
	Prompts Preparation

	Zero-shot Generation
	Frozen Large Language Models


	Experiments
	Methods of Evaluation
	Supervised Method
	Numerical prompts with few-shot tuning
	Retrieval-augmented Generation

	Evaluation Results
	Arrhythmia Diagnosis
	Sleep Apnea Diagnosis

	The Contribution of Each Step in Proposed Framework

	Discussion & Conclusion
	Examples of Prompts and Outputs

