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Abstract

Gaze plays a crucial role in daily social interactions as it allows humans to communi-
cate intentions effectively. We address the problem of temporal understanding of gaze
communication in social videos in two stages. First, we develop GazeTransformer, an
end-to-end module that infers atomic-level behaviours in a given frame. Second, we de-
velop a temporal module that predicts event-level behaviours in a video using the inferred
atomic-level behaviours. Compared to existing methods, GazeTransformer does not re-
quire human head and object locations as input. Instead, it identifies these locations in
a parallel and end-to-end manner. In addition, it can predict the attended targets of all
predicted humans and infer more atomic-level behaviours that cannot be handled simul-
taneously by previous approaches. We achieve promising performance on both atomic-
and event-level prediction on the (M)VACATION dataset. Code will be available at
https://github.com/gazetransformer/gazetransformer.
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1. Introduction

Apart from enriching verbal utterances, non-verbal communication in itself plays an impor-
tant role in conveying important information (Mehrabian, 2017). In addition, the ability to
learn and understand gaze communication plays a crucial role in the development of social
cognition, information processing and language (Brooks and Meltzoff, 2015; Adamson et al.,
2004; de Belen et al., 2020, 2023a, 2021, 2023b). In the first years of life, infants learn to
follow gaze and coordinate their attention with that of their primary caregivers (Brooks and
Meltzoff, 2015). For example, an infant may respond by following the gaze point of the par-
ent looking at a target object. Difficulties in understanding gaze communication may result
in various socio-communicative impairments during development, as the former makes it
challenging to associate a word with an object (Mundy, 2018). This motivates researchers
to systematically study gaze and responses to this primitive form of communication.

Although not the primary focus of this paper, it is worth mentioning that the mature
saliency estimation domain (Borji, 2019; de Belen et al., 2022) bears similarity to gaze
behaviour prediction. With distinct differences, both aim to computationally model the
mechanisms that underlie human visual attention. Instead of inferring a person’s attended
target in an image, saliency estimation aims to identify the pixel locations that can attract
the attention of humans while viewing images. In fact, a salient region in an image will
most likely attract the attention of a person in the image. This is why most previous works
on human gaze behaviour prediction contain a scene branch used for saliency estimation.
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Earlier works have demonstrated the ability of neural networks to estimate the attended
visual target of a person in an image (Recasens et al., 2015). The most common architecture
includes two branches: a head branch that learns head pose features and a scene branch
that learns salient regions in the image. Succeeding works have extended the problem to
handling out-of-frame gaze targets, resulting in better performance (Chong et al., 2020,
2018). Furthermore, recent works have explored the problem of estimating attended visual
targets in 360°images (Li et al., 2021), video (Recasens et al., 2017; Fang et al., 2021)
and even 3D space (Massé et al., 2017; Wei et al., 2018; Brau et al., 2018; Massé et al.,
2019; Hu et al., 2022a). These approaches are also useful for understanding human gaze
communication behaviours in social video.

Over the past decades, different frameworks have been proposed in psychology and neu-
roscience to study and understand gaze communication (Itier and Batty, 2009; Jording et al.,
2018). A recent framework involves breaking down gaze behaviours into its atomic- and
event-level components (Fan et al., 2019). Atomic-level components include the following
fine-grained gaze patterns: (1) Single is the simplest and does not involve any social com-
munication/interaction behaviour. (2) Mutual occurs when two people look at each other.
(3) Avert happens when a person looks away from another’s gaze. (4) Refer occurs when a
person tries to direct the attention of another person to an object. (5) Follow happens when
another person responds to an initiation of attention of another person to an object. (6)
Share occurs when two people are looking at the same object. On the other hand, gaze com-
munication events are coarse-grained and include the following: (1) Non-communicative (2)
Mutual Gaze (3) Gaze Aversion (4) Gaze Following and (5) Joint Attention. These events
can be formed by temporally combining atomic-level components. In this work, we adopt
a slightly different framework and provide justifications for this minor change in Section 3.

Previous works have explored the capability of deep learning networks to predict gaze
communication of people in images or videos (Fan et al., 2019; Guo et al., 2022; Marin-
Jimenez et al., 2019; Maŕın-Jiménez et al., 2021). Most approaches require human and
object bounding boxes or use a decoupled head detector (Marin-Jimenez et al., 2019; Fan
et al., 2019; Maŕın-Jiménez et al., 2021), resulting in sub-optimal solutions. A better solu-
tion is to use an end-to-end module that jointly learns to predict head and object bounding
boxes and their corresponding gaze relationships. Recently, an end-to-end model has been
proposed to estimate the location of the attended target (Tu et al., 2022), while another
end-to-end model can only detect Mutual gaze relationships (Guo et al., 2022), limiting
future applications for handling more complex gaze communication. In contrast, our pro-
posed atomic-level module can predict Single, Mutual and Share gaze relationships, while
our temporal module can predict event-level gaze communication.

Our framework to predict human gaze communication behaviours consists of two stages:

1. We develop GazeTransformer, an end-to-end module that identifies atomic-level gaze
communication. The module consists of an image feature extractor backbone, a trans-
former encoder-decoder network and several multi-layer perceptrons that predict hu-
man head and object locations and their corresponding gaze relationships (i.e., human-
target interaction (HTI) instances), in parallel. These HTI instances are elements of
an adjacency matrix that we use for inferring atomic-level gaze communication. Gaze-
Transformer achieves promising results on the (M)VACATION dataset.
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2. We develop a temporal module for predicting event-level gaze communication be-
haviours. The model architecture consists of a long short-term memory network and
a fully connected layer for classification. It first processes all video frames and de-
termines unique atomic labels within the video. As a result, it does not miss crucial
frames which will otherwise be excluded if a widely-used uniform sub-sampling ap-
proach (Carreira and Zisserman, 2017) is adopted. This module achieves promising
results on the (M)VACATION dataset.

This paper makes the following contributions:

1. We modify the VACATION dataset and include atomic-level components that are
minimally sufficient to build event-level gaze events. The reasons for this change are
discussed in Section 3. These modifications are justified and result in a simpler, more
efficient and effective training and evaluation paradigm. Furthermore, the new atomic-
level labels provide a more practical categorisation since they do not require temporal
information for inference. This is ideal because atomic-level labels are defined for each
frame instead of being reliant on previous or succeeding frames.

2. We present GazeTransformer, a novel end-to-end model that predicts human head
and object locations in parallel. In addition, it predicts the attended targets of all
the predicted humans in the scene. Furthermore, we propose a novel way to infer
atomic-level labels (e.g., Single, Mutual, Share) from adjacency matrices. Currently,
this ability cannot be handled simultaneously by existing end-to-end models.

3. We present a temporal model for predicting event-level gaze communication behaviours
from the atomic-level gaze communication already detected.

2. Related Work

The ability to use and understand gaze allows humans to communicate and share intentions
effectively. In addition, it provides a means for evaluating another person’s interest in the
environment (Mehrabian, 2017). The white part of the eye, called the sclera, is more
prominent in humans than in other mammals, allowing humans to leverage the colour
difference between the sclera and the darker-coloured iris when directing their attention
to a potential target for conveying intention (Kobayashi and Kohshima, 1997). When the
pupil information cannot be reliably used for communication, humans resort to using head
orientation as another way to convey and infer intentions. Finally, if the eyes and head
are occluded, body orientation provides a sufficient cue for communication. As a result,
the ability to estimate gaze and head direction is crucial for humans in determining gaze
communication in an image or video. Consider an image where two people are looking
at an object (i.e., sharing attention). A person looking at this image needs to have the
ability to determine the attended targets of both persons and understand that the targets
are the same object. It is therefore appropriate to discuss related work under the following
headings: gaze target prediction and gaze communication behaviour understanding.

Gaze target prediction Previous works focus on detecting gaze targets in an image
(Recasens et al., 2015; Chong et al., 2018, 2020; Tu et al., 2022; Guan et al., 2020; Lian et al.,
2018; Zhao et al., 2020; Bao et al., 2022; Hu et al., 2022b; Gupta et al., 2022), 360°image
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(Li et al., 2021), video (Recasens et al., 2017; Fang et al., 2021), or 3D space (Massé et al.,
2017; Wei et al., 2018; Brau et al., 2018; Massé et al., 2019; Hu et al., 2022a). Since our
work focusses on images and videos, we review related works in more detail.

The earliest deep learning model follows a two-branch network approach that involves a
head pathway and a scene pathway to infer a heatmap of the attended target of a person in
an image (Recasens et al., 2015). An extension to this work involved considering body pose
(Guan et al., 2020) and learning a modulation constant to identify out-of-frame targets in
images, as well as in videos (Chong et al., 2018, 2020), resulting in improved prediction
performance. Another two-stage method that aims to draw sight lines and determine the
attended target by stopping at a position with high sight line strength has been proposed
(Zhao et al., 2020). A three-stage method that uses depth and 3D gaze estimation was
proposed to exclude predictions that are at improper depth (Fang et al., 2021). Another
similar framework infers 3D geometry from a 2D image and parses the scene to infer the
target gaze position in 2D (Bao et al., 2022). Another three-stage method uses a head
branch, scene branch and a relational branch to identify the attended target (Chen et al.,
2021; Hu et al., 2022b). A modular multimodal model leverages depth and pose estimation
and can be used in privacy-sensitive settings (Gupta et al., 2022). A recent work presents a
unified framework for jointly solving gaze estimation, gaze target prediction and gaze target
detection (Wang et al., 2022). As can be observed from the above discussion, most prior
approaches require ground truth locations of the human heads for accurate prediction of the
attended targets, limiting their adoption to practical applications. A recent work addresses
this issue using an end-to-end model that can simultaneously predict head bounding boxes
and their corresponding gaze targets (Tu et al., 2022), while another determines Mutual
gaze relationships (Guo et al., 2022). In contrast, we propose an end-to-end solution for
simultaneously predicting the attended targets of each detected person in the scene, as well
as inferring the corresponding Single, Mutual and Share gaze relationships in this work.

Gaze communication behaviour understanding Previous works detect if two per-
sons are looking at each other (Maŕın-Jiménez et al., 2011; Marin-Jimenez et al., 2014,
2019; Maŕın-Jiménez et al., 2021; Palmero et al., 2018; Doosti et al., 2021; Guo et al.,
2022), determine if two or more persons are sharing attention (Sumer et al., 2020), predict
the common gaze target of a group of persons (Fan et al., 2018; Zhuang et al., 2019), or
recognise atomic-level (e.g., Single, Mutual, Share) and event-level gaze communication be-
haviours (e.g., Gaze Aversion, Joint Attention) (Fan et al., 2019). Similar to the prior works
on gaze target prediction, most approaches in this domain require ground truth locations
of the humans in the scene.

In this work, we present GazeTransformer, an end-to-end module for atomic-level pre-
diction. Compared to a previous model (Fan et al., 2019) that requires human and object
locations, GazeTransformer automatically predicts these locations, the attended targets,
and their corresponding gaze relationships in parallel. Unlike previous end-to-end models
that can only identify attended targets (Tu et al., 2022) and handle Mutual gaze (Guo et al.,
2022), GazeTransformer can simultaneously infer Single, Mutual and Share gaze relation-
ships. A temporal module is also built on top of GazeTransformer for event-level classi-
fication. Our experimental results show that our atomic- and event-level modules achieve
promising performance on the (M)VACATION dataset, which is a modified VACATION
dataset described in Section 3.
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Number of instances
Single Mutual Avert Refer Follow Share

VACATION 80,370 37,441 9,333 2,549 3,429 28,821
(M)VACATION 87,998 40,497 - - - 33,452

Table 1: Comparison of atomic-level gaze communication labels between VACATION and
(M)VACATION datasets.

3. (M)VACATION dataset

The Video gAze CommunicATION (VACATION) dataset (Fan et al., 2019) is a large-scale
video dataset that aims to tackle the problem of understanding human gaze communication
in social videos from both atomic- and event- levels. It contains 300 videos of diverse social
scenes with complete annotations of the bounding box locations of objects and human faces,
human attention, and both atomic- and event-level gaze communication labels.

In the VACATION dataset, atomic-level labels were categorised into six classes: Sin-
gle, Mutual, Avert, Refer, Follow and Share. On the other hand, event-level labels were
composed of Non-communicative, Mutual Gaze, Gaze Aversion, Gaze Following and Joint
Attention. While atomic-level labels are provided for each person in each frame, event-level
labels are the same for an entire video/segment. Note that there is an imbalance in the num-
ber of instances for Avert, Refer and Follow atomic-level labels in the original VACATION
dataset, as shown in Table 1.

As can be observed, there are more Single (i.e., no gaze interaction between persons
in the scene), Mutual (i.e., two persons are looking at each other) and Share (i.e., two or
more persons are looking at the same object) atomic-level gaze communication behaviours.
On the other hand, there is substantially less number of Avert (i.e., one person looks away
after another person gazes), Refer (i.e., one person tries to refer another person to another
object by a mutual gaze followed by a look at an object) and Follow (i.e., a person looks
at where another person is looking at) behaviours in the VACATION dataset.

While the VACATION dataset undeniably provides a useful baseline to develop compu-
tational models for gaze communication behaviour understanding, we believe that it requires
minor changes for an easier, more efficient and effective training and evaluation paradigm.
Therefore, we introduce a modified VACATION dataset, named (M)VACATION. The dif-
ferences between the original and the modified datasets and the reasons for the modifications
are outlined below:

1. the number of atomic-level gaze communication labels has been reduced to three:
Single, Mutual and Share. We believe that these three fine-grained components are
sufficient to build more complex and course-grained event-level gaze communication.
In fact, the removed atomic-level labels (e.g., Avert, Refer and Follow) require tem-
poral information, defeating their definition as atomic components. To illustrate,
consider a Joint Attention scenario in Figure 1 where Person1 shares attention to an
object with Person2. In row 1, the ground truth atomic-level labels for Person 1 is
Follow while it is Single then Refer for Person2 across several frames. However, it is
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Figure 1: Frames with ground truth human head/object locations with their corresponding
atomic-level labels from the VACATION dataset. As shown by the directed
arrows in each frame, all persons are looking at the same object. However, the
ground truth may either be: Follow, Single, Refer, or Share. Since atomic-level
labels are defined per frame, we believe that the mentioned labels should be Share.

difficult even for a human to determine these defined ground-truth atomic-level labels
for each frame without looking at the surrounding frames. A similar issue can be found
in row 2 of Figure 1 in which Person1 has a Share then Follow labels while Person2
has Share then Single labels. Since the prediction of atomic-level labels is performed
for each frame, Single, Mutual and Share provide a more practical categorisation of
atomic-level labels in this case.

2. the atomic-level ground truth has been modified to ensure labelling consistency. This
was easily automated by constructing adjacency matrices (defined and discussed more
thoroughly in section 4.2) that denote directed gaze in a scene. Afterwards, the
atomic-level labels are inferred from the adjacency matrices. As shown in Figure
1, while consecutive frames show that the two persons Share attention, the ground
truth labels are different, making the problem unnecessarily complex. The underlying
adjacency matrices, as will be discussed in section 4.2, are the same:

A1 = A2 = A3 = A4 =

0 0 0
1 0 0
1 0 0


3. After the proposed modifications, the (M)VACATION has a more balanced number

of classes compared to the original VACATION dataset, as shown in Table 1. In
addition to the advantages described above, training a deep learning model on a more
balanced dataset results in better performance, especially at times when it is difficult
to obtain representative examples in each class.
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Figure 2: Overview of the proposed pipeline that consists of a two-step approach: the
atomic-level module predicts the atomic-level behaviours of all persons in a given
frame in parallel and end-to-end. Afterwards, the event-level module infers the
event-level behaviour using the unique atomic-level prediction in a given video.

4. Methodology

As shown in Figure 2, an event, such as Joint Attention, consists of a series of temporally
changing human-human or human-object interactions, which we call human-target interac-
tion (HTI) instances. Clearly, it is important to recognise these atomic components first
before attempting to understand more complex gaze communication. Therefore, we develop
a two-step approach for the temporal understanding of gaze communication, as illustrated
in Figure 2:

1. Atomic-level prediction: we develop GazeTransformer that predicts human/object
locations, gaze targets and all HTI instances in a parallel and end-to-end manner.
These HTI instances are elements of an adjacency matrix that we then use to infer
the atomic labels of each person in the scene.

2. Event-level prediction: we develop a temporal module on top of GazeTransformer
to predict the event labels using the unique atomic predictions in a video.

These two modules are trained separately to address the atomic- and event-level predictions.
Afterwards, the output of the atomic-level module is passed to the event-level module. While
our approach looks similar to Fan et al. (2019), we neither follow a neural message passing
framework of graph neural networks nor require human head/object locations to generate
the atomic labels. For event-level prediction, our approach uses the predicted adjacency
matrix, while Fan et al. (2019) uses atomic-level transition and frequency counts as input.
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Figure 3: The proposed architecture of the atomic-level prediction module. It consists of
three components: (1) an image feature extractor backbone (2) a transformer
encoder-decoder network and (3) several multi-layer perceptrons to predict the
HTI instances of a frame, in parallel. These HTI instances are elements of an
adjacency matrix that we use to infer the atomic-level gaze communication be-
haviours. This resembles a set prediction problem.

4.1. Problem Formulation

Similar to the problem of learning human-object interactions (Qi et al., 2018), gaze commu-
nication behaviour prediction can be solved by analysing complete scene graphs (i.e., social
graphs) and generating a sub-graph that entails the true gaze communication behaviours
of persons in the scene.

A complete social graph is represented as G = (V, E). Nodes v ∈ V take unique values
from {1, ..., |V|} and represent distinct entities (e.g., human, object) in the scene. Edges
e ∈ E are two-tuples e = (v, w) ∈ V × V and represent directed edges v → w that show all
the possible human-human gaze interactions or human-object gaze interactions (i.e., HTI
instances). The sub-graph g = (Vg, Eg), where Vg ⊆ V and Eg ⊆ E , denotes the true HTI
instances in the scene. This g is represented as an adjacency matrix A = [0, 1]|V|×|V|. While
this scene representation is similar to Fan et al. (2019), there are significant differences.
Unlike (Fan et al., 2019), we consider the problem of finding the sub-graph g as a set
prediction problem. More specifically, the off-diagonals of A are the HTI instances that
the GazeTransformer predicts in a parallel and end-to-end way. Furthermore, we set the
diagonals of A to zero since we assume that (human) nodes do not look at themselves. In
addition, we neither add a dummy node to represent the social scene nor set the maximum
number of nodes for atomic classification. We also do not learn an additional readout
function that is part of a graph neural network to generate the atomic labels. Instead, we
use a simple, effective and practical way to infer atomic labels from an adjacency matrix
(see Section 4.2).
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4.2. Atomic-level prediction module

The atomic-level prediction module, GazeTransformer, consists of three components: (1)
an image feature extractor backbone (2) a transformer encoder-decoder network and (3)
several multi-layer perceptrons (MLPs). Unlike a previous method (Fan et al., 2019), we
solve the problem of atomic-level prediction in an end-to-end manner. Unlike a previous
end-to-end model (Guo et al., 2022) that can only handle Mutual gaze, GazeTransformer
can infer Single, Mutual and Share gaze. As shown in Figure 3, it takes in an image frame
and outputs all HTI instances in parallel (similar to a set prediction problem), effectively
generating the elements of the adjacency matrix A of sub-graph g. The atomic labels are
then inferred from the generated adjacency matrix using our proposed novel approach.

Image Feature Extractor Backbone This component consists of an arbitrary deep
neural network that extracts visual features from an input frame. The input to this module is
a colour image, x ∈ R3×W×H and the output is a feature map f ∈ RC×Wf×Hf . This feature
map is reduced to a lower dimension using a 1 × 1 convolution operator with R channels.
Since the encoder of the transformer network expects a sequence of features, the feature map
spatial dimension is collapsed into a single dimension using a flatten operator, resulting in
a final feature map z ∈ RR×WfHf . We compared different backbones (ResNet50(He et al.,
2016) and ResNet101(He et al., 2016)) in our experiments.

Transformer encoder-decoder network This follows a standard transformer archi-
tecture (Vaswani et al., 2017) that consists of a multi-head self-attention and feed-forward
networks for the encoder and an additional multi-head cross-attention layer for the decoder.

Multi-layer perceptron As shown in the lower right portion of Figure 3, an HTI
instance is a tuple containing the human class, interaction class, target class and human
and target bounding boxes (x, y, width and height). The human, target and interaction
classes consist of binary labels (human/not human, object/not object, and looking/not
looking, respectively). The HTI instances are decoded from the output embedding of each
HTI query using several MLPs in parallel. We use separate one-layer MLPs with a final
softmax layer for each confidence for the human class, target class and interaction class,
while separate three-layer MLPs are used for each human and target bounding box.

Inferring atomic-level gaze communication We present a novel and effective way
to infer atomic-level labels of each person in the scene by exploiting the interesting proper-
ties of adjacency matrices. Given an adjacency matrix A, each entry Avi,vj = 1 corresponds
to a directed edge from node vi to node vj . Hence, two persons (vi, vj) have Mutual gaze
behaviours if Avi,vj and Avj ,vi are equal to 1. To determine if a person vi has a Shared at-
tention to a human/object vj with another person, check if Avi,vj is equal to 1 and identify
whether the column vj has more than one entry with a value of 1. If none of these cases
is met, the person only has an atomic-level label of Single. To illustrate this process, we
analyse the frames with adjacency matrices (At,At+1,At+2) in Figure 2. At has three nodes
v ∈ V, where V can be Person1, Person2 or Object1. Looking at At, APerson1,P erson2

and APerson2,P erson1 are both equal to 1, hence the inferred atomic-level gaze communi-
cation for both Person1 and Person2 are Mutual. Looking at At+1, APerson1,P erson2 and
APerson2,Object1 are both equal to 1, hence both persons have an atomic-level label of Sin-
gle. Finally, looking at At+2, APerson1,Object1 and APerson2,Object1 are both 1 (i.e., column
vObject1 have two entries with a value of 1), hence both persons have Shared attention labels.
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Figure 4: The proposed architecture of the event-level prediction module. It consists of a
long short-term memory (LSTM) network and a fully-connected layer for event-
level classification. Displayed is a sample input that contains a list of unique
adjacency matrices predicted by the atomic-level prediction module and an output
that is the final classification of Joint Attention.

4.3. Event-level prediction module

Our event-level prediction module, as shown in Figure 4, consists of a long-short term
memory (LSTM) architecture that takes in a list of unique adjacency matrices predicted
by the atomic-level prediction module. Similar to a concept introduced elsewhere (Liu
et al., 2021), the proposed network processes the entire video and only uses key frames for
prediction. The key frames are defined as the frames where an entry (or entries) of the
predicted adjacency matrix has (have) changed. We believe that this simple yet effective
approach resembles the behaviour of humans when determining gaze communication events
in a video (i.e., humans watching a video keep track of the unique atomic-level labels
that happened throughout the video before predicting an event label). In addition, the
transition from one atomic-level label to another provides important information about
the event-level label that has transpired. Since atomic-level labels can be inferred from the
adjacency matrix A, keeping track of the unique As across time provides crucial information
about the event. Once the key frames have been identified, their corresponding adjacency
matrices are flattened and used as input to the LSTM network. Afterwards, the learned
features are passed to a fully connected layer for event-level classification.
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5. Experiments

5.1. Dataset

We used the (M)VACATION dataset to train and evaluate our atomic- and event-level
prediction modules. Since we predict the atomic-level labels in a parallel and end-to-end
manner, the only input to the atomic-level module is an image frame, while the human head
and object bounding box labels are used as ground truth to train the model. To prevent
overfitting of the atomic-level prediction module, we sample each video every 10 frames and
use the sampled frames as inputs to the module. Using the atomic-level ground truth, we
generate the adjacency matrices for the entire duration of each event-level label and extract
the unique adjacency matrices to train our event-level module.

5.2. Implementation Details

Our proposed modules were implemented in PyTorch. The input to the atomic-level module
is a normalised RGB image, while the output is a set of HTI instances. To train our model,
we used the Hungarian algorithm (Kuhn, 1955) to solve the matching of the predicted HTI
instances with the ground truth. After the optimal matching was found, we used the loss
function:

Lloss = β1
∑

c∈h,t,g
Lc
class + β2

∑
b∈h,t

Lb
bbox (1)

where Lc
class are the standard cross entropy losses between the human, target and gaze

interaction and their corresponding ground truth labels. On the other hand, Lb
bbox consists

of the weighted sum GIoU loss and L1 loss and is computed for each human and target
bounding box.

We used different feature extractor backbones (ResNet50 and ResNet101) pre-trained
on the ImageNet database and freeze their batch norm layers. We compared DETR (Carion
et al., 2020) and DeformableDETR (Zhu et al., 2020) models pre-trained on COCO for our
transformer encoder-decoder and MLP networks. Note that we only used the ResNet50 ver-
sion of DeformableDETR since the ResNet101 version pre-trained on COCO is not publicly
available. We used the default number of encoder and decoder layers, as well as the number
of object (HTI in our case) queries, chosen by the original DETR and DeformableDETR
models. We set the AdamW optimizer with the following parameters: learning rates of
the backbone is 1e-5 and the transformer network is 1e-4; weight decay is set to 1e-4 and
applied after 200 epochs. Similar to other DETR-like architectures, our models are trained
with a long training schedule (250 epochs).

The event-level prediction module was trained on the ground truth adjacency matrices
of the training split of the (M)VACATION dataset. We compute the cross entropy loss
between the predicted event-level gaze communication and the ground truth to train the
model. For testing, the input of the event-level prediction module is a sequence of unique
adjacency matrices predicted by the atomic-level prediction module. The length of the
adjacency matrix sequence is set to a value of 5. We set the limit of the maximum number
of nodes to 7 based on the (M)VACATION statistics. Smaller adjacency matrices are
appended with zeros and shorter sequences are appended with the last unique matrix.
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5.3. State-of-the-art models

A spatiotemporal graph neural network has been proposed to represent the atomic-level
gaze communication behaviours in a given frame (Fan et al., 2019). In addition, an event
network was developed to predict the event-level gaze communication behaviours (Fan et al.,
2019). While their approach is fundamentally similar, a fair comparison is not possible
because of the following reasons: (1) their models were trained and evaluated using the
VACATION dataset and (2) their models cannot be re-trained and re-evaluated on the
(M)VACATION dataset due to the nature of their open-source implementation (i.e., their
source code contains references to files that were not released). Re-implementing their
network is out of the scope of this work. Instead, the proposed model was compared to
a baseline that predicts the gaze target of a person in a scene (Chong et al., 2020). In
particular, a pre-trained model that accepts a human head bounding box, as well as the
entire image, was used to predict the probability distribution of the gaze target. Afterwards,
the location with the highest probability value was utilised to determine if any human
head/object falls within this location and construct an adjacency matrix that can then be
used to infer atomic-level labels. This approach is fundamentally similar to the behaviour
of the proposed network (i.e., GazeTransformer also predicts the attended target), with the
exception that the proposed model performs automatic prediction of human head/object
locations instead of using ground truth human head/object locations.

5.4. Evaluation Metrics

We use precision (P), F1-score (F) and top-1 average accuracy (Fan et al., 2019) to evaluate
both our atomic- and event-level prediction modules. We also report the P, F and Recall
(R) values to demonstrate GazeTransformer’s performance in detecting human/object lo-
cations. A prediction is considered a true positive if and only if the model predicts a box
location that has an intersection-over-union (IOU) greater than 0.5 with the ground truth.
To make the number of the atomic- and event-level predictions and ground truth the same
and allow for a meaningful comparison, a node without gaze interaction with other nodes
is added to the predicted adjacency matrix when ground truth is missed.

6. Results

We discuss both the quantitative and qualitative results on atomic-level prediction in Section
6.1 followed by the event-level prediction in Section 6.2.

6.1. Atomic-level prediction module

Quantitative results GazeTransformer achieved the following human/object localisation
performance: ResNet50: P=92.29%, F=83.58%, R=76.38%, while ResNet101: P=90.23%,
F=83.65%, R=77.97%, suggesting that the models reported low false positives but mod-
erate false negatives. This means that most of the time, no model generated bounding
box predictions that do not contain any human head or object. However, there were times
when the models failed to generate bounding boxes that should be there. In the next sec-
tion, the reasons that contributed to this performance are explored, specifically the missed
predictions on small objects.
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Atomic-level Gaze Communication (Precision P, F1-score F & Average Accuracy)

Single Mutual Share Average Accuracy
P(%) ↑ F(%) ↑ P(%) ↑ F(%) ↑ P(%) ↑ F(%) ↑ top-1 (%) ↑

Ours* 79.48 86.28 75.57 66.38 94.81 60.06 88.40
Ours† 79.98 85.17 72.78 68.12 83.10 60.24 87.88
Ours‡ 77.93 85.24 70.59 58.85 95.17 64.16 87.54
(Chong et al., 2020) 70.05 68.61 43.42 58.21 64.31 33.34 78.92

Table 2: Quantitative performance of different models on (M)VACATION dataset for
atomic-level gaze communication prediction. Model used: *DETR with ResNet50,
†DETR with ResNet101, ‡DeformableDETR with ResNet50.

The atomic-level classification results are reported in Table 2. All GazeTransformer
models achieved promising precision (P) values on all atomic-level classes with the highest
P value of 95.17% on Share class, much higher than the baseline model (Chong et al., 2020).
Similarly, the GazeTransformer models reported higher F1-scores (F) than the baseline
model. Overall, the GazeTransformer models achieved a similar high average accuracy of
around 88%. In comparison, the baseline model achieved a lower performance across all
the atomic-level gaze communication behaviours. In particular, the baseline model resulted
in a 10% lower precision (P) value of 70.05% and a 20% lower F1-score (F) of 68.61% on
the Single class. In addition, it resulted in around 30% lower precision (P) value of 43.42%
and a 10% lower F1-score (F) of 58.21% on the Mutual category. The greatest difference in
performance was on the Share class where the baseline model reported a 30% lower precision
(P) value of 64.31% and around 30% lower F1-score (F) of 33.34%. Overall, the baseline
model had a 10% lower average accuracy of 78.92%. All variants of GazeTransformer
consistently outperformed the baseline model (Chong et al., 2020). In the next section, we
will focus on the GazeTransformer with ResNet50 and DETR-like architecture.

Qualitative results As shown in the first two rows of Figure 5, the proposed Gaze-
Transformer correctly predicted human head and object locations (in coloured solid rect-
angles) that are close to the ground truth (in red dotted rectangles). Directed arrows are
added to show the predicted attended targets of all the detected humans. In addition, it
can correctly infer Single, Mutual and Share atomic behaviours in scenarios where there are
exactly two persons (Columns 1-3) or even three persons (Columns 4-5).

GazeTransformer also predicted labels that were different from the ground truth (for
the succeeding discussion, refer to the last two rows of Figure 5). Column 1 shows that
our model predictions were Mutual, while the ground truth was Single. Here, the subtle
cue of eye gaze direction results in a drastically different atomic-level label. This illustrates
why our model achieved lower P and F values for the Mutual label. We found instances
where we believe that the ground truth (Mutual) was incorrect (column 2). Our model was
penalised for predicting the correct Single label, effectively lowering our model’s Single and
Mutual performance. As shown in columns 3-4, our model failed to correctly predict the
locations of small objects, resulting in lower F on Share label. This is also reflected in the
lower R value (∼ 76%) of GazeTransformer’s localisation performance. Finally, column 5
shows ambiguous cases that are too difficult even for humans to identify.
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Figure 5: Atomic-level prediction results. The first two rows show frames with correctly
classified labels (in green), while the last two rows show frames with incorrectly
classified labels (in red, above the ground truth). The dotted rectangles are
ground truth labels, while solid rectangles are model predictions.

6.2. Event-level prediction module

The event-level classification results are shown in Table 3. Our temporal module combined
with different GazeTransformers has promising P and F values for Non-Communicative,
Mutual Gaze and Joint Attention, but low performance for Gaze Aversion and Gaze Fol-
lowing. Overall, our temporal modules have a similar high average accuracy of around
85%. To eliminate any compounded errors caused by GazeTransformer and illustrate the
effectiveness of our temporal module alone, we fed the latter with the ground truth adja-
cency matrices and achieved significantly higher performance across all metrics on all event
labels, highlighting that our temporal module is working as intended. On the other hand,
the baseline model was not able to predict Gaze Aversion and Gaze Following classes and a
low performance on Joint Attention, resulting in a much lower average accuracy of 22.90%.

Event-level Gaze Communication (Precision P, F1-score F & Average Accuracy)

Non-Comm. Mutual Gaze Gaze Aversion Gaze Following Joint Attention Avg. Acc.
P(%) ↑ F(%) ↑ P(%) ↑ F(%) ↑ P(%) ↑ F(%) ↑ P(%) ↑ F(%) ↑ P(%) ↑ F(%) ↑ top-1 (%) ↑

Ours* 61.76 62.69 68.42 65.00 25.00 33.33 20.00 18.00 43.75 46.67 85.03
Ours† 60.60 61.54 57.14 63.15 25.00 33.33 25.00 25.00 71.42 58.82 85.23
Ours‡ 58.82 57.97 57.14 58.54 25.00 33.33 20.00 18.00 50.00 53.85 83.71
(Chong et al., 2020) 71.43 31.25 23.81 71.43 0 0 0 0 37.5 33.33 22.90

Ours†† 74.60 82.46 89.66 85.25 66.67 66.67 66.67 72.73 78.57 57.89 91.90

Table 3: Quantitative evaluation results of different models on (M)VACATION dataset for
event-level gaze communication prediction. Model used: *DETR with ResNet50,
†DETR with ResNet101, ‡DeformableDETR with ResNet50, ††The input is the
ground-truth adjacency matrices instead of the atomic-level predictions.
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Figure 6: Event-level prediction results. The first two rows show correctly classified atomic
and event labels (in green), while the last two rows show incorrectly classified
atomic and event labels (in red, above the ground truth).

Figure 6 illustrates the qualitative results. A closer examination of Rows 1 and 2 reveals
that all the frames depict accurate atomic-level predictions, resulting in correct event-level
predictions. On the other hand, the event-level predictions in Rows 3 and 4 are incorrect
because GazeTransformer either failed to identify an object in the scene (as observed in
Row 3) or incorrectly predicted the atomic-level labels of one or two persons in the scene
(as depicted in Row 4). This affirms the heavy reliance of the temporal module on the Gaze-
Transformer. More examples of atomic- and event-level predictions on the (M)VACATION
dataset are currently available in the GitHub repository linked in the Abstract.

7. Conclusion

We have presented a two-stage approach for the temporal understanding of gaze communica-
tion. Compared to previous approaches, our first stage does not require human head/object
bounding box locations. Instead, our module predicts these locations, attended targets and
their corresponding gaze relationships in parallel. Unlike previous end-to-end models that
can only predict attended gaze targets or identify Mutual gaze instances, our model can
infer Single, Mutual and Share gaze behaviours. Afterwards, a temporal model uses the
predicted atomic-level labels to identify event-level gaze communication. Both models show
promising results on the (M)VACATION dataset. Despite the encouraging results, our pro-
posed two-stage framework has some notable limitations. First, our atomic-level module has
a lower localisation performance on small objects, as shown by the failure cases in Figure 5,
resulting in lower atomic-level classification performance. Second, our event-level module
is heavily dependent on our atomic-level module since both modules are in cascade. This
is substantiated by the increase in performance of the event-level module when the ground
truth adjacency matrices were used as input. Despite this promising result, the event-level
results may still be sub-optimal, which is caused by the disjointed training of both mod-
ules (due to limited data). Nevertheless, our approach offers an end-to-end solution for
atomic-level prediction combined with a temporal module for event-level prediction.
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